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Abstract

Simulation of the dynamics of quantum materials is emerging as a promising scientific application
for noisy intermediate-scale quantum (NISQ) computers. Due to their high gate-error rates and
short decoherence times, however, NISQ computers can only produce high-fidelity results for
those quantum circuits smaller than some given circuit size. Dynamic simulations, therefore, pose
a challenge as current algorithms produce circuits that grow in size with each subsequent time-step
of the simulation. This underscores the crucial role of quantum circuit compilers to produce
executable quantum circuits of minimal size, thereby maximizing the range of physical phenomena
that can be studied within the NISQ fidelity budget. Here, we present two domain-specific (DS)
quantum circuit compilers for the Rigetti and IBM quantum computers, specifically designed to
compile circuits simulating dynamics under a special class of time-dependent Hamiltonians. The
compilers outperform state-of-the-art general-purpose compilers in terms of circuit size reduction
by around 25%-30% as well as wall-clock compilation time by around 40% (dependent on system
size and simulation time-step). Drawing on heuristic techniques commonly used in artificial
intelligence, both compilers scale well with simulation time-step and system size. Code for both
compilers is open-source and packaged into a full-stack quantum simulation software with
tutorials included for ease of use for future researchers wishing to perform dynamic simulations of
quantum materials on quantum computers. As our DS compilers provide significant
improvements in both compilation time and simulation fidelity, they provide a building block for
accelerating progress toward physical quantum supremacy.

1. Introduction

Quantum computers promise to solve certain classes of problems that are intractable on the most advanced
classical computers by massively reducing either time-to-solution, computational resource requirements, or
both. By storing and processing information on quantum bits, or qubits, quantum computers take
advantage of quantum mechanical phenomena, such as superposition and entanglement, to beat
performance of their classical counterparts. Nearly forty years after their theoretical conception as universal
quantum simulators [1], quantum computers are beginning to produce early successes in simulating
quantum systems. However, currently available and near-future quantum computers, commonly known as
noisy intermediate-scale quantum (NISQ) computers, suffer from high gate- and measurement-error rates,
as well as qubit decoherence [2]. Furthermore, due to their small numbers of qubits, NISQ computers are
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unable to exploit robust error-correcting schemes which are expected to give rise to fault-tolerant quantum
computers in the future. As a result, the only physical systems that have been simulated on quantum
computers to date [3—8] are too small to see a quantum advantage (i.e., these systems can still be simulated
on classical computers). While such simulations have provided encouraging proofs-of-concept, the next
great challenge is to learn new physics by simulating a quantum material on a quantum computer, which
cannot feasibly be simulated on any classical computer.

A particularly promising route to discovering new physics with NISQ computers is the dynamic
simulation of a strongly-correlated quantum material. On the one hand, the complexity of such simulations
on classical computers grows exponentially with the number of particles in the system, quickly making
simulations of even modestly-sized systems impossible to run on state-of-the-art classical supercomputers.
On the other hand, only modestly-sized systems are required to study the dynamics of various physical
models, making it possible to fit such simulations onto NISQ computers. Together, this means there may
exist a ‘goldilocks’ quantum material, too large for classical computers but small enough for NISQ
computers to simulate, with which to achieve physical quantum supremacy.

Dynamic simulations are carried out on quantum computers by creating a different quantum circuit for
each time-step of the simulation. Current algorithms generally produce quantum circuits that grow in size
with each time-step [9—12]. Since NISQ computers can only execute circuits up to a certain size with high
fidelity, due to high gate-error rates and low qubit decoherence times, this puts a limit on the number of
time-steps an NISQ computer can feasibly simulate. It is therefore crucial to develop quantum circuit
compilers that can minimize circuit sizes enough to enable dynamic simulations on NISQ computers.

Still in their infancy, quantum circuit compilers are an integral part of the quantum computing software
stack [13]. Their function is to transform a high-level quantum circuit, usually the output of an algorithm,
into a circuit that can be executed on a quantum computer. High-level quantum circuits are defined by a set
of arbitrary quantum logic gates, each of which can be represented by a unitary matrix, acting on different
subsets of qubits in the system. Quantum computers, however, are only designed with the ability to perform
a small, universal set of one- and two-qubit gates, called their native gate set. Products of these native gates
can be designed to be equivalent to any N-qubit gate, and thus can be used to execute any high-level
quantum circuit. A complicating factor in the NISQ-era is that different quantum computers have different
native gate sets. Therefore, the executable quantum circuit produced by the quantum circuit compiler must
only consist of those native gates specific to the quantum machine upon which it will be executed.

On top of mapping high-level circuits to native-gate circuits, the quantum circuit compiler is further
expected to optimize the native-gate circuit, which in the NISQ-era equates to circuit size minimization.
There are two main approaches for quantum circuit optimization: circuit synthesis and circuit
optimization. Circuit synthesis takes as input a 2N x 2N unitary matrix representing the action of all the
gates of the circuit on the entire N-qubit system and outputs an optimal or near-optimal circuit of native
gates derived by various methods [14-22]. For very small system sizes (2 and 3 qubits), methods have been
developed that produce provably optimal (i.e. minimum-sized) circuits [23—27]. The upside of the circuit
synthesis approach for dynamic simulations is that they can, in some cases, yield constant-depth circuits for
every time-step. While the parameters within the output circuits, which are derived from the 2V x 2N input
unitary matrix, vary per time-step, the overall size of circuit remains constant. Therefore, if the output
circuits are small enough for high-fidelity results on the NISQ computer, then one can, in principle,
simulate evolution of a system out to an arbitrary number of time-steps. The downside, however, is that for
an N-qubit circuit, the algorithm must work with a 2 x 2N unitary matrix, causing the memory resources
and wall-clock time of this approach to grow exponentially with system size. This may render the circuit
synthesis approach unsuitable for compilation of the larger-scale simulation circuits required for new
discoveries on NISQ computers.

Less well studied, is the circuit optimization approach which takes as input a high-level circuit and uses
algebraic identities to perform gate permutations, transformations, insertions, and deletions to get an
equivalent, near-optimal circuit of native gates [28, 29]. The drawback of this method is that while this
method decreases circuit size for each time-step, the executable circuits still grow with increasing time-step.
The upside, however, is that this method can be made to scale efficiently with system size, giving it the
potential to work with circuits simulating large enough systems to demonstrate physical quantum
supremacy. The main difficulty in applying this method is the large number of identities, along with the
enormous number of permutations in which they can be applied, makes optimizing this method an
NP-hard [30, 31] problem.

Since as few as O(1) gates can make a significant difference in the fidelity of a quantum circuit executed
on an NISQ computer, the importance of quantum circuit optimization is paramount. Successfully
discovering new physics with NISQ computers will require larger numbers of qubits, making the circuit
synthesis method untenable due to its poor scaling behavior with system size. Therefore, near-future NISQ
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simulations require the scalability of the circuit optimization method. To address the NP-hardness of this
approach, we propose developing compilers for a specific native gate set and a specific class of quantum
circuits. Creating such domain-specific (DS) compilers allows the designer to take advantage of the
structure of the specific problem to develop heuristics that enable better and faster optimization compared
to a general-purpose compiler.

Here, we present two DS quantum circuit compilers for the cloud-accessible NISQ computers provided
by Rigetti and IBM. Each DS compiler compiles circuits into the native gate set of one of these machines.
Both are specifically designed for compiling circuits that simulate time evolution under a special class of
Hamiltonians known as the transverse field Ising model (TFIM) with a time-dependent transverse field
[32, 33]. The TFIM is considered a quintessential model for studying quantum phase transitions [34], as
well as myriad condensed matter systems, such as ferroelectrics [35] and magnetic spin glasses [36]. When
the transverse field is time-dependent, non-equilibrium effects such as dynamic phase transitions and
quantum hysteresis can be studied [37—40]. Simulation of a time-dependent TFIM spin system on an NISQ
computer is therefore an excellent candidate for the discovery of new physics and we choose this important
model to demonstrate how NISQ-era dynamic simulations can benefit from DS compilers. To date,
dynamic simulations of TFIM systems on NISQ computers have been limited to small systems sizes [12]
and limited time-steps [11].

The DS compilers are able to reduce quantum circuit sizes by around 25%-30% and compilation times
by around 40% compared to state-of-the-art general-purpose compilers (values vary depending on system
size and simulation time-step). We have made the code for both DS compilers available [41], and
furthermore, have integrated the compilers into a full-stack quantum simulation software (see SI for details
(https://stacks.iop.org/QST/6/014007/mmedia)) so that the broader research community can more easily
take advantage of the compilers to perform dynamic simulations of quantum materials on quantum
computers. We anticipate that our DS compilers will enable longer-time dynamic simulations on
near-future NISQ computers which would not otherwise be possible with general-purpose compilers.

2. Results

2.1. Importance of optimized quantum circuit compilers

To showcase the importance of optimized quantum circuit compilers, we begin by showing results from
simulations performed on Rigetti’s quantum computer for a two-qubit system using a general-purpose
compiler with and without optimization. For two-qubit systems, Rigetti’s and IBM’s optimized
general-purpose compilers use the circuit synthesis approach, enabling production of optimal
constant-depth circuits for all time-steps. Without optimization, the general-purpose compilers use a naive
method that simply translates high-level circuits into native gate circuits with basic gate reduction schemes
like concatenation of adjacent rotation gates, thereby creating executable circuits that grow with each
time-step. The stark difference in results from simulations using the naive general-purpose two-qubit
compiler (blue) versus the optimized general-purpose two-qubit compiler (red) is shown in figure 1(a).
Since the optimized, constant-depth circuits are small enough to produce high-fidelity results, the NISQ
computer is able to simulate the system out to arbitrary time-steps, as can be seen by the close
correspondence of the quantum computer results (red) to the numerical results (black) from a simulated
quantum computer. The naive compiler initially produces circuits that are small enough to achieve close
correspondence with the numerical results. After a certain number of time-steps, however, it produces
circuits that are too large, generating too much error and leading to results that drastically diverge from the
ground truth. As all factors are held constant between the two simulations except the compiler, these results
emphasize the importance of quantum circuit compilers for achieving high-fidelity results on NISQ
computers.

2.2. Domain-specific compilers for TFIM circuits

In this article, we present two DS compilers for compilation of circuits simulating spin dynamics under a
time-dependent TFIM Hamiltonian into the native gate set of either Rigetti’s or IBM’s quantum computer.
The TFIM Hamiltonian, defined by

N-1 N
H(t) = =LY ofoi, — I oF (1)
i=1 i=1

models a system of spins with nearest-neighbor exchange interactions of strength J,, in the presence of a
transverse magnetic field with a time-dependent amplitude defined by J,(t). Here, o is the a-Pauli matrix
acting on qubit i. The system can be simulated a quantum computer by mapping the spins of the TFIM to
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Figure 1. The importance of quantum circuit compilation and the general structure of TFIM circuits. (a) Comparison of
simulation results from Rigetti’s quantum computer for a two-qubit system compiled naively (blue) versus using optimized
circuit synthesis (red). (b) Block of gates representing the evolution of the system by one time-step. (c) High-level quantum
circuit depicting the evolution of the system by # time-steps.

the spins of the qubits. The dynamics of the system is simulated by applying to the qubits a sequence of
quantum logic gates that is equivalent to time-evolution under Hamiltonian (1), given by the time-ordered
unitary operator U(¢) = U(0,¢) =T exp(—i fot H(t)dt) in the atomic unit, where 7 denotes the
time-ordering operator. Deriving this sequence of quantum logic gates involves discretizing time and
applying the Trotter approximation [42] to U(#) to arrive at the following approximate time-evolution

operator:
n—1

U(ﬂAt) — He—iHX((j—H/Z)At)At eiHZAt + O(At), (2)

j=0

where, H,(t) = —Jx() YN 0¥ and H, = —,5 ' o707, |- More details can be found in the methods
section.

Dynamic simulations are performed by creating a different quantum circuit for each time-step of the
total simulation, where the circuit for time-step #n simulates evolution from time ¢ = 0 to t = n/At by
implementing U(nAt). Examination of equation (2) shows that the circuit for time-step 7 consists of the
product of a number of operators proportional to n. Circuits, therefore, grow in size with increasing
time-step. The general form of the circuits is shown in figures 1(b) and (c).

Figure 1(b) shows a block of gates enacting evolution of the system by one time-step At. The blue boxes
represent single-qubit operators that apply the transverse magnetic field to each qubit for a time At, while
the green boxes represent two-qubit operators that apply the exchange interaction between
nearest-neighbor qubits for a time At. Figure 1(c) shows a high-level circuit diagram for simulating
evolution of the system for a total time nAt. Note how the block of gates shown in figure 1(b) is repeated n
times in figure 1(c), although the parameters of each block vary per time-step due to the time-dependence
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Table 1. Algebraic identities for gate sets commonly found in TFIM circuits.

No. Common gate set in TFIM circuits Equivalent

1 —JrxO- RzZ(0)|-{H}-
2

HHH
8 — RX(6:) |- RX(0)
9 — RZ(0:) |- RZ(6)

10 RZ(6;)

2]
11 —{RZ(9)) P«ﬁ RZ(0;) F

of the Hamiltonian. Nonetheless, a regular structure appears in the circuits for TFIM simulations, which
can be exploited for developing heuristics for a DS quantum circuit compiler.

A closer examination of this circuit structure in terms of quantum gates gives insight into how to tailor
such a DS compiler for TFIM circuits. First, all single-qubit operators (blue blocks of figure 1(b)) are of the
form exp(—iaoy), where o is a real variable and j identifies the qubit on which the operator acts. This
action can be applied to qubit j with the gate RX(2a)[j], which rotates qubit j around the x-axis by an angle
2a. Second, all two-qubit operators (green blocks of figure 1(b)) are of the form exp(—iﬁojzajz ‘1), where 3
is a real variable and j,j + 1 identify the qubits on which the operator acts. This action can be applied to
qubits j, 7 + 1 with the gate sequence (CNOTTj,j + 1], RZ(23)[j], CNOTT[j,j + 1]), where RZ(0)[j] rotates
qubit j around the z-axis by an angle # and CNOT is a two-qubit controlled-not gate. Therefore, when given
a TFIM circuit, the compiler should expect to see a set of RX gates on all qubits interleaved with the
sequence CNOT, RZ, CNOT on nearest neighbor qubits. The DS compilers are therefore designed to take as
input high-level circuits containing gates from the set {RX(6), RZ(#), CNOT}.

The native gate sets on IBM and Rigetti’s quantum processors are slightly different, which is why we
design two separate DS compilers: one to compile circuits for execution on Rigetti, the other to compile
circuits for execution on IBM. Each utilizes different sets of gate identities to transform and reduce circuits
to smaller sizes. All algebraic identities used for gate transformation and reduction in the DS compilers are
detailed in table 1. The left-hand column numbers the identities for identification. The middle column gives
sets of gates commonly found in uncompiled TFIM circuits, while the right-hand column shows the
corresponding equivalent to each set of gates. Identities 1-3 are used for converting high-level gates into
native gates. Note that while they do not reduce the gate count, they are essential for producing circuits that
are executable on the quantum processors. Identities 4—6 are gate-altering and re-organizing identities,
which prime circuits for further reductions. Finally, identities 7—11 are simplifying identities that are used
purely to reduce gate count. Note that if §; = —0; in identities 8—11, then a rotation by zero radians results,
which can be completely removed from the circuit.

Domain knowledge of TFIM circuits, namely the fact that they are comprised of repeating blocks of
gates as detailed in figures 1(b) and (c), as well as knowledge of the target native gates sets is used to choose
the gate identities, as well as their ordering, for each DS compiler. We emphasize that not only is it
important to implement identities specifically useful for a given circuit type and native gate set, it is also
important to use knowledge of the circuit structure to develop heuristics for optimal ordering of identity
application. Different permutations of identity application can lead to varied resultant circuits. While the
majority of the identities in table 1 are utilized in the native general-purpose compilers of Rigetti and IBM,
our DS compilers order these identities in an intelligent way that enables smaller circuit volumes and
shorter compilation times. Both compilers begin by transforming non-native gates into their respective
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target native gate sets. A series of loops implementing various gate identities are then applied which are
specially chosen using knowledge of the types of motifs (i.e., sequences of gates) that are expected to arise
after applications of a given gate identity in a previous loop. Details on how each DS compiler is
implemented, including pseudocode, are described in the subsections below.

2.3. Rigetti native gate set domain-specific compiler

Rigetti’s native gate set is {RX(£73), RZ(0), CZ}, where 6 is an arbitrary angle and CZ is the two-qubit
controlled-Z gate. Algorithm 1 shows pseudocode detailing the order in which a subset of the identities
from table 1 are applied in our DS compiler for Rigetti’s native gate set. The first task the compiler handles
is converting non-native gates in the high-level TFIM circuits to native ones. This is accomplished in the
first five loops in algorithm 1, where (i) identity 1 is used to transform RX(6) gates into a to the sequence
(H,RZ(0), H), where H is the Hadamard gate, since only RZ gates can handle arbitrary theta; (ii) identity 3
is used to transform non-native CNOT(i, i + 1] gates into the sequence H[i + 1], CZ[i,i + 1], H[i + 1] and
(iii) inserted H gates are removed when two are adjacently applied on the same qubit (identity 7) or
transformed into the native gate sequence RZ(7), RX(5), RZ(3) (identity 2).

Loops 1-5 were designed and ordered using knowledge of the structure of gates in the high-level TFIM
circuit. For example, after loops 1 and 2, we know from the TFIM circuit structure that neighboring H gates
will arise on the same qubit, and thus implement loop 3 to remove these redundant gates. Likewise, loop 4
identifies a motif that arises in the circuit after execution of loop 2 and transforms this motif into a cleverly
chosen sequence of native gates, priming the circuit for application of identity 6 in loop 7. Once the entire
circuit comprises only gates from Rigetti’s native gate set, the compiler can then apply a sequence of gate
identities on subsets of gates to optimize the volume of the circuit. Loops 6—10 take advantage of domain
knowledge of TFIM circuits to search for motifs in the circuit we know will arise due to application gate
identities in prior loops. In particular, the identity used in loop 7 is carefully crafted based on knowledge of
the TFIM circuit structure after the first 6 loops to prepare the circuit for further gate reductions by moving
a pair of RX gates across a gate set it commutes with to allow for concatenation of adjacent RX gates on the
same qubit. Finally, not shown in the pseudocode, is the removal of any trailing gates at the end of the
circuit that only alter the phase of the system, and thus do not affect any measurement gates that
immediately follow.

Of particular interest in algorithm 1 is the relationship between loop 7, which performs gate
rearrangement, and its inner loop (loop 8), which performs gate reduction. We observe that before each
subsequent iteration of the outer loop, the inner loop is applied until no more reductions are possible. In
this way, gate reductions enabled by the inner loop are carried out fully before each subsequent step of gate
rearrangement. This strategy is similar to the ones used in heuristic search under the name of unit
propagation. In heuristic search, and particularly in solvers built for satisfiability (SAT) problems, unit
propagation is very useful [43]. It reduces two disjuncts in the search space to a single disjunct whenever
such a reduction is valid. Calling it in each step of the search serves as an efficient and effective lookahead
technique [44].

To test the performance of this compiler, we constructed an algorithm to create a sequence of high-level
circuits that simulate evolution through time of a system of spins under a TFIM Hamiltonian, as given in
equation (1). Details of the algorithm can be found in the methods section. The high-level circuits were fed
into the DS compiler as well as Rigetti’s general-purpose compiler, and we compared performance based on
the number of native gates in the compiled circuits and the wall-clock time for compilation for each
time-step, for systems with varying numbers of qubits. Results can be found in figure 2. Figure 2(a) shows
the absolute native gate count reduction when using the DS compiler over Rigetti’s general-purpose
compiler. As shown, the gate reduction increases with increasing time-step for all system sizes, which
implies that the circuit-reduction benefit of the DS compiler scales well with simulation time-step.
Furthermore, for each time-step, the number of reduced gates increases with additional qubits, indicating
that the circuit-reduction benefit of the DS compiler also scales well with growing system size. Figure 2(b)
shows the number of reduced gates as a percentage of the circuit size produced by Rigetti’s general-purpose
compiler. The percent reduction in native gate count asymptotes with growing time-step for all system sizes
in a range around 30%. Figure 2(c) shows the percent reduction in wall-clock compilation time of the DS
compiler compared to Rigetti’s general-purpose compiler, which asymptotes to values ranging within
30%-60%.

2.4. IBM native gate set domain-specific compiler

IBM’s native gate set is {RX (%), RZ(0), CNOT}, for arbitrary angle 6. Algorithm 2 shows pseudocode
detailing the order in which a subset of the identities from table 1 are applied in the DS compiler for IBM’s
native gate set. Like the Rigetti DS compiler, the IBM DS compiler begins in loop 1 by converting RX(6)
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Algorithm 1. Pseudocode for DS compilation of TFIM circuits into Rigetti’s native gate set.

Read in high-level gates;
1: while —| RX(0) exists do

replace with RZ(0)
while E exists do

replace with

L

while exists do

v
T

e

replace with

exists do

replace with [71 [71

{Rr2(3) me@Hszi)HRX(—g) mm—g)}

while exists do

B replace it with —‘RZ(%) HRX(%) H RZ(%) ’7
while — RZ(0;) H RZ(6;) k exists do

o

<@

replace with — RZ(0; + 0;)

7: while 4 Z

replace With#RX(_% (3) (Gi)HRX(_Tzr)

* g

8: while —‘ RX (6;) H RX(6;) ’— ezists do

replace with — RX (6; + 0;)

while — RZ(0;) H RZ(6;) k ezists do

©

replace with — RZ(0; + 6;)

1(; while —‘ RZ(0) H RX(3) H RZ(m) ’— exists do

replace with —‘ RZ(0 — ) H RX(-7%) ’7

gates to the sequence (H, RZ(0), H), since RX gates on IBM cannot handle arbitrary angles. Unlike Rigetti,
IBM’s native gate set includes CNOT gates, and we use identity X in loop 2 to switch the control and target
qubits of these gates. This trick enables two avenues for circuit reduction. First, it adds H gates next to
existing ones, enabling cancellation of pairs of adjacent H’s, taken care of in loop 3. Second, since RZ gates
can commute across the control bit of a CNOT gate, but not the target bit, swapping CNOT orientation
primes the circuit for further reduction by enabling more pairs RZ gates on opposite sides of control bits to
be combined into one, as performed in loop 5.

Loops 4-7 all search for a motif created by the previous loop and transform this motif either from
non-native gates to native gates (loop 4 and 6), or to a shorted gate sequence (loops 5 and 7). Finally, not
shown in the pseudocode, is the removal of any trailing gates at the end of the circuit that only alter the
phase of the system, and thus do not affect a measurement gate that immediately follows. Like in
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Figure 2. Performance comparison of the DS compiler to Rigetti’s general-purpose compiler. (a) Absolute reduction in gate
count using the DS compiler over Rigetti’s general-purpose compiler, for varying system size. (b) Percent reduction in gate count
using the DS compiler with respect to Rigetti-compiled circuit size, for varying system size. (c) Percent reduction in wall-clock
compilation time using the DS compiler with respect to Rigetti-compiled circuit size, for varying system size.

Algorithm 2. Pseudocode for DS compilation of TFIM circuits into IBM’s native gate set.

Read in high-level gates;
1: while — RX (0) ezists do
replace with RZ(6)

: while $ exists do

replace with

: while exists do

[\

w

replace with

while RZ(9) exists do

=

replace with — RZ(3) HEX(H) HRZ(60 + m) HEX(H H R2(H) |-

5: while o exists do
RZ(0,) RZ(9,)
replace with —p———
—e— RZ(0; +6;)
: while RZ(0) exists do

replace with —‘ RZ(%) H RX(3) H RZ(0+ F) ’7
7: while — RZ(0;) H RZ(0;) k exists do

replace with — RZ(0; + 6;)

[=2]

algorithm 1, a heuristic similar to the technique of unit propagation is applied in algorithm 2 in the third
and fifth loops, both of which are outer loops of gate rearrangement with inner loops of gate reduction.
To test the performance of this compiler, we used the same simulation algorithm used for testing the
Rigetti compilers to create a sequence of high-level TFIM circuits. Results can be found in figure 3.
Figure 3(a) shows the absolute native gate count reduction when using the DS compiler over IBM’s
general-purpose compiler. Again, the gate reductions increase with increasing time-step for all system sizes,
indicating that the circuit-reduction benefit of the DS compiler scales well with simulation time-step;
furthermore, for each time-step, the number of reduced gates increases with additional qubits, indicating
that the circuit-reduction benefit of the DS compiler also scales well with growing system size. Figure 3(b)
shows the number of reduced gates as a percentage of the circuit size produced by IBM’s general-purpose
compiler. The percent reduction in gate count asymptotes with growing time-step for all system sizes in a
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Figure 3. Performance comparison of the DS compiler to IBM’s general-purpose compiler. (a) Absolute reduction in gate count
using the DS compiler over IBM’s general-purpose compiler, for varying system size. (b) Percent reduction in gate count using
the DS compiler with respect to IBM-compiled circuit size, for varying system size. (c) Percent reduction in wall-clock

compilation time using the DS compiler with respect to IBM-compiled circuit size, for varying system size.

range around 25%. Figure 3(c) shows the percent reduction in wall-clock compilation time of the DS
compiler compared to IBM’s general-purpose compiler, which asymptotes to values ranging within
20%-60%.

3. Discussion

While sufficient quantum hardware exists for demonstrating quantum supremacy with random circuits
[45], a major bottleneck to demonstrating physical quantum supremacy is the development of new
quantum circuit compilers for optimizing such circuits. Though numerous software packages with
general-purpose compilers have recently been developed [46—49], the development of DS compilers,
optimized for certain classes of circuits and for specific native gate sets, may be a necessary intermediate
technology for the success of early NISQ-era simulations. The two DS compilers we developed for currently
available NISQ computers, using heuristics derived from domain knowledge of the structure of TFIM
circuits, target native gate sets, and artificial intelligence (AI) techniques, demonstrated 25%—30%
reductions in circuit size compared to the general-purpose compilers. This significant reduction in circuit
size may soon allow relevant dynamic simulations of quantum materials on near-future NISQ computers,
providing new insights from results not achievable with classical computers.

It should be noted that our DS compilers are extensible to future quantum processors provided that the
native gate set of the new quantum machine matches the target native gate set of the DS compiler. While the
native gate sets of Rigetti and IBM are slightly different (hence the need to develop two separate DS
compilers), they both represent what is currently considered a standard universal gate set. Therefore, it is
likely that native gate sets of future quantum machines will at least contain these gate sets as a subset. If this
is true, the DS compilers can easily be extended to future quantum computers.

In future work, we would like to explore the use of other optimization tools developed in Al. Several
tools for solving SAT, constraint satisfaction, and weighted constraint satisfaction problems are currently
being used to solve many real-world problems after proper reformulation. These tools encapsulate many
decades of Al research for optimization and work well in practice for NP-hard problems. Some attempts
have already been made for minimizing the number of gates in digital logic circuits by invoking powerful
SAT solvers [50]. In addition TFIM circuits, DS compilers can also be created for other classes of quantum
circuits for dynamic simulation [10, 11, 51].

4. Methods

4.1. Decomposition of time-evolution operator

In order to map the time-ordered exponential unitary operator into a set of one- and two-qubit gates, two
approximations must be applied [52]. First, the time-dependence of H(t) must be ignored on time scales
smaller than some chosen, minimal time-step At. The Hamiltonian can then be approximated as a
piece-wise constant function that takes the constant value H((j + %)At) during the time interval

[1At, (j 4+ 1) At], where j is some integer, resulting in the following decomposition:

U(nAt) = Hjnz_ol e H(+1ANAL Gecond, each matrix exponential in this product must be approximated
with the Trotter decomposition [42]. To perform the Trotter decomposition, the Hamiltonian is divided
into components, each of which is efficiently diagonalizable. For the TFIM Hamiltonian, this can be
accomplished with the following decomposition: H(t) = H,(t) + H, where H,(t) = —B(t)Zfil oF and
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Table 2. IBM basis and native gate equivalents.

Basis gate Native gate equivalent
—Juiny —RZOW |-
—U2(¢,\) — —RZ(¢p+ 5) H RX(5) HRZ(N = 3) —
—U3(0,¢9,\) — | H{RZ(¢+ 3m) HRX(5) —HRZ(O +n) — RX(5) —HRZ(\) —
H,=— ]sz;l 077, . Thus, the time evolution operator is finally approximated as:

U(nAt) = H]";Ol e H((H/DADAL GIHAL L (At), as was given in equation (2).

4.2. Algorithm for circuit generation

An algorithm was written to generate circuits that simulate the time evolution of a system of spins under
the TFIM Hamiltonian given in equation (1). For a simulation to time nAt, n different circuits are created.
A physically reasonable value for material systems was chosen for J,, and a sinusoidal function was chosen
for B(t), with amplitude and frequency also assigned physically reasonable values. For a given circuit, the
algorithm proceeds by appending alternating sets of gates that each propagate the system forward by a
time-step At according to the two exponentials given in the product in equation (2). Note that the
parameters in the set of gates carrying out the exponential e Hx((H D ADAL yi) change for each subsequent
propagation by At because our Hamiltonian in equation (1) is time-dependent. The set of gates
representing the exponential e #-47 is identical for each application. Once gate sets representing the two
exponentials have been alternately applied n times each, the circuit simulating to time nAt is complete and
the algorithm begins building the circuit for simulation to the subsequent time-step. Circuits for all
time-steps are appended to a list, which serves as input to the various compilers for conversion to native
gates and compression.

4.3. Development and performance analysis of compilers

Written in the Python programming language, both compilers were developed to reduce circuit size for
circuits designed to simulate dynamic evolution of TFIM systems. The compilers take as input a list of
circuits comprised of high-level gates represented as a serial list of gates and the qubits upon which they act.
The compilers output a list of circuits of reduced size comprised solely of native gates. Since the native gate
sets for Rigetti and IBM differ, separate compilers were developed for each platform.

Two points should be mentioned about our compilers. First, note that the compilers take advantage of
the fact that for these dynamic simulations, only measurement probabilities of different states need to be
conserved when applying transformation and compression identities. This means that the overall global
phase of the system, which has no observable effect on measurement probabilities, need not be conserved,
allowing for a larger number of useful circuit identities to be used. Second, we note that the compilers are
deterministic in their approach; a given high-level circuit will be compiled to the same executable circuit on
each run. This is as opposed to other available compilers which return different compiled circuits, of
varying size, for the same high-level circuit on different runs.

Both Rigetti’s general-purpose compiler and our DS compiler compile circuits into Rigetti’s native gate
set. To compare performance of the two compilers in terms of circuit size, we therefore counted the number
of native gates in the circuits produced for each time-step by each compiler. One complication is that
Rigetti’s compiler is not deterministic, meaning that running the same input circuit through the compiler
two different times can result in two different output circuits. This is the root of the fluctuation seen in
figures 2(a) and (b) but not in figures 3(a) and (b). To minimize these fluctuations, we ran Rigetti’s
general-purpose compiler three times and averaged the number of native gates in the circuits over the three
runs. These averaged native gate counts for each time step were used for comparison with the native gate
counts from our deterministic DS compiler. For comparing compiler run times, wall-clock times were
recorded for three separate runs each of Rigetti’s compiler and our DS compiler, and the average over these
runs was used for comparison.

Performance comparison in terms of native gate count was slightly more subtle for the IBM compilers.
IBM’s general-purpose compiler compiles circuits into a set of basis gates, comprised of
UL(N), U2(¢, A), U3(6, ¢, A), CNOT. The U1, U2, U3 basis gates can be written in terms of native gates as
shown in table 2. Even though its general-purpose compiler compiles to this basis gate set, the IBM
quantum computer nonetheless only physically executes gates from the native gate set. For this reason, we
chose to implement our DS compiler to output circuits comprised of native gates.

10
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As shown in table 2, different basis gates are comprised of different numbers of native gates. Therefore,
to fairly compare the circuit sizes produced by IBM’s general-purpose compiler to those output by our DS
compiler, we counted all Ul and CNOT gates in each IBM-compiled circuit as one native gate each, U2
gates as three native gates, and U3 gates as five native gates. All gate count comparisons for the IBM
compilers, therefore, were in terms of native gate count. This also makes the gate count performance of the
IBM compilers easier to compare with the gate count performance of the Rigetti compilers.
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