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The dynamics of oxidation of aluminum nanoclusterss20 nm diameterd is investigated using a parallel
molecular dynamics approach based on variable charge interatomic interactions due to Streitz and Mintmire
that include both ionic and covalent effects. Simulations are performed for both canonical ensembles for
molecular oxygensO2d environments and microcanonical ensembles for molecularsO2d and atomicsO1d
oxygen environments. Structural and dynamic correlations in the oxide region are calculated, as well as the
evolution of charges, surface oxide thickness, diffusivities of atoms, and local stresses. In the microcanonical
ensemble, the oxidizing reaction becomes explosive in both molecular and atomic oxygen environments due to
the enormous energy release associated with Al-O bonding. Local stresses in the oxide scale cause rapid
diffusion of aluminum and oxygen atoms. Analyses of the oxide scale reveal significant charge transfer and a
variation of local structures from the metal-oxide interface to the oxide-environment interface. In the canonical
ensemble, oxide depth grows linearly in time until,30 ps, followed by saturation of oxide depth as a function
of time. An amorphous oxide layer of thickness,40 Å is formed after 466 ps, in good agreement with
experiments. The average mass density in the oxide scale is 75% of the bulk alumina density. Evolution of
structural correlation in the oxide is analyzed through radial distribution and bond angles. Through detailed
analyses of the trajectories of O atoms and their formation of OAln structures, we propose a three-step process
of oxidative percolation that explains deceleration of oxide growth in the canonical ensemble.
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I. INTRODUCTION

A great deal of recent research has focused on the role of
ultrafine microstructures in the physical and chemical behav-
ior of materials synthesized from nanometer size clusters.1–6

These nanophase materials have a large fraction of atoms in
the interfacial regions, which has a dramatic effect on the
structure and physical properties.3,7,8 The mechanical
strength of nanophase metals is known to be higher than that
of conventional polycrystalline metals of the same chemical
composition.9 It has been predicted that nanophase ceramics
are much more ductile and have lower sintering temperatures
than conventional brittle ceramics.10–12

A particularly interesting possibility is the synthesis of
nanocomposites consisting of metallic nanoclusters coated
with a passivation layer. Upon compaction, the passivation
layer forms a boundary layer between the isolated metallic
grains, and the resulting passivating network has a dramatic
effect on the electrical, chemical, and mechanical behavior.
In a study by Sánchez-Lópezet al.,13 Al/Al-oxide nanocom-
posites were found to have a metallic shine and an Ohmic
electrical resistivity. The nanocomposite consisted of 300 Å
aluminum particles with an interconnected 40 Å oxide layer
that prevented the material from falling apart above the alu-
minum melting temperature. Other studies indicate that the
properties of these nanocomposite materials are strongly
dependent on the nature of the passivation layer.14–16

A few experimental studies of the passivation behavior of
ultrafine Al particles have been reported in recent years.
NMR measurements15 reveal that 500–700-Å-sized Al par-

ticles form a 25–50-Å-thick oxide scale when exposed to air.
The oxide scale remains intact, even after compacting the Al
nanopowders at high pressures. Thermogravimetric studies
show that a 200-Å Al cluster forms an oxide scale with a
thickness of 30–40 Å.16 Aumann et al.17 have studied the
oxidation of Al nanopowders for raising the ignition thresh-
old of highly reactive ultrafine grain Al/MoO3 powders.
They observed that powders consisting of Al particles with
diameters between 240 and 650 Å oxidize with a square-root
time dependence similar to flat Al samples. They also found
that the increased surface area of Al particles lowers the oxi-
dizing activation energy relative to that of flat Al samples.
More recent studies by Sánchez-López14 on the passivation
of Al nanoclusters show that for the range of particle sizes
studieds120–410 Åd the oxide scale thickness,40 Å is in-
dependent of oxygen dosage. Experiments indicate that the
structure of the oxide scale on Al nanoclusters is amorphous,
but there exists no detailed structural analysis. Recent studies
have suggested that the structure of the amorphous oxide
scale of Al nanoclusters is different from that of the amor-
phous scale on the bulk Al surface.14,17

Experimentally, the growth of oxide scales on bulk metal-
lic surfaces exhibits several types of behavior. Theoretical
study of the oxidation of bulk metal surfaces was pioneered
by Wagner,18 Mott,19 and Cabrera and Mott.20 The oxidation
rate depends on the temperature and access of oxygen to the
metal atoms. A linear rate of oxidation occurs when the oxide
is porous and the metal surface is continually exposed to
oxygen.21 This behavior is typical of metals such as magne-
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sium, in which the oxide occupies a small volume fraction of
the metal. The resulting tensile stresses cause the oxide film
to crack and become porous. Oxide growth exhibits either
square root or logarithmic time dependence, when the con-
trolling factor is the diffusion of ions or electrons through a
nonporous oxide layer. Examples are Al, Cr, Ni, and Ti. As
for Al, the logarithmic growth is observed at temperatures
below ,700 K, while the square root growth is observed at
higher temperatures.22 It has been inferred from experimental
studies of scale morphology and the behavior of impurity
markers that Al2O3 grows by inward migration of oxygen at
high temperatures.22 Grain boundary diffusion of oxygen is
considered as the most likely migration process controlling
the growth of Al2O3 scales.22

In this paper we report the results of a large-scale, parallel
molecular dynamicssMDd simulation of the oxidation of an
Al nanoclustersdiameter 200 Åd. We have investigated the
structural and dynamic correlations in the oxide region and
the evolution of charge, surface oxide thickness, diffusivities
of atoms, and local stresses. The MD simulations are based
on the ES+ model of Streitz and Mintmire,23 which takes
into account the effect of charge transfer between Al and O
using the electronegativity equalization principle. The orga-
nization of the paper is as follows. Section II describes the
simulation method and schedule, and results are given in
Sec. III. Finally, Sec. IV contains conclusions.

II. COMPUTATIONAL METHODS

A. MD simulation method

In the MD simulation technique, the dynamical history of
an ensemble of atomssphase-space trajectoryd is computed
from Newton’s equations of motion. Hence, we are able to
observe the time evolution of microscopic phenomena. Ad-
ditionally, based on different statistical ensemble, macro-
scopic physical properties can be obtained from this detailed
information using statistical mechanics by sampling on dif-
ferent phase-space surfaces. Each statistical ensemble has its
own conserved thermodynamic quantities such as energy
sEd, temperaturesTd, and pressuresPd.

In conventional MD simulation, averages of physical
quantities are measured in the microcanonical ensemble
sNVEd. We consider a system ofN atoms with coordinates
hr i : i =1, . . . ,Nj and momentahpi : i =1, . . . ,Nj within a
fixed volumeV. The atoms are assumed to interact with a
potentialV=Vshr ijd. Treating the atoms as classical pointlike
objects the Hamiltonian of the system is written as

H = o
i=1

N
pi

2

2mi
+ Vshr ijd, s1d

wheremi is the mass of theith atom in the system. Based on
the Hamilton equations of motion,

r i =
]H
]pi

, pi = −
]H
]r i

, s2d

the Newton equations of motion are reduced from Hamil-
tonian s1d

mi r̈ i = − ¹r i
V = f i, i = 1, . . . ,N s3d

where f i is the force on atomi. The most important input
information in MD simulations is the expression for the po-
tential energy. Given an initial configurationhr is0d ,pis0dj,
the set of 3N coupled second-order differential equations in
s3d are numerically integrated in time to generate the dy-
namical history of the system.

In order to simulate other statistical ensembles, additional
variables are introduced into the Lagrangian to represent the
coupling of the system with external sources. In the canoni-
cal ensemblesNVTd, the system is thermally coupled with a
heat reservoir. The canonical ensemble was first introduced
in MD simulations by Nosé.24,25 Starting with the extended
Hamiltonian

HNosé= o
i=1

N
pi

2

2mis
2 + Vshr ijd +

ps
2

2Q
+ s3N + 1dkBT ln s, s4d

whereQ is the “mass” associated with the variables, Nosé
showed that microcanonical distribution for the extended
system is equivalent to the canonical distribution of the set of
variableshr i ,pi /sj. The variables is interpreted as a time
scaling factor, where the time in the canonical distribution is
related to the real time as 2t8= t /s. A slightly different repre-
sentation that is free of the time scaling was later developed
by Hoover,26 who showed that the equations of motion of
Nosé are in fact unique and therefore the two representations
are equivalent. Martynaet al.27 extended the Nosé-Hoover
dynamics to employ a chain of thermostats by proposing the
following conserved quantity for the system:

H = o
i=1

N
pi

2

2mi
+ o

i=1

M pji

2

2Qi
+ Vshr ijd + 3NkBTj1 + kBTo

i=2

M

ji ,

s5d

whereM is the number of thermostatsj j, andQj andpj j
are,

respectively, the mass and momenta of thermostatj j.

B. Interatomic potential with variable charge transfer

The underpinning of MD simulations is the interatomic
potential. The quality of the simulation results are deter-
mined by the accuracy of the potential, and the amount of
compute time is determined by its functional complexity.
The MD simulations of oxidation of aluminum nanoclusters
are based on an interaction model developed by Streitz and
Mintmire23 that can successfully describe a wide range of
physical properties of Al and Al2O3. This so-called electro-
static plussES+d model is capable of treatingsid both me-
tallic and ceramic systems,sii d bond formation and bond
breakage, andsiii d changes in charge transfer as the atoms
move and their local environments are constantly altered.
In the ES+ model, the potential energy of the system
is expressed as the sum of an electrostatic potentialsESd
and an embedded-atom potential:Vshr i ,qijd=VEAMshr ijd
+VESshr i ,qijd.

The potential in the embedded atom methodsEAMd is
defined as
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VEAM = o
i

Fifrig + o
i, j

fi jsr ijd, s6d

whereFifrig represents the energy required to embed atomi
in a local electron densityri and fi jsr ijd is an additional
pairwise interaction, withr ij the interatomic distance be-
tween atomsi and j . In the ES+ model a Finnis-Sinclair28

form is chosen for the embedding energy

Fifrig = − Ai
Îri/ji , s7d

where

risrd = o
jÞi

j j expf− b jsr ij − r j
*dg. s8d

In Eq. s8d the local atomic densityri is expressed as a linear
superposition of atomic densities of all other atoms. The
pairwise potential is chosen to be

fi jsrd = 2bi j expF−
bi j

2
sr − r ij

* dG
− Cijf1 + asr − r ij

* dgexpf− asr − r ij
* dg. s9d

The total electrostatic energyVESsr ,qd is a function of the
atomic chargessvalenced and positions in order to determine
the local atomic charge from the local environment of each
atom

VES= o
i

nisqid +
1

2o
iÞ j

ni jsr i j ;qi,qjd,

nisqid = nis0d + xi
0qi +

1

2
Ji

0qi
2,

ni jsr i j ;qi,qjd =E d3r1E d3r2risr 1;qidr jsr 2;qjd/r12.

s10d

The local atomic energynisqid is a second-order Taylor ex-
pansion in the partial chargeqi. The first derivativex is the
electronegativity29 and the second derivativeJ is associated
with self-Coulomb repulsion.30 The Coulomb interaction
ni jsr i j ;qi ,qjd in Eq. s10d represents the electrostatic interac-
tion energy between atomsi and j . The functionrisr ;qid
represents the charge-density distribution about an atomi
sincluding the nuclear point charged for a total chargeqi. For
mathematical convenience, Streitz and Mintmire chose a dis-
tribution, ri, that is an extended form of a Slater-type 1s
orbital

risr ;qid = Zidsr − r id + sqi + ZidS zi
3

p
Dexps− 2ziur − r iud,

s11d

wherezi is the decay length for atomic orbitals andZi is an
effective core charges0,Zi ,Zi, with Zi the total nuclear
charge of an atomd. Applying Eqs. s10d and s11d together
with the two-center Coulomb integrals31 yields an expression
for the electrostatic energy

VES= o
i

qiHxi
0 + o

jÞi

Z jfvisr ijd − yi jsr ijdgJ +
1

2o
i

qi
2Ji

0

+
1

2o
jÞi

qiqjF 1

r ij
+ yi jsr ijdG , s12d

whereyi jsrd is the short-range Coulomb-interaction integral
andv jsr ijd is the short-range nuclear-attraction integral. Note
that the electrostatic energy Eq.s12d contains a long-range
Coulomb interaction term. As a result, the most time con-
suming part of ES+ potential is the long-range Coulomb in-
teractions. The resulting Coulomb interaction is calculated
with the OsNd fast multipole methodsFMMd.32

The parameters in the ES+ potential are fitted to the bulk
properties of both fcc aluminum anda-alumina crystal struc-
tures. In addition, the potential yields reasonable surface en-
ergies and relaxations for several low-index surfaces of
a-alumina.

The unique feature of the ES+ model potential is that it
explicitly includes dynamic charge transfer between anions
and cations. The method is based on a semiempirical ap-
proach, in which atomic charges are determined according to
the electronegativity equalization condition.30,33–35The ES+
model potential for TiO2 systems has also been
constructed,36 which reproduces various quantities including
dielectric constants of both rutilesground stated and anatase
phases with high accuracies. Such high transferability of the
potential makes it possible to successfully perform sintering
simulations of TiO2 nanoparticles.37,38

In MD simulations, the atomic charges,qi, are determined
at each time step by minimizing the electrostatic energyfEq.
s12dg, subject to the charge-neutrality constraint,Siqi =0.
This constrained minimization is algebraically equivalent to
the electronegativity equalization condition that the chemical
potentials]VES/]qi be equal for all atoms. This leads to a set
of linear equations for atomic chargeshqij

o
j

Mijqj = m − xi , s13d

where Mij is the Coulomb-interaction matrix andm is a
Lagrange multiplier used to determine the charge-neutrality
constraint. In practice, the solution to Eq.s13d involves con-
current solution of two sets of linear equations. This minimi-
zation is equivalent to solving these two linear equation sys-
tems. Accordingly, the computational cost of the variable-
charge MD scales asOsN3d. To reduce that complexity to
OsNd, we have developed several algorithms.

We use a conjugate gradientsCGd method39 to solve these
two linear systems. We have developed an acceleration
scheme that computes the matrix-vector multiplication,
o jMijqj, in OsNd time using the FMM. Also the charges,hqij,
determined at the previous MD step are used to initialize an
iterative solution to Eq.s13d, reducing the number of itera-
tions toOs1d and thus the total computational cost to deter-
mine atomic charges is linear inN.

To further speed up the solution of this minimization
problem, our multilevel preconditioned conjugate gradient
sMPCGd method splits the Coulomb-interaction matrix into
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short- and long-range components:M =Ms+Ml,
40 thereby

accelerating the solution. The preconditioning scheme is
found to substantially improve the convergence and parallel
efficiency by increasing data locality. The MPCG algorithm
has enabled a successful large-scale oxidation simulation.

An alternative approach to the earlier variable charge
method is to treat the atomic charges as dynamic variables in
an extended Lagrangian.35 We also implemented the ES+
method using an extended Lagrangian scheme, in which
charges are given fictitious masses and velocities and then
propagated with the atomic degrees of freedom by Newton’s
equations of motion. Typically, the time step for the charge
degree of freedom is much smaller than the time step for the
atomic motion. Multiple time step integration schemes can
be applied to speed up the computations.41

C. Long range force calculation by FMM

Molecular dynamics simulations for complex physical
systems, such as oxidation of aluminum, can be computa-
tionally very demanding: they may require large numbers of
atoms, long simulation times, and computationally intensive
interatomic interactions. The most compute-intensive part of
ES+ potential is the long-range Coulomb interactions. There-
fore, long-range interactions present a major computational
challenge in MD simulations. In the presence of periodic
boundary conditionsspbcd, the total Coulomb energy of a
charge neutral system ofN atoms is given by

V =
1

2o
i=1

N

o
j=1

N

o
n

8
qiqj

ur i − r j − nu
s14d

where qi is the charge of atomi. The simple cubic lattice
translation vector isn=snxLx,nyLy,nzLzd, where theLa are
the side lengths of the central MD cell. The prime on the sum
over n implies that terms withi = j are omitted whenn=0.
Direct computation ofs14d requiresOsN2d operations, which
is clearly intractable for the largeN required for realistic
simulations. Recently, the FMM, developed by Greengard
and Rokhlin,32,42has been successfully used to rapidly accel-
erate the calculation of the long-range pairwise interactions
in a large ensemble of sources in a single cell without pbc. In
N particle simulations involving long-range interactions, the
FMM reduces the number of computations required to evalu-
ate all pairwise interactions fromOsN2d to OsNd with pre-
dictable error bounds. The FMM is based on the multipole
expansion of the Coulomb interaction. The rapid decay of the
multipole expansion enables one to calculate the Coulomb
interaction efficiently for a specific level of precision.

In this part, we briefly summarize equations that we use in
the present implementation43 of the FMM. The motivation in
multipole translation is to formulate a far-field representation
for a collection of charges about some point in space and
then to translate the result to a different point. Given a unit
chargehqij at a pointx8=sr8 ,u8 ,f8d in polar coordinates, the
potential induced by that charge atx=sr ,u ,fd is given by44

1

ux − x8u
= o

n=0

`

o
m=−n

n
r,

n

r.
n+1Yn

−msu8,f8dYn
msu,fd, s15d

where r,=minsr ,r8d, r.=maxsr ,r8d, and the functionsYn
m

are the spherical harmonics. TheYn
m used in this discussion

are defined from the associated Legendre polynomials

Yn
msu,fd = Hs− 1dm,mù 0

1,m, 0
JÎsn − md!

sn + md!
Pn

mscosudeimf,

Pn
msxd ;

1

2nn!

sn + md!
sn − md!

s1 − x2d−m/2 dn−m

dxn−msx2 − 1dn

s− n ø mø nd. s16d

The rapid decay of expansions15d in each of the defined
domains allows the calculation of the Coulomb potential
with a specified level of precision.

Now consider a collection of point chargeshqi ,xi

=sr i ,ui ,fid : i =1, . . . ,Nj that are lying within a sphere of ra-
dius R centered at the origin. The electrostatic potential at a
point x=sr ,u ,fd lying outside the sphere may be expressed
in the form of a multipole expansion

Vsxd = o
i=1

N
qi

ux − xiu
= o

n=0

`

o
m=−n

n Ho
i=1

N

qir i
nYn

−msui,fidJYn
msu,fd
rn+1 .

s17d

The form s17d, called the far-field representation, is charac-
terized by the set of outer multipole coefficientsCn

m defined
by

Cn
m = o

i=1

N

qir i
nYn

−msui,fid. s18d

With the following definitions of outer functionsOn
m and

inner functionsIn
m:

On
msxd = On

msr,u,fd =
s− 1dni umu

An
m

Yn
msu,fd
rn+1 , s19d

ln
msxd = In

msr,u,fd = i−umuAn
mrnYn

msu,fd, s20d

where

An
m = An

−m =
s− 1dn

Îsn − md!sn + md!
, s21d

the translation theorems15d can be rewritten assfor r . r8d

1

ux − x8u
= o

n=0

`

o
m=−n

n

s− 1dnIn
−msx8dOn

msxd. s22d

There are three basic transformation operations necessary
to implement the FMM: thesidouter-to-outer,sii d outer-to-
inner, andsiii d inner-to-inner transformations.45 These opera-
tions will be defined and described in sequence; they are
illustrated in Fig. 1. First we consider a set of point sources
hqi ,xi =sr i ,ui ,fid : i =1, . . . ,Nj, located within a sphereS0 of
radiusR0 centered atx0 si.e., xi P hx : ux−x0uøR0jd. The ob-
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jective is to obtain an inner expansion for the potential due to
the charges in sphereS0 that is valid for points located in
sphereS3. The outer multipolesCn

m that characterize the far-
field representations17d for this set of charges can be com-
puted froms18d. Then the potential at a pointx outside the
sphereS0 is given by

Vsxd = o
n=0

`

o
m=−n

n

Cn
mOn

−msx − x0d

x ¹ hx:ux − x0u ø R0j. s23d

We now consider a sphereS1 that completely containsS0 and
desire to obtain a far-field representation forVsxd that is
centered atx1 and is valid forx outside the sphereS1. The
outer-to-outer transformation that accomplishes this is given
by

Vsxd = o
l=0

`

o
j=−l

l

Dl
jOl

−jsx − x1d, s24d

where

Dl
j = o

n=0

l

o
m=−n

n

I l−n
j−msx1 − x0dCn

m. s25d

Suppose that sphereS2 lies completely outside sphereS1.
The outer-to-inner transformation that gives a representation
for Vsxd valid for xP hx : ux−x2uøR2j is given by

Vsxd = o
l=0

`

o
j=−l

l

El
jI l

jsx − x2d, s26d

where the inner multipole coefficients are given by

El
j = o

n=0

`

o
m=−n

n

On+l
−m−jsx2 − x1dDn

m. s27d

The final transformation takes the inner expansion centered
at x2 and translates it to an inner expansion centered atx3

Vsxd = o
l=0

`

o
j=−l

l

Fl
jI l

jsx − x3d, s28d

where

Fl
j = o

n=l

`

o
m=−n

n

In−l
m−jsx3 − x2dEn

m. s29d

Equations27d may now be used to compute the potential due
to the charges in sphereS0 at any pointx that lies within the
sphereS3.

In the FMM the Coulomb potential is computed in a hi-
erarchical manner. The MD cell is recursively divided in half
along each of the Cartesian axes to obtain multiple sets of
cells. This recursive decomposition is illustrated for the two-
dimensional case in Fig. 2. In three dimensions the entire
structure can be viewed as an octree data structure with the
MD cell as the root of the tree, corresponding to levell =0.
At each level in the tree there are 8l number of cellsseach
parent in levell −1 produces eight childrend. The recursive
decomposition continues to a levelL at which point further
refinements would make the cell size smaller than the cutoff
distance for the short-range potentials. In other words, at the
highest level of refinement each cell corresponds to a link
cell in the link-cell list structure. Because the hierarchical
decomposition in FMM is related to a tree structure, the cells
at the highest level of refinement are often referred to as leaf
cells. The FMM algorithm decomposes into two main proce-
dures: the upward pass and the downward pass.

The upward pass starts at the highest level of refinementL
by computing the outer multipolesCn

m for each leaf cellswith
respect to the center of the leaf celld usings18d. Since infor-
mation about each atom is used only once, the computational
cost isOsNp2d, wherep is the order of the multipole expan-
sion. The outer multipolesDl

j for each cellc in level L-1 are
then computed from the outer multipolesCn

m of c’s children
in level L by using the outer-to-outer transformations25d to
translate each child’s outer multipoles to the parent’s center
and then they are added together. This procedure is repeated
for each of the successive levels in the tree until level 2 is
reached. Since the maximum number of possible leaf cells is
N and each translation involvesp4 operations the computa-
tional cost isOsNp4d. At the end of the upward pass the outer
multipoles for all cells at all levels are determined.

Before describing the downward pass it is necessary to
make a few definitions30 that are illustrated for two dimen-
sions in Fig. 3. At a levell the nearest neighbors of a cellc
sdark cell in Fig. 3d are defined to be the set of 26 cells that
share a boundary point withc shatched cells in Fig. 3d. Two
cells are said to be well separated if they are separated by at
least one cell. Theinteraction setfor a cellc is defined to be
the set of cells at the same level asc that are not nearest

FIG. 1. Illustration of multipole transformation operations used
in FMM for well separated sets of charges.

FIG. 2. Two-dimensional illustration of FMM hierarchical cell
decomposition. At levell the MD cell is subdivided in each direc-
tion into 2l cells.
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neighbors ofc and whose parent cells are nearest neighbors
of the parent ofc sshaded cells in Fig. 3d. Note that at any
level there are at most 189 entries in theinteraction list
of a cell.

The downward pass operates by consistently computing
interactions between cells at the coarsest level possible. This
is accomplished for a given cell by computing interactions
with those cells which are well separated and whose interac-
tions have not been accounted for at the parent’s level. The
downward pass is initiated at the coarsest level by computing
all the inner multipoles for each cell in the level. When free
boundary conditionssno pbcd are used, the coarsest level that
contains well separated cells isl =2. The inner multipoles for
each cellc in the coarsest level are computed by converting
the outer expansion of each cell that is well separated fromc
to an inner expansion about the center ofc using the outer-
to-inner translations27d, then adding them together. The
downward pass then proceeds in a recursive manner, begin-
ning at the next coarsest level, as follows.

sid For each cellc in level l convert the inner expansion
belonging toc’s parent to an inner expansion aboutc’s center
using the inner-to-inner translations29d.

sii d For each cellc in level l convert the outer expansion
of each cell inc’s interaction listto an inner expansion about
c’s center using the outer-to-inner translations27d and then
add them together.

siii d Repeat stepssid and sii d for level l +1 until they are
completed for all levels including the leaf-levelL.

Once stepssid and sii d have been completed at the leaf
level, the inner expansion for each leaf cell will contain the
interactions with all other well-separated leaf cells. The num-
ber of operations required for stepssid and sii d is ø190Np4.
Finally, the far field contribution to the potential at each
atomic position is computed from the inner expansions28d.
This step requiresøNp2 operations. Altogether, the compu-
tation for the downward pass scales asNp4.

The nearest neighbor leaf-cell contributions are computed
directly using the link-cell lists with the number of opera-
tions proportional toN/Nb, where Nb=N/8L the average

number of atoms per link cell. From the discussion of the
upward pass, downward pass, and direct calculation it can be
seen that the computational complexity of the FMM algo-
rithm is OsNd. For realistic system sizes serial implementa-
tion can still be impractical, thus motivating the need for
parallel computation.

D. Parallel implementation of FMM with domain
decomposition (Ref. 43)

We consider a system ofN atoms contained within a unit
MD cell. The partitioning of work amongP processors
snodesd is accomplished via a divide-and-conquer strategy
based on domain decompositionssee Fig. 4d. The MD cell is
subdivided intoP=Px3 Py3 Pz subsystems of equal vol-
ume. The nodes are logically arranged in an array such that a
nodep s0øpø P−1d corresponds to the subsystem indexed
by three integers46

px = bp/sPyPzdc

py = bp/Pzc modPy

pz = p modPz s30d

wherebxc denotes the greatest integer less than or equal tox.
Figure 4 illustrates the domain decomposition for a two-
dimensional system. All the attributesscoordinates, veloci-
ties, accelerations, species, etc.d associated with atoms lo-
cated within a particular subsystem are stored within the
memory of the corresponding node. The mapping of an at-
om’s coordinates,si, to a sequential node ID,pssid, is given
by

pssid = pxssidPyPz + pyssidPz + pzssid, s31d

where

passid = bsiaPac sa = x,y,zd. s32d

When atoms move out of a subsystem into a neighboring
subsystem, the corresponding attributesspositions, veloci-
ties, etc.d are transferred using standard message-passing
library routines.47

The calculation of short-range interatomic forces on at-
oms in a subsystem is done using the link-cell list scheme.

FIG. 3. Two-dimensional illustration of defined sets used in
FMM. The hatched cells are the nearest neighbors of the dark cell.
The interaction setfor the dark cell is the set of shaded cells at the
same level as the dark cell.

FIG. 4. Domain-decomposition scheme in two dimensions for
nine nodes. Arrows indicate the direction of message passing. The
dashed line indicates the copied boundary regions for node 5.
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To calculate the forces on atoms within a subsystem, the
coordinates of all the boundary atoms that reside in the 26
nearest-neighbor subsystems are required. The coordinates of
boundary atoms are exchanged between nearest-neighbor
nodes usingnonblockingsend andblocking receive opera-
tions. Newly received boundary atom coordinates are stored
in augmented link-cell lists. Boundary-atom exchange be-
tween nearest neighbors is accomplished through six
message-passing steps: north, south, east, west, upper, and
lower. Boundary-atom coordinates that need to be exchanged
with edge-sharing and corner-sharing neighbors are first
passed to the appropriate face-sharing neighbor and then for-
warded to the appropriate destination node during the subse-
quent message-passing steps. Newton’s third law can be used
to reduce the number of message-passing steps by a factor of
2. In this case, it is necessary to send the forces computed for
boundary atoms back to the source node.

The unit MD cell is decomposed intoP=Px3 Py3 Pz
subsystems with the requirement that eachPa be a power of
2. We define a levelLg=log2fmaxsPx,Py,Pzdg in the FMM
tree. In the lower levels of the hierarchy,l ùLg, each cell is
uniquely assigned to a node. For upper levels,l ,Lg, the
number of cells becomes smaller than the number of nodes.
In this case, assignment of each cell to a node results in
processors becoming idle. An alternative approach is to du-
plicate the multipole computations in the upper levels by
setting the cells to be global. Figure 5 illustrates this decom-
position scheme for a two-dimensional system.

In the parallel FMM implementation, the upward pass and
downward pass proceed in a similar manner as in the serial
case. The calculation of multipole expansions for the leaf
cells according to Eq.s18d is local to each node. Because a
parent cell and its children reside on the same node, the
outer-to-outer translations of the upward pass and the inner-
to-inner translations of the downward pass do not require any
communication between nodes. To compute the outer-to-
inner translations from a cell’s interaction set, the outer mul-
tipoles of two boundary layer cells must be copied from the
nearest-neighbor nodes. This is accomplished through mes-
sage passing steps similar to that required for the short-range
force calculations. The 8l /P cells on a node are augmented

with the copied outer multipoles to form an array consisting
of the outer multipoles ofs2l /Px+2ds2l /Py+2ds2l /Pz+2d
cells at each layer. The outer-to-inner translations at each of
the lower levelssl ùLgd are computed using the augmented
set of outer multipoles. For upper levelssl ,Lgd the global
set of outer multipoles is used.

E. Setup of oxidation simulations (Ref. 48)

The setup for the oxidation simulations is as followsssee
Fig. 6d. A fcc-crystalline Al spheresdiameter=200 Åd com-
posed of 252,158 atoms and thermalized at 300 K is placed
at the center of a cubic box of length 800 Å. A total of
530,720 oxygen atoms are distributed randomly outside the
Al spheresradius 110–400 Åd either in the form of atomic
sO1d or molecularsO2d oxygen at a temperature of 300 K.
The oxygen density is 40 times that of the normal state
s1 atm and 300 Kd. A spherical reflecting wall of radius
400 Å confines the entire system. In order to accelerate com-
putations, we use a multiple time step approach to compute
short-range and long-range forces efficiently.41 The equations
of motion are integrated withDt=1 fs for short-range forces
andDt=20 fs for long-range forces. New atomic charges are
determined every 100 time steps such that the electrostatic
energy is minimized subject to the constraint that the total
system remains neutral. Canonical MD simulation, in which
the temperature of the whole system is fixed at 400 K using
Nosé-Hoover thermostat chain,49 is performed for the case of
O2. In addition, microcanonical MD simulations are per-
formed for both O1 and O2.

FIG. 5. Domain decomposition scheme for FMM in a two-
dimensional system. In the lower levels, cells are local to a node.
Cell information in the upper levels is made global to all nodes.

FIG. 6. sColord Initial setup of oxidation simulation. This is an
8-Å-thick slice through the middle of the system. The aluminum
cluster is cyan and the surrounding oxygen are red. A spherical
reflecting wall of radius 400 Å contains the oxygen atoms.
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III. RESULTS

A. Explosive oxidation in the microcanonical ensemble

Recent experiments have demonstrated that small alumi-
num particles are highly explosive under high oxygen pres-
sure and closed conditions.50 Motivated by this experimental
observation, we simulated the oxidation behavior in closed
conditions without heat dissipation, i.e., the simulations were
performed in the microcanonical ensemble performed for
both atomic sO1d and molecularsO2d oxygen. Figure 7
shows a plot of the time evolution of temperature and density
profiles in the O2 microcanonical simulation as a function of
distance from the center of the cluster. We observe that the
energy released from Al-O bond formation leads to a dra-
matic increase in temperature in the surface region. Thermal
energy is rapidly transported through the Al cluster, resulting
in an average temperature of 1000 K in the core of the Al
cluster sthe melting temperature of Al is 933 Kd by 40 ps.
Rapid temperature increase in the reactive regionsnear sur-
faced causes nanocluster to explode. Due to the increase in
temperature, the density of aluminum atoms in the surface
region drops and the cluster boundary increases to around
110 Å by 30 ps, see Fig. 7smiddled. Figure 7 sbottomd
shows that oxygen atoms rapidly diffuse into the Al cluster,
reaching a radius of 80 Å during the first 30 ps. The peak
oxygen density increases rapidly during the first 30 ps and
then saturates by 40 ps.

The rate of temperature increase at the nanocluster surface
in the O1 microcanonical simulation is 30% higher than that
of the O2 case. This difference is attributed to the energy
required to dissociate the O2 molecules before Al-O bonding
occurs. Correspondingly, we observe that the rate of increase
of the oxide layer thickness for the O1 simulation is 13%
larger than that of the O2 simulation. This can be seen in Fig.
8sad in which the oxide thickness as a function of simulation

time is plotted for both the O1 and O2 cases. Thickness of the
oxide region grows linearly with time without saturation dur-
ing the simulation for both atomicsO1d and molecularsO2d
oxygen cases. By 50 ps the thickness and temperature of the
oxide region are 35 Å and 2500 K, respectively. In addition,
the saturation density of oxygen in the nanocluster surface
region for the O1 simulation is 9% lower than that of the O2
simulation, see Fig. 8sbd.

Figure 9 shows the evolution of oxidation in a small slice
s150 Å3150 Å38 Åd of the O2 microcanonical system at
various times during the simulation. The charge transfer is
localized to the surface region where the Al-O bonding oc-
curs. Energy released from Al-O bond formation is rapidly
transported through the cluster resulting in disordering of the
Al crystal. Disordering of the Al crystal begins at the surface
and moves rapidly inward as the temperature increases, re-
sulting in an outward expansion of the oxide region. By
40 ps the thickness of the oxide scale is 22 Å and the tem-
perature in the oxide region is 2000 K. Subsequently, we
observe the ejection of small AlxOy fragments from the nano-
cluster surface, indicating that the nanocluster is exploding.
This behavior under closed conditions has also been ob-
served experimentally.50 Similar behavior is observed in the
O1 microcanonical simulation, except that the O2 dissocia-
tion energy lowers the rate of temperature increase at the
nanocluster surface by 30%.

We have analyzed the evolution of local stresses during
the oxidation process. Local stress distributions are conve-
niently calculated from51

sab
V =

1

VK o
i,r iPV

mini
ani

b + o
i,r iPV

o
j.i

r i j
a f ij

bL s33d

wherea and b are Cartesian indices and the sum overi is
restricted to atoms within a volumeV.52 The local stresses
were calculated by subdividing the system into cells of
length 10 Å and averaging the virial stress given in Eq.s33d

FIG. 7. Time evolution of temperature and density profiles as a
function of distance from the center of the aluminum cluster for the
O2 microcanonical simulation.

FIG. 8. sad Thickness of oxide andsbd average density of oxy-
gen in the oxide region as a function of simulation time in the O1

and O2 microcanonical simulations.
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in each cell over 1 ps intervals. We observe large transient
stress gradients followed by equilibration as the oxidation
progresses. Figure 10 depicts the time evolution of local
pressure in the nanocluster for the O1 microcanonical simu-
lation. Initially, the surface region is tensile, while the inner
region of the cluster is at zero pressure. We attribute the
tensile stress in the surface region to the strong Coulomb
forces created by the charge transfer between the surface Al
atoms and the incoming O atoms. Heat transfer from the
surface to the inner region then causes the pressure in the
inner region to become compressive. Subsequently, the pres-
sure differences between the surface and interior regions
equilibrate.

The local stress regions are further examined by separat-
ing the contributions from the electrostatic and nonelectro-
static forces. Figure 11 depicts the electrostatic and nonelec-
trostatic force contributions to the local pressure after
100 ps. It can be seen from Fig. 11sad that the attractive
Coulomb force between aluminum and oxygen contributes a
large negative pressure localized in the oxide. The electro-
static pressure contribution increases in magnitude toward
the middle of the oxide where charge transfer is the highest.
The large attractive forces are partially offset by steric repul-
sion which gives rise to a positive nonelectrostatic contribu-
tion to the local pressure in the oxide, see Fig. 11sbd. Analy-
sis of local stresses reveals large stress gradients throughout
the nanocluster with the oxide largely under negative pres-
sure and the metal core under positive pressure. Local pres-
sures range between −1 and 1 GPa. The local stresses were
calculated by averaging the atomic virial in 6-Å voxels over
a 1-ps interval.

B. Formation of oxide scale in the canonical ensemble

In addition to the microcanonical simulations we have
investigated the oxidation process in the O2 environment in
the canonical ensemble. Figure 12 shows the oxide thickness
as a function of simulation time for the first 260 ps of the O2
canonical simulation. Kinetic analysis of the oxidation pro-
cess reveals two different oxide-scale regimes. In the initial
stage, for the first 50 ps, we observe that the oxide thickness
increases linearly with time to 25 Å, subsequently the rate
becomes smaller and the thickness saturates at 33 Å. The

FIG. 9. sColord Snapshots of a small slices150 Å3150 Å
38 Åd of the O2 microcanonical system at various times during the
simulation. The larger spheres correspond to oxygen and smaller
spheres to aluminum; color represents the sign and magnitude of the
charge on an atom.

FIG. 10. sColord Three-dimensional views of local pressures in
the O1 microcanonical simulation. The system is subdivided into
10 Å cells and the virial stress in each cell is averaged over 1 ps
intervals.

FIG. 11. sColord sad Electrostatic andsbd nonelectrostatic con-
tributions to the local pressure in the nanocluster after 100 ps of
simulation time.
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inset for Fig. 12 shows the inner and outer radial extent of
the oxide. The growth of the oxide scale is both inward and
outward: inward because of the movement of oxygen to-
wards the interior of the cluster and outward because of the
movement of aluminum towards the oxide surface. The in-
ward and outward growth of the oxide saturate at 77 and
110 Å, respectively, with the inward growth saturating later
than the outward. Therefore, the inward diffusion of oxygen
atomss23 Åd is greater than the outward diffusion of alumi-
num atomss10 Åd along the developing oxide scale. This is
in agreement with experimental observations.22

During the first 100 ps the temperature in the oxide region
increases to 1500 K, near the melting temperature of alu-
mina, where it subsequently remains. The large stress gradi-
ents give rise to diffusion of atoms in the oxide region.
Analysis of the atomic diffusivities in the oxide show that
during the first 100 ps the diffusivity of aluminum is 30%–
60% larger than that of oxygen. This is due to the smaller
steric size of aluminum. We calculate diffusivities from
mean-square displacements computed over a 1-ps interval.
At 50 ps the diffusivities of aluminum and oxygen are 1.4
310−4 and 1.1310−4 cm2/s, respectively. By 100 ps the dif-
fusivity of oxygen has dropped to 7.4310−5 cm2/s, while
that of aluminum only decreases to 1.2310−4 cm2/s. The
radial and tangential diffusivities remain about equal, indi-
cating that while the oxide grows radially, high tangential
diffusion causes uniformity in the oxide thickness with re-
spect to polar angles.

Saturation of the oxide growth during the first 260 ps is
accompanied by a depletion of oxygen outside the nanoclus-
ter. In order to bring the oxide as close as possible to com-
plete saturation, we continue the O2 simulation in the canoni-
cal ensemble to 466 ps while maintainingnO outside the
nanocluster in the range 0.001–0.002 Å−3. An oxide scale of
40 Å thickness is subsequently formed, as seen in Fig. 13,
which is a snapshot of a small slices115 Å3115 Å38 Åd
of the system at 466 ps. The outer radial extent of the oxide
remains at 110 Å; however, the inner radial extent moves to
70 Å. The average mass density of the oxide is 2.9 g/cm3

snAl =0.042 Å−3 andnO=0.038 Å−3d, which is about 75% of
the crystallinea-Al2O3 density. Significant charge transfer is
observed in the oxide region, as can be seen from Fig. 13

where color represents the sign and magnitude of the charge
on an atom. Maximum and average atomic charges in the
oxide region are, respectively, 2.6e and 1.7e for Al and −2.0e
and −1.8e for O. Charge transfer in the oxide is significant
and decreases in magnitude near the interfaces.

Aluminum nanoclusters of diameters 100–700 Å are
known to form oxide scales of thickness 20–50 Å in low-
density oxygen gases at room temperature.7,16,17 The thick-
ness of oxide scales as a function of cluster size for small
aluminum clusters have been measured.16 For Al clusters of
diameter 200 Å the thickness is 30–40 Å. Despite orders of
magnitude difference in the oxygen-gas densities, remark-
able similarity in the oxide thickness is found between the
present simulation results and the experimental observations.

Experimentally, the structure of the oxide scale on Al
nanoclusters is not fully known and is considered to be amor-
phous. However, in all of the known literature there is no
detailed structural analysis of the oxide scale on Al nanoclus-
ters. Recent studies have pointed out that the local structure
of the amorphous oxide scale for Al nanoclusters is different
from the amorphous scale that forms on the bulk Al
surface.7,14,15However, details of the differences between the
two amorphous oxides are not known.

We analyze structural correlations in the oxide region
through partial pair-distribution functions, coordination num-
bers, and bond-angle distributions. Figure 14sad shows the
Al-O pair-distribution function for three spherical shells in
the oxide region. These results show a variation of structures
as we pass through the oxide from the metal-oxide interface

FIG. 12. Thickness of oxide layer as a function of simulation
time for the O2 canonical simulation. The inner and outer radial
extent of the oxide layer as a function of simulation time are shown
in the inset.

FIG. 13. sColord Snapshot of a small slices150 Å3150 Å
38 Åd of the O2 canonical system after 466 ps of simulation time.
The larger spheres correspond to oxygen and smaller spheres to
aluminum; color represents the sign and magnitude of the charge on
an atom.
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s70–83.3 Åd to the oxide interiors83.3–96.7 Åd and on to
the oxide-environment interfaces96.7–110 Åd. In Fig. 14sad
we observe that the position of thegAlOsrd peak gives the
Al-O bond length to be around 1.81 Å in the metal-oxide
region. The position of the Al-O peak remains nearly con-
stant for largerr in the interior and oxide-environment re-
gions. Pair distributions for Al-Al and O-O show shifts in the
peak positions related to the change in the relative Al and O
densities in each region. The corresponding coordination
numbers for Al in each regionfobtained by integrating
gAlOsrd up to 2.5 Åg are 3.1 for the metal-oxide interface, 3.9
in the interior of the oxide region, and 4.3 for the oxide-
environment interface.

Figure 14sbd shows the O-Al-O bond-angle distribution
for each region in the oxide. We see that throughout the
oxide region there are two distinct peaks in the bond-angle
distribution. In the interior of the oxide the distribution
shows two peaks at 90° and 109°. These peaks shift toward
smaller angles in the oxide-environment interface, reflecting
the decrease in aluminum density. In the metal-oxide inter-
face where the oxygen density is lower, we observe that the
peaks in the bond-angle distribution shift toward larger
angles.

It is interesting to compare the present results with those
for liquid alumina, which is made up of tetrahedrally coor-
dinated aluminum,53 and amorphous alumina formed by an-
odization, which consists of a mixture of tetrahedrally and
octahedrally coordinated aluminum.54,55Additionally, alumi-
num ions in porous alumina films are known to be predomi-
nately tetrahedrallysor even lowerd coordinated.55 Reported
Al-O bond lengths in amorphous Al2O3 films range from
1.8 to 1.9 Å, depending on the porosity and method of
preparation.55 The stoichiometry of the oxide region in the
current simulation is different from that of Al2O3, and con-
sequently its structural correlations are rather different from
those in liquid and amorphous Al2O3. Despite the presence

of two peaks around 90° and 109° in the bond-angle distri-
bution in Fig. 14sbd, which might suggest the coexistence of
octahedrally and tetrahedrally coordinated Al atoms, we find
that Al atoms in the oxide region are predominantly four
coordinated, which indicates significant distortion of the
structural units.

C. Oxidative percolation in the canonical ensemble

We have found in Fig. 12 that the growth rate of the oxide
thickness in the canonical run begins to decrease at around
30 ps. Through detailed analyses of trajectories O atoms and
of their formation of OAln structures, we propose here a
three-step process in the early stage of oxidation of the Al
nanoparticle, to explain such a decrease in the oxidation rate.

Step 1. The first5 ps

After the simulation starts, O2 molecules near the nano-
particle surface are attracted toward the surface. We monitor
trajectories of the O2 molecules after they approach the
nanoparticle surface, and find that the molecules dissociate
into two O atoms on the surface and the two O atoms enter
into either the octahedral or the tetrahedral site of the fcc Al.
Figure 15 shows a small portion of the nanoparticle surface
at 2.5 ps to depict an example of such events. In Fig. 15,
surface Al atoms are drawn with small spheres, while O at-
oms with large spheres; color attached to an atom represents
the charge number obtained through the variable-charge cal-
culation. White lines are drawn in Fig. 15 to indicate a fcc
unit sdeformedd. Two green curves in Fig. 15 depict trajec-
tories of two O atoms, which demonstrate that one O atom
goes into the octahedral site and the other into the tetrahedral
site. Charges of the two O atoms in Fig. 15 are both about
−0.2ueu. Both the tetrahedronsOAl4d and the octahedron
sOAl6d clusters are nearly charge neutral; −0.03ueu and
0.05ueu, respectively.

Step 2. Between 5 and25 ps

The O atoms diffuse through the tetrahedral and the octa-
hedral sites of the fcc Al due to their high velocities corre-
sponding to about 23103 K. We evaluate residence times of
the O atoms and find significant variations of them as the
simulation progresses. Figure 16 shows the residence times
of the O atoms at the tetrahedral and the octahedral sites, as
functions of the nanoparticle radius and the simulation time.
To create Fig. 16, we first partition the nanoparticle into
2.5 Å depth radial shells, calculate the residence times of the
O atoms, and then average the times over the atoms in each
shell for every 5 ps. At the simulation time,5 ps, maximum
values of the residence times at the tetrahedral and the octa-
hedral sites are both about 0.8 ps. As the simulation
progresses, however, the maximum residence time at the tet-
rahedral site increases toward 1.2 ps, while that at the octa-
hedral site decreases to 0.2 ps. An increased degree of rela-
tive stability of tetrahedrally coordinated OAl4 clusters
becomes apparent at around 20 ps. In this connection, we
note that the ground state of alumina, i.e.,a-Al2O3, may be
regarded as edge and corner sharing OAl4 clusters.

FIG. 14. Structural correlations in three spherical shells of the
oxide layer att=466 ps.sad Al-O pair-distribution functions.sbd
O-Al-O bond angle distributions.
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Step 3. Between 25 and35 ps

The tetrahedral clusterssOAl4d coalesce by either corner
or edge sharing Al atoms to form a percolating network en-
closing the nanoparticle. Such a percolation behavior is dem-

onstrated in Fig. 17. To draw the figure, we first select O
atoms forming OAl4 clusters. Those clusters sharing one or
more Al atoms are regarded as mutually connected. Connect-
ing clusters with the cluster sizeNs.50 are plotted in Fig.
17 at 20, 27, 30, and 31 ps. In between 30 and 31 ps, a
percolating network of the clusters is formed, enclosing the
nanoparticle. Charge density of the surface oxidessee Fig. 7d
is as small as 0.04–0.05 Å−3 during 20–35 ps. This neutral
tetrahedral network may decelerate the diffusion of O into
and the diffusion of Al out of the nanoparticle, and hence,
result in a decrease in the oxidation rate.

IV. CONCLUSION

In conclusion, we have performed large-scale MD simu-
lations on parallel computers to study the oxidation of an
aluminum nanocluster of radius 100 Å. The simulations take
into account the effect of charge transfer between Al and O
based on the electronegativity equalization principle. We
have employed theOsNd fast multipole method to compute
the Coulomb interaction arising from charge transfer. Simu-
lations have been carried out for both microcanonical and
canonical ensembles and for atomic and molecular oxygen
environments. In the microcanonical ensemble, simulations
with atomic and molecular oxygen show a continuous
increase in the thickness and average temperature of the ox-
ide layer with time. Subsequently, meltingsexplodingd of the
nanocluster is observed in both settings, with the atomic case
occurring earlier than in the molecular case due to the disso-
ciation energy of the O2 molecule. In the canonical simula-
tions, a passivating amorphous oxide scale with a thickness
of 4 nm and an average mass density of 2.9 g/cm3 is formed
during 466 ps of simulation time. The calculated oxide thick-

FIG. 15. sColord A small portion of the surface of the nanopar-
ticle at 2.5 ps in the canonical simulation. Trajectories of two O
atoms forming an O2 molecule at the initial, are drawn with green
curves. Al atoms are depicted with small spheres, and O atoms with
large spheres. Color represents the atomic charge obtained in the
variable-charge calculation.

FIG. 16. sColord Residence times of the O atoms at the tetrahe-
dral sfour-coordinatedd and the octahedralssix-coordinatedd sites, as
functions of the nanoparticle radius and the simulation time in the
canonical simulation.

FIG. 17. sColord Tetrahedrally coordinated O atoms with the
cluster sizeNs.50 are drawn at 20, 27, 30, and 31 ps in the ca-
nonical simulation. Color representsNs.
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ness is in good agreement with experimental results on alu-
minum clusters of sizes similar to that used in the simula-
tions. The average mass density in the oxide region is 75% of
the crystalline alumina density. During the oxide growth,
large pressure variations occur that result in rapid diffusion
of atoms in the oxide. The large negative pressure contribu-
tion from electrostatic forces in the oxide is partially offset
by the positive contribution of steric repulsion. This results
in the oxide remaining largely under negative pressure,
which causes aluminum to diffuse toward the surface and
oxygen to diffuse towards the interior of the cluster. The
diffusivity of aluminum is 30–60 % higher than that of oxy-
gen in the oxide. Owing to variations in Al and O densities,
structures in the oxide scale vary when passing through the
oxide from the metal-oxide interface to the oxide-
environment interface. Significant charge transfer is ob-

served in the reactive regionsoxide scaled in the microca-
nonical and canonical simulation. Through detailed analyses
of trajectories and their microscopic structures, we have
found a three-step process of oxidative percolation that ex-
plains deceleration of oxide growth at the early stage of the
canonical simulation. These atomistic mechanisms could
complement recent theoretical results on oxidation based on
ab initio electronic structure calculations.56
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