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ABSTRACT 

 

In this paper, we present a methodology for profiling parallel applications executing on the family 

of architectures commonly referred as the “Cell” processor. Specifically, we examine Cell-centric 

MPI programs on hybrid clusters containing multiple Opteron and IBM PowerXCell 8i processors 

per node such as those used in the petascale Roadrunner system. We analyze the performance of 

our approach on a PlayStation3 console based on Cell Broadband Engine—the CBE—as well as 

an IBM BladeCenter QS22 based on PowerXCell 8i. Our implementation incurs less than 0.5% 

overhead and 0.3 µs per profiler call for a typical molecular dynamics code on the Cell BE while 

efficiently utilizing the limited local store of the Cell’s SPE cores. Our worst-case overhead 

analysis on the PowerXCell 8i costs 3.2 µs per profiler call while using only two 5 KiB buffers. 

We demonstrate the use of our profiler on a cluster of hybrid nodes running a suite of scientific 

applications. Our analyses of inter-SPE communication (across the entire cluster) and function call 

patterns provide valuable information that can be used to optimize application performance. 
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1. Introduction 

Application developers at the forefront of high-performance computing (HPC) have been 

investigating the use of hybrid architectures to improve application performance. Hybrid 

architectures attempt to improve application performance by combining conventional, 

general-purpose CPUs with any of a variety of more specialized processors such as 

GPUs, FPGAs, and Cells. The complexity stemming from hybrid architectures make 

understanding and reasoning about application performance difficult without appropriate 

tool support. 



In this paper, we present a profiling library that can trace not only intra-Cell direct 

memory access (DMA) events but also inter-Cell message passing. Our implementation 

is efficient in terms of resource consumption (only 12 KiB of SPE local store memory is 

required) and has an overhead of less than 0.3 µs per profiler call for a typical scientific 

application executing on the Cell BE.  

We employ a reverse acceleration programming model in which the hybrid cluster 

architecture is presented to the programmer as a logical cluster of Cell SPE processors by 

using the Cell Messaging Layer (CML) [1]. CML significantly reduces the effort needed 

to port applications to Cell clusters and has been used to port several scientific 

applications (e.g., the Sweep3D deterministic particle-transport kernel) to Los Alamos 

National Laboratory’s petascale Roadrunner supercomputer (comprising 6,120 dual-core 

Opterons plus 12,240 PowerXCell 8i processors). CML provides a subset of the functions 

and semantics of the MPI standard [2] including point-to-point communication, 

broadcasts, barriers, and global reductions.  

The Cell processor’s complex architecture—eight synergistic processing elements 

(SPEs) managed by a single power processor element (PPE)—makes profiling tools 

essential for performance optimization. Traditional tools merely monitor performance 

events on PPEs, which provide less than 6% of PowerXCell 8i flops performance and are 

usually used for solely controlling SPE processes instead of computing. The IBM Cell 

Software Development Kit (SDK) [3] includes a Cell performance-debugging tool (PDT) 

that helps analyze the performance of a single Cell board (up to two Cell processors) with 

two PPEs that share the main memory, run under the same Linux operating system, and 

share up to 16 SPEs. PDT can trace only a specific set of SDK library functions such as 

SPE activation, DMA transfers, synchronization, signaling, and user-defined events. 

Because PDT involves the slow PPE on the critical path of tracing, the PPE can easily 

become a performance bottleneck and may even influence application performance. 

Another tool for analyzing Cell performance is Vampir [4], which Nagel et al. used to 

visualize intra-Cell events such as mailbox communication and DMA transfers [5].   

The key difference between our work and the works mentioned above is that we 

perform cluster-level analysis for MPI programs running on compute nodes featuring a 

hybrid architecture comprising AMD Opterons/PowerXCell 8i processors and 

PlayStation3 (PS3) commercial gaming consoles featuring Cell BE processors. The 

underlying message-passing model of CML, which treats an entire cluster of 

Opterons+Cells (or PS3s) as a homogenous collection of SPEs, has a central importance 

to our cluster-wide analysis. In addition to monitoring the same types of intra-Cell events 

as existing Cell profilers, our implementation can log inter-Cell, inter-blade, and inter-

node communication. We have tested our implementation on up to 256 SPEs, although 

there is nothing limiting us from scaling up to thousands or even tens of thousands of 

SPEs. 

Two parallel scientific applications—lattice Boltzmann (LB) flow simulation and 

atomistic molecular dynamics (MD) simulation—are used to test the profiler on the PS3 

and hybrid Opteron+Cell Roadrunner architecture using CML. Two sample uses of the 

profiler are also demonstrated: communication analysis and call-stack analysis. 

The organization of the rest of this paper is as follows: Section 2 provides information 

about the Cell architecture, the Cell Messaging Layer, and our experimental testbed. 

Section 3 discusses the software design and implementation of our profiler software. 

Section 4 analyzes profiler performance using microbenchmarks and some sample 

applications. Finally, we summarize our study in Section 5. 



2. Architectural Background and Testbed 

In this section we describe the architecture of the Cell Broadband Engine and 

PowerXCell 8i that provides the bulk of the performance of our target cluster and the 

focus of our profiler study. We then briefly summarize the overall architecture of our 

testbed. Finally, we describe the Cell Messaging Layer, which is an enabling technology 

for exploiting hybrid (or completely cell based) clusters and therefore a key insertion 

point for profiler events. 

 

 

2.1.  Cell Broadband Engine and IBM PowerXCell 8i 

Cell BE has a heterogeneous architecture incorporating a power processor element (PPE) 

and eight synergetic processing elements (SPEs) on the same chip. SPEs are connected 

via an element interconnect bus (EIB), which supports a peak bandwidth of 204.8 GB/s 

for intra-chip data transfers among the PPE, SPEs, the memory, and the I/O interface 

controllers [6]. A single Cell BE has a peak single-precision performance of 217.6 

Gflops/s for which it took attention of the high performance computing community in the 

recent years [7], whereas its double-precision peak is limited to 21 Gflops/s.  

The IBM PowerXCell 8i (also referred as the Cell extended Double-Precision, Cell-

eDP) is the latest implementation of the Cell BE featuring 108.8 Gflops/s on double-

precision operations. It drives the fastest supercomputer at the time of this writing, 

Roadrunner at Los Alamos [8]. Each SPE of PowerXCell 8i contains a 3.2 GHz 

synergetic processing unit (SPU) core, 256 KB of a private, program-managed local store 

(LS) in place of a cache, and a memory flow controller (MFC) that provides DMA access 

to main memory. The SPE uses its LS for efficient instruction and data access, but it also 

has full access (via DMA) to the coherent shared memory, including the memory-mapped 

I/O space. 

 To make efficient use of the EIB and to interleave computation and data transfer, the 

PPE and 8 SPEs are equipped with a DMA engine. Since an SPE’s load/store instructions 

can access only its private LS, each SPE depends exclusively on DMA operations to 

transfer data to and from the main memory and other SPEs’ local memories. The use of 

DMAs as a central means of intra-chip data transfer maximizes asynchrony and 

concurrency in data processing inside a Cell processor [9]. 

 

 

2.2.  Testbed 

The PS3 features an identical Cell BE to the ones in IBM BladeCenter QS20. Recently 

the gaming console has been used as a low-cost computing platform by scientists [10]. 

However, one of the SPEs is disabled in PS3s for chip yield reasons and another SPE is 

reserved for use by GameOS operating system which acts as a hypervisor, and virtualizes 

the system resources. Out of 256 MB Rambus Extreme Data Rate (XDR) memory on 

PS3, only 200 MB is accessible to Linux OS and applications. Even though PS3s are not 

crafted for high performance cluster computing [11], they offer a valuable testing 

platform for tools targeting Cell based architectures. In this paper we use a PS3 console 

to quantify the overhead that our profiling library incurs.  

 Our second testing platform comprises 8 nodes, called tri-blades, where each tri-blade 

has two IBM QS22 Cell blades and one IBM LS21 AMD Opteron blade. The QS22 



contains two PowerXCell 8i processors running at 3.2 GHz and each with an associated 4 

GB of DDR2 memory. The LS21 blade includes two dual-core Opteron cores clocked at 

1.8 GHz.  Each tri-blade has a single connection to a Mellanox 4x DDR InfiniBand 

network. Typically, the Opterons handle mundane processing (e.g., file system I/O) while 

mathematically intensive elements are directed to the Cell processors. Each tri-blade in 

our testbed is architecturally identical to the tri-blades used in Roadrunner. 

 

 

2.3.  Cell Messaging Layer 

CML is an implementation of common MPI functions for SPE-to-SPE communication in 

Cell-based clusters. The programming model underlying the CML is that applications run 

entirely on the SPEs. The SPE-centric model of CML assigns unique MPI ranks to each 

SPE assigned to an application. By means of using PPE (and possibly conventional CPUs 

like Opterons if they exist in the cluster) primarily for shuttling messages to SPEs in 

other blades (or PS3s) instead of computation, the abstraction provided by CML allows 

each SPE to communicate with other SPEs regardless of whether the SPEs are in the 

same socket, the same blade, the same node, or different nodes. On a cluster of Cells, 

CML implements a mechanism for forwarding data from a SPE to its PPE then across a 

network to a remote PPE and finally to the target SPE. The PPE needs to be involved 

because a SPE cannot interact directly with I/O-bus devices such as network interface 

cards (NICs). In addition to handling communication operations, PPE, also initializes 

CML, starts SPE programs and waits until all SPEs invoke MPI_Finalize(), and finally 

shuts down the CML. Therefore both SPE/PPE programs need definitions of CML 

functions and should be linked with CML libraries, whereas SPE program can run an 

existing MPI application with only minor modifications that are necessary due to 

architectural requirements of the Cell. In effect, we have ported our scientific applications 

relatively easily to both of our testing platforms.  

CML also provides Programmer’s Message Passing Interface (PMPI) functions [12] 

which have a one-to-one correspondence to MPI calls. This interface enables any calls 

made to the MPI functions, by the SPEs, to be intercepted and thus recorded. Section 3.2 

discusses the use of PMPI calls within our profiler. 

CML also offers a remote procedure call (RPC) mechanism through which SPEs can 

invoke a function on the PPE (PPEs can subsequently call a function on the 

accompanying host CPU if it exists) and receive any results. This capability is 

particularly useful for our profiler, where local SPEs need to call a PPE malloc() to 

allocate space in PPE memory to hold the entire list of recorded events. 

 

 

3. Software Design Details 

Our implementation of the tracing library targets clusters of Cell processors. Each PPE 

within a Cell processor is responsible for synchronizing the program run on its SPEs. 

CML enables the total number of SPEs, as seen by an application, to scale: from a single 

processor containing eight SPEs to clusters of  PS3s [10], or to Roadrunner that contains 

97,920 SPE cores. The remainder of this section outlines the design and implementation 

of the profiler including its memory use, and events that are profiled. 

 

 



3.1.  Data Structures 

The buffers that are used in the profiler implementation, along with the double-buffering 

operation of the buffers in the LS, is shown in Fig. 1. This is discussed further in Section 

3.2. 

 

Fig. 1. Operation of the profiler double-buffering implementation. 

 

 

A cyclical pattern is used in Fig. 1 to illustrate the allocation of buffers in LS. They 

switch roles repeatedly—while one is being used to record newly created events, the 

other is being dumped to PPE main memory. In comparison, the PPE memory layout is 

linear, where each small section, or event page, corresponds to the size of a single buffer 

in LS.  

Table 1 summarizes the structure of profile events and of event pages that hold a 

number of events. It is crucial that the events and the buffers are allocated to fit the 16-

byte boundary required for DMA transactions. ALIGNED16 is a short-hand notation for 

the __attribute__((aligned (16))) attribute, which specifies to the compiler to allocate the 

data structure to be 16 byte aligned. It is also important that 16 byte aligned profile data is 

structured the same both on SPE and PPE memories. 

The enumerator lists the type of events our implementation can currently monitor. We 

record calls to the profiler start/stop functions, SPE function entry/exit (E, X), calls to the 

MPI functions implemented in CML (MPI_SEND, MPI_RECV, MPI_ALLREDUCE, 

MPI_REDUCE, MPI_BARRIER, MPI_BCAST) and various DMA put/get transactions 

which are issued by functions spu_mfcdma32() and spu_mfcdma64() defined in libspe2—

the standard SPE library included in the IBM Cell/B.E. SDK. We have limited our 

implementation to cover only relevant DMA transaction types to our test applications. 

 

 

Table 1. Definitions of the data structures. 

 

 
#define PAGE_SIZE 64 
#define ALIGNED16 __attribute__((aligned 
(16))) 

 



Table 1. Cont!d. 

 

 
  typedef enum      { PROFILE_START, 
PROFILE_STOP, E, X, MPI_SEND, MPI_RECV, 
MPI_ALLREDUCE, MPI_REDUCE, MPI_BARRIER, 
MPI_BCAST, MFC_PUT, MFC_PUT64, MFC_GET64, 
MFC_PUT32, MFC_GET32} event_type_t; 
 
typedef struct    { 

     double time_stamp; 
double duration; 
event_type_t type; 
unsigned long long enx; 
unsigned long long exx;  
short output_flag;   
int data[8] ALIGNED16; 
       }ALIGNED16 event_record_t; 
 

typedef struct page_tag {   
struct page_tag* next_page;   
event_record_t events[PAGE_SIZE];                                               
       }ALIGNED16 event_page_t; 

 
 

 

In addition to recording the type of event, event_record_t also records a time stamp 

and the duration of an event, address of the called SPE function and its caller (enx ,exx), 

an output flag to indicate that an event has happened and data array which includes 

destination/source, send/receive size and send/receive counts for MPI events. Effective 

addresses (enx, exx) are stored as an unsigned long long on both the SPE and PPE, so that 

they can be treated in a unified fashion no matter if the PPE code is compiled for 32-bit 

or 64-bit execution. One event record uses 80 bytes in memory.  

A single buffer, or event page, is defined by event_page_t. The size of a page was set 

to be 64 in our testing (using 5,120 bytes). A pointer to the next page to use is a part of 

event_page_t in case the current page fills up. Contrary to the SPE, which has two event 

pages, the PPE allocates a far greater number of event pages. For our analysis on the 

PowerXCell 8i based hybrid cluster, the PPE allocates 10,000 event pages per SPE giving 

a total PPE memory footprint of 400 MiB (=8!10,000!64!80). However, in our PS3 

benchmarks we had to limit the PPE memory allocation to less than 200 MB due to 20 

times less PPE addressable memory in PS3. In fact, we have observed that as long as 

enough PPE memory is reserved, the performance of the profiler is not affected. 

 

 

3.2. Implementation 

CML based applications first start on the PPEs, which subsequently launch code on the 

SPEs. When the profiler is enabled, an instrumented SPE program, once launched, 

immediately invokes an allocation function on the PPE, using the CML’s RPC 

mechanism, for event pages in main memory. Each SPE is returned the base address of 

the reserved memory via the same RPC mechanism. Before a SPE proceeds with actual 

application execution, it allocates two event buffers in its LS. However, this allocation is 

much smaller than its counterpart in main memory due to the limited size of the LS. In 



our tests the profiler statically allocates only two small event buffers of size 5,120 bytes, 

which holds up to 64 events, in SPE memory. Apart from the 10 KiB required for the two 

buffers, the profiler code requires less than an additional 2 KiB in LS but is dependent on 

the actual number of CML functions used by an application. This is ~30,000 times 

smaller than the memory used by our profiler in the main memory of the PPE of a 

PowerXCell 8i. 

 Profiler initialization is followed by the execution of the actual MPI application. 

Throughout the application run, the instrumented functions are called to record events. 

The instrumented operations, as provided by the profiler, create event logs. For instance, 

an SPE-to-SPE message-passing request invokes the corresponding instrumented MPI 

communication operation, which populates the event data structure with the relevant 

information, e.g., type, source/target, size of the message, and secondly calls the 

corresponding PMPI routine, which is implemented by CML, to send the actual message. 

The profiler library provides similar instrumented functions to profile other events 

including DMA operations and SPE function call activities.  

SPE LS memory is limited to 256 KB. If it were to be filled with trace data, it would 

inhibit the execution of the SPE code. In order to circumvent this possibility, we use a 

double-buffering approach [13] to log trace events. Instead of continuously pushing 

events to a dynamically increasing allocation in LS, SPU writes profile event logs as they 

appear to one of the two small buffers allocated during profiler initialization. Once the 

buffer being used is full, previous buffer-dump operation is checked for completion (Step 

1 in Fig. 1), by using mfc_write_tag_mask and mfc_read_tag_status_al, in order to avoid 

overwriting data being transferred. If the preceding dump has been completed, a non-

blocking DMA (mfc_put) is issued to transfer the buffer to main memory (Step 2 in Fig. 

1). Each SPE sends the data to a privately reserved address, which it determines by using 

the memory base address received through the RPC mechanism during initialization, its 

local rank and number of previous dumps it has performed up to then. The SPE also 

switches the trace buffers and uses the available buffer to record new events (Step 3 in 

Fig. 1). Meanwhile, the SPE execution continues without interruption as a non-blocking 

DMA is used. Once the second buffer is filled, the SPE switches buffers again and 

continues with recording events to the first buffer as it issues a DMA transfer (mfc_put) 

to dump the second buffer to the end of the preceding dump in the main memory (Step 4 

in Fig. 1). If the speed of event generation is faster than the time taken to transfer a single 

LS buffer to main memory then the application execution will pause. In such a case the 

size of the LS buffers can be increased but clearly at a reduction in the size of the LS 

store available to the application. 

The double-buffering implementation not only overlaps data dumping with program 

execution, but also gives the capability of logging in excess of 10
4
 times more events than 

the LS could have stored by using just two small buffers, and leaves more LS available 

for program and data in each SPE. 

Upon the termination of tracing, the SPE program dumps the last buffer, regardless of 

how full it is, to main memory. Once all of the SPEs terminate the PPE writes the profile 

data from main memory to several files, one per SPE, which contains the events that are 

ordered in terms of their time of occurrence. The output files can be post-processed for 

numerous performance analysis studies. 

 

 

 



4. Results 

In this section, we first provide detailed analysis of the overhead incurred by the profiling 

activity on a single Cell BE processor of the PS3. Secondly, we compare the overhead on 

a single PowerXCell 8i to that on Cell BE and finally delineate cluster-wide use of the 

profiler. 

Three applications were chosen to both quantify the overheads of the profiler use and 

also to illustrate its usefulness. The first application is Sweep3D, which solves a single-

group time-dependent discrete ordinates neutron-transport problem. It processes a regular 

three-dimensional data grid, which is partitioned onto a logical two-dimensional 

processor array. Its computation consists of a succession of 3D wave fronts (sweeps), in 

which each processor receives boundary data from upstream neighbors, performs a 

computation on its local sub-grid, and produces boundaries for downstream neighbors. 

All communications use MPI to transfer boundary data to neighboring processors. 

The second application is molecular-dynamics (MD) [14]. The MD simulation 

follows the time evolution of the positions of N atoms by solving coupled ordinary 

differential equations. For parallelization, the MD code uses a 3-D spatial domain that is 

partitioned in all three dimensions into P sub-grids of equal volume. Each step in the 

simulation requires the processing of the local sub-grid as well as boundary exchanges in 

each of 6 neighboring directions (i.e. the lower and higher neighbor subsystems in the x, 

y and z directions). 

The third application is a lattice Boltzmann (LB) method for fluid flow simulations. 

The cellular-automata like application represents fluid by a density function on of the 

grid points on a regular 3D lattice [10]. LB exhibits the same 3D communication pattern 

as for MD where each time step involves DF updates and inter-sub-grid density 

migrations. 

 

 

4.1. Performance Overhead Analysis 

In effect, the performance overhead of the profiler is dependent on the application as the 

mixture of communication and computation operations vary from code to code. Therefore 

in this subsection we use an overhead metric by considering a worst-case scenario by 

using a kernel application containing only communication calls and no computation. 

Additionally, by executing the kernel on a single Cell processor we ensure that only fast 

on-chip communications over the EIB are used. The kernel application simply contains 

the communication pattern of the Sweep3D application thus resulting in a maximum rate 

of event generation. We provide the results first on Cell BE and second on PowerXCell 8i 

in the remainder of this subsection. 

 

 

4.1.1.  Cell BE  

In order to quantify the profiling overhead we have performed a suite of tests on the Cell 

BE of the PS3, which represents typical node of our target cluster.  

An equal number of MPI send and receive calls, using a fixed size of 600 doubles 

(4,800 bytes), for the 6 functional SPEs on the single Cell BE of the PS3 were used for 

the results shown in Fig. 2. Fig. 2(a) shows the average overhead for each profiler call as 

a function of the number of events and Fig. 2(b) shows the slowdown when varying the 



number of events (the x-axis shows the logarithm of the number of events). It can be seen 

that the average time required to record a single event is less than 6.3 µs. This 

corresponds to a slowdown of a factor of 6.8 for large numbers of events as shown in Fig. 

2(b).  

 

 

 
                (a) Average cost per profiler call                                          (b) Slowdown due to the profiler 

Fig. 2. Performance overheads of the profiler (6 SPE run on a single Cell BE). 
 

 

In order to quantify the effect of message size on profiling overhead, we have 

performed benchmarks on the Cell BE, and the results are shown in Fig. 3. Here, we fix 

the event count at 36,000, which is the point where saturation starts in Fig. 2(b), and keep 

the buffer size at 5 KiB while varying the sizes of the sent/received messages. 

 

 

 

                (a) Average cost per profiler call                                          (b) Slowdown due to the profiler 

      Fig. 3. Performance overheads of the profiler for varying message sizes (6 SPE run on a single Cell BE). 
 

 



Fig. 3(a) shows that the smallest per profiler call overhead is less than 5.6 µs for 12.5 

KiB sized messages, whereas Fig. 3(b) shows 4! slowdown factor. In comparison to Fig. 

2, which used 4,800-bytes messages, profiler shows a better performance for 12.5 KiB 

messages. This can be attributed to the fact that larger transfers take longer time to 

complete, which is overlapped by keeping record of profile events, thereby reducing the 

profiler overhead.  

 

 

 

                 (a) Slowdown in worst-case kernel                                         (b) Slowdown in MD application 

               Fig. 4. Performance overhead of the profiler for varying SPE buffer sizes on the Cell BE. 
 

 

In Fig. 4, we study the effect of changing the sizes of the double buffers reserved for 

profile events at SPEs of the Cell BE processor. In Fig. 4(a), we fix the event count at the 

saturation point of Fig. 2(b), i.e. 36,000, the message size at 12.5 KiB and vary the buffer 

size. It is observed that increasing the buffer size decreases the slowdown factor to as low 

as 3.7. As the buffer size at SPE increases, it takes less DMA transfers to PPE to dump 

the filled buffers, thereby increasing the performance of the profiler. However, it should 

be noted that there is a trade off between increasing the buffer size to achieve better 

profiler performance and the application performance itself because of the limited local 

store of SPEs. In selecting the buffer size, the memory requirements of application for its 

instructions and data should also be considered.  

In order to quantify the profiling overhead for a typical scientific application, we port 

our parallel molecular-dynamics (MD) code [14] to PS3 using CML for handling MPI 

operations. Fig. 4(b) shows the overhead incurred by profiling of the message passing 

events of the MD application on a single PS3. The MD application implements a 

velocity-Verlet scheme, and calls several small functions at each time step for calculating 

atomic positions and velocities besides communication functions. Therefore, in Fig. 4(b), 

we turn off the function entry/exit tracing feature of the profiler in order to analyze MPI 

calls only, which are mainly for exchanging boundary-atom information. The results are 

the averages over a 100-time step simulation. Similar to Fig. 4(a), increasing the buffer 

size decreases profiling overhead. However, it should be noted that the y-axis of Fig. 4(b) 

is in percentages, i.e., profiler overhead is less than 0.5% for 10 KiB buffers. In effect, 

the cost of a single profiler call is less than 0.3 µs when 10 KiB buffers are used. The 



MPI messages in the benchmark shown in Fig. 4(b) are on-chip communications and use 

the EIB of the Cell processor, which is much faster in comparison to current high 

performance computing interconnects. Therefore in a cluster-wide analysis of an MPI-

centric scientific application, the overhead incurred by logging MPI events will be 

extremely low. 

 

 

4.1.2.  PowerXCell 8i 

Here, we compare the overhead of the profiler on PowerXCell 8i to that on Cell BE 

before we proceed with PowerXCell 8i based cluster-wide experiments in the next 

subsection. 

The overhead evaluation benchmark we described in the experiment of Fig. 2 is 

repeated on 8 SPEs of a single PowerXCell 8i processor, and the results are shown in Fig. 

5. Fig. 5(a) shows that the average time required to record a single event is less than 3.2 

µs and slowdown factor rises up to 4.2 for larger numbers of events as shown in Fig. 

5(b). Recall however that intra-cell communications take full advantage of the EIB which 

has a total bandwidth of 204.8 GB/s. Intra-cell communications using CML actually 

achieve a bandwidth of ~23 GB/s and latency of ~0.3 µs as shown in Table 2. And hence 

a SPE-to-SPE message of size 4,800 bytes takes less than 1 µs within a single Cell.  

 

 
            (a) Average cost per profiler call                                            (b) Slowdown due to the profiler 

                          Fig. 5. Performance overheads of the profiler (8 SPE run on a single PowerXCell 8i). 
 

 

It should be noted that the x-axis is linear in Fig. 5 as opposed to the logarithmic scale 

in Fig. 2. This is because the saturation of slowdown factor happens faster in comparison 

to Cell BE benchmark. The drop down in the average cost per profiler call and the 

slowdown factor in Fig. 5 in comparison to Fig. 2 can be explained by the fact that the 

Linux kernel in Cell BE of PS3 is running on top of a hypervisor which uses one SPE and 

also the EIB. On the PS3, the SPUs are hidden behind the hypervisor and every access 

happens in cooperation with the hypervisor. As a result writing to the local store or 

shuttling messages results in writing into kernel memory that represents the local store, 

which affects I/O of a given process and incurs additional overhead. 



For a typical application running on a cluster of Cells, or on a hybrid processor 

configuration like Roadrunner, SPE-to-SPE communications can be significantly more 

costly than the ones considered in the worst-case discussed above. For instance, on 

Roadrunner, communications between SPEs on different nodes have a latency of over 

11.7 µs at small message bandwidth of 161 MB/s. Therefore, in practice, the profiling 

overhead is much lower due to the increasing cost of communications as demonstrated in 

Fig. 4(b). 

 

 

4.2. Cluster-wide Profiling 

In this subsection we illustrate the usefulness of our profiling implementation for LB, 

MD and Sweep3D applications. We perform our tests on 8 nodes (32 SPEs per node) of a 

Roadrunner-like PowerXCell 8i based cluster. 

 

 

4.2.1.  Communication analysis 

The information that is generated by the profiler is analyzed off-line. One log-file is 

generated for each SPE used by the application. Fig. 6 shows an example of the SPE-to-

SPE communication pattern of the original Sweep3D code.  

 

 
Fig. 6. Communication pattern of the original Sweep3D. 

 

 

In Fig. 6, a larger square surrounded by thick lines and denoted by a node number, 

which contains 4!4 small squares, represents a tri-blade in the cluster. Each smaller 

square represents one Cell processor with 8 SPEs. The vertical and horizontal axes 

represent the sender and receiver SPE MPI ranks, and a colored pixel on the graph 

indicates a pair of communicating SPEs. The pixels are color coded to distinguish intra-

node (blue) and inter-node (red) communications respectively. 



The decomposition of Sweep3D’s global grid onto a logical 2-D processor array can 

be seen in Fig. 6. Each processor communicates with its neighbor in the logical x and y 

directions. For a 256 processor run, the 2-D processor array consists of 16!16 SPE 

processors. Each processor communicates with its x neighbors (±1) as illustrated by the 

two sub-diagonals, and with its y neighbors (±16) indicated by the outermost two off-

diagonals. Message passing for the two x neighbors is performed on the same chip 

through high-bandwidth (25.6 GB/s) EIB; whereas communication with the y neighbors 

corresponds to 1 message passing to another SPE residing within the same node but on 

the other Opteron and performed over PCIe via DaCS; and 1 message passing to an SPE 

on another node which adds InfiniBand in the path. These different inter-SPE 

communications incur different latency and bandwidth costs as shown in Table 2, which 

shows both the latency and bandwidth measured by ping-pong communication tests for 

CML.  

 
Table 2. CML point-to-point performance. 

Configuration Latency Bandwidth 

Same Cell 0.272 µs 22,994.2 MB/s 

Same node 0.825 µs 4,281.3  MB/s 

Different nodes 11.771 µs 161.2  MB/s 

 

The high latency of inter-node communication in comparison to intra-cell 

communication stems from the involvement of PPEs and Opterons in the former. To 

achieve higher performance, parallel algorithms should be designed to exploit the low 

latency and high bandwidth of EIB connecting intra-cell SPEs and avoid inter-node 

communication wherever possible. Fig. 7 shows the communication pattern of a modified 

version of Sweep3D, which performs much of the message passing activity over the EIB. 

 

 

Fig. 7. Communication pattern of the modified Sweep3D. 



In the modified version of Sweep3D, one SPE of each Cell acts as a root and 

exclusively handles inter-node message passing by gathering messages from the other 

SPEs on the same chip and sending it to the root on the destination Cell. This reduces the 

number of inter-cell messages significantly and promises an increase in performance. 

Fig. 8 shows the communication pattern of MD for 256 SPE run. The logical 

arrangement of processors is in an 8!8!4 processor array. Each SPE performs two intra-

cell communications with x neighbors. Communications to y neighbors is comparably 

slower with half of the SPEs requiring inter-node communications. For example, in the 

first node, SPEs 1–8 and SPEs 25–32 have one of their y neighbors in the next node, 

while for SPEs 9-24 the communications to y neighbors only involves intra-node 

communications. For all SPEs, message passing with z neighbors is inter-node 

communication with a high communication cost. This suggests a possible optimization, 

to increase the number of communications over the EIB, as with Sweep3D. 

 

 

 
Fig. 8. Communication pattern of MD. 

 

 

The volume of messages in MD is fairly regular. However, for applications where 

message send/receive activities and message sizes vary, heavier communication paths 

should be paid more attention. This is demonstrated with another application—LBM. 

LBM and MD have the same 3D communication pattern, however for LBM, some 

message passing events are an order-of-magnitude smaller than the others. Therefore, in 

Fig. 9, instead of plotting all communications, we have drawn only heavier 

communications. 

 

 



 

Fig. 9. Heavy communications of LB. 

 

 

Fig. 9 has equal numbers of blue and red dots, indicating that 50% of message passing 

activity is inter-node. The other half of the communication is intra-node, of which 1/3 

happens among SPEs on different Cells of the node. Therefore, only 1/3 of heavier 

communication is taking advantage of the fast EIB. This suggests that LBM suffers a 

larger communication cost in comparison with MD and that there is more room for 

optimization through the rearrangement of messages. 

As a matter of fact, event data structure as described in Section 3.1 has enough data to 

provide finer details on message passing events. For example inter-SPE and/or SPE-to-

PPE communications can be analyzed in finer detail. Function use, duration, type of 

message passing activity, size of the message, type of data being sent (and/or received), 

count of a certain data type, and source/destination, can be analyzed to provide more 

insight into the program flow. As we can extract point-to-point communication matrix 

from an application execution, it is also possible to automatically identify the 

communication pattern by measuring the degree of match between point-to-point 

communication matrix and predefined communication templates for regularly occurring 

communication patterns in scientific applications [15]. 

 

 

4.2.2.  Call-stack analysis 

The profiler library can also keep track of function entry and exits. This sub-subsection 

illustrates the use of this functionality by a call-stack analysis as another use of our 

profiler.  



Fig. 10 shows the function call graph for the execution at the first SPE of a 256-SPE 

run for LB code. Instrumentation for 10 iterations is visualized and only a portion of call 

graph is provided for the clarity of presentation. The node shown as the root is the main 

function, which calls collision, streaming and communication functions once during 

every iteration. The nodes for these 3 functions include the source file name and the 

source code line information, which are looked up from a symbol table during post-

processing. The node, which calls the MPI_SEND/MPI_RECEIVE implementation of 

CML, represent calls to the communication functions. Its children nodes show 

source/destination and data count of the message in parenthesis. The edges of the graph 

are marked with the number of times a particular event is observed. For instance, the 

node MPI_SEND(0,56,132) represents SPE 0 sends a message to SPE 56 of 132 bytes 

and it has occurred 10 times during the profiling.  

 

 

Fig. 10. Function call graph for LB. 

 

 

The instrumentation is also done for functions expanded inline in other functions. The 

profiling calls indicate where the inline function is entered and exited. This requires that 

addressable versions of such functions must be available. A function may be given the 

attribute no_instrument_function, in which case this instrumentation will not be done. 

This can be used, for example, for high priority interrupt routines, and any function from 

which the profiling functions cannot safely be called, for example signal handlers. 

The function call graph provides insight into program execution on a particular SPE 

on a cluster contributing to optimizations at the SPE level. In Fig. 10, we have weighted 

the edges with function call numbers. Instead, operation completion time could be used 

as an alternative for weighting as the profiler keeps durations of events as well. A call 

graph can be used to identify bottlenecks of performance at the SPE level and shed a light 

on required algorithm modifications for improvement. 

 

 

5. Conclusions 

We have developed a low-memory-footprint (12 KiB of local store), minimally intrusive 

profiling library for parallel applications running on clusters of Cell processors. Our 

library overlaps computations and DMA transfers to reduce application perturbation and 

efficiently utilizes the small amount of SPE local store available on Cell processors. 

We have analyzed the performance of our profiler on the Cell BE processor of a 

PlayStation3 and explored profiler performance for varying design and application 

specific parameters, such as buffer and message size. We have used our profiler library to 

analyze the performance of parallel scientific applications that run across multiple Cell 

processors, Cell blades, and cluster nodes. Inter-blade communication analysis for 

Sweep3D has shown how communication structure can affect application performance. 

 



We have ported two additional applications, LB and MD, to a hybrid Opteron+Cell 

cluster, and our profiler data suggests possible optimization opportunities. In order to 

demonstrate other uses of our library, we have analyzed the function-call pattern of a 

single SPE’s program flow and used that to determine performance bottlenecks on the 

level of a SPE core. 

While our study demonstrates high-speed, low-memory-overhead profiling for 

clusters augmented with Cell processors, it is certainly possible to optimize the profiler to 

further reduce its profiling cost and memory footprint. For example, the various types of 

profile events have different memory requirements (e.g., call-stack address records use 

only 16 bytes out of the 80 bytes allocated for the general event type). Therefore, 

restructuring the data types to be event-specific and adding compile-time options to 

customize the desired performance report may result in lower intrusion to program flow 

and reduce the post-processing effort for profile data. 
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