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Simulation-size effect in evaluating the melting temperature of material is studied systematically by combining
thermodynamic integration (TI) based on first-principles molecular-dynamics (FPMD) simulations and machine
learning. Since the numerical integration to determine the free energies of two different phases as a function of
temperature is very time consuming, the FPMD-based TI method has only been applied to small systems, i.e.,
less than 100 atoms. To accelerate the numerical integration, we here construct an interatomic potential based on
the artificial neural-network (ANN) method, which retains the first-principles accuracy at a significantly lower
computational cost. The free energies of the solid and liquid phases of rubidium are accurately obtained by the
ANN potential, where its weight parameters are optimized to reproduce FPMD results. The ANN results reveal
a significant size dependence up to 500 atoms.
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I. INTRODUCTION

Phase transition plays an important role in a wide range
of scientific and engineering problems [1]. To accurately cal-
culate the phase-transition temperature, the thermodynamic
integration (TI) method has been used by calculating the
free energies of two different phases [2–15]. Frenkel and
Ladd used the TI method to calculate the free energies of
solid phases by Monte Carlo simulation [2]. Sugino and Car
pioneered the TI method based on first-principles molecular-
dynamics (FPMD) simulations to study the solid-liquid phase
transition of Si, using density functional theory (DFT) within
the local density approximation [3]. Wang et al. calculated
the Gibbs free energies of solid and liquid carbon by the
FPMD-based TI method under pressure [8]. Their melting
curve is in good agreement with the experimental triple point
and is consistent with shockwave experiments. More recently,
Taniguchi and Tsuchiya obtained the melting curve of MgO
under high pressure by the first-principles TI method [14].
They discussed thermodynamic phase stability under the Jo-
vian core conditions. The TI method has also been used to
estimate the melting temperature of other materials such as
Al [4,5], Fe [6,15], Si [7], C [9], Mo [10], Xe [11], ZrC [12],
and Cu [13]. While the FPMD-based TI method can obtain
the transition temperature with sufficient precision, its high
computational cost severely limits the system size that can be
studied. Although it has been claimed that less than 100 atoms
are sufficient with multiple k-point sampling for Si [3,7], size

dependence of the calculated transition temperature has not
been quantified systematically. Therefore, it is important to
investigate the dependence of the calculated free energy on
the system size.

In order to handle adequate system sizes while retaining
first-principles accuracy, we here adopt an interatomic poten-
tial constructed by artificial neural-network (ANN) models
trained by FPMD simulations [16–20]. In previous studies,
ANN potentials were constructed for several materials, in-
cluding Na [17], ZnO [18], and H2O [19]. It is conceivable
that the computational cost of numerical integration in the
TI method is greatly reduced by using an ANN potential
compared with FPMD-based TI calculations, while keeping
first-principles accuracy. It then becomes possible to ob-
tain the free energy of sufficiently large systems. Recently,
Grabowski et al. have applied a machine-learning technique
to TI calculations using moment tensor potentials (MTPs) as
an intermediate reference to obtain vibrational free energies
of alloys [21], by extending a similar technique [12,13] but
using empirical potentials such as embedded atom method
(EAM). They showed that the MTP free energy is only 1
meV/atom away from the DFT free energy. In this paper,
we demonstrate that the ANN-based TI method gives the free
energy within the accuracy of less than 0.1 meV/atom in the
case of rubidium with more than 100 atoms.

It is well known that a maximum exists in the pressure-
dependent melting temperature Tm of alkali metals [22–25].
Raty et al. studied the electronic and structural transitions
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of liquid Na under pressure of up to 120 GPa using FPMD
simulations [24]. They reported that the Tm of Na drops from
1000 K at 30 GPa to room temperature at 120 GPa with
increasing pressure. Yamane et al. also performed FPMD sim-
ulations to investigate the melting curve of Na as a function
of pressure by taking into account the effects of semicore
2p electrons [25]. They showed that the maximum Tm is
900–1000 K at pressures of 20–30 GPa when only 3s electrons
are considered, while it is 1000–1100 K at 40–80 GPa when
treating both 2p and 3s electrons as the valence states. These
theoretical studies determined the pressure dependence of Tm

by directly observing the melting and crystallization phenom-
ena in FPMD simulations at a given pressure or volume, which
commonly exhibits large hysteresis to make the determination
of the transition temperature difficult. To precisely determine
the melting curve of alkali metals under pressure, it is nec-
essary to evaluate the phase-transition temperature with high
precision instead using the TI method. This study aims to (1)
show that the free energy obtained by the ANN potential is
in good agreement with that obtained by the FPMD method,
and (2) use the former to determine the dependence of the
transition temperature on the system size.

II. COMPUTATIONAL METHODS

A. Thermodynamic integration

The difference between the Helmholtz free energies of two
different systems can be evaluated by the TI method. If a sys-
tem with analytically known free energy is used as a reference
system, the absolute value of the Helmholtz free energy of
the target system can be obtained. Following previous studies
using the TI method [14], we use an Einstein solid (ES) and
an ideal gas (IG) as reference systems of the solid and liquid
phases, respectively. These reference systems have been used
not only for transition temperatures but also for the formation
energy of atomic vacancies [26] and the solubility of materials
into liquid [27].

When the interaction energy U of a system depends on a
parameter λ, we obtain the following formula:

∂F (λ)

∂λ
=

〈
∂U (λ)

∂λ

〉
NV T

, (1)

where F (λ) is the Helmholtz free energy and 〈· · ·〉NV T denotes
the canonical (NVT) ensemble average. The interaction energy
U (λ) is given by

U (λ) = λURb + (1 − λ)Uref (0 � λ � 1), (2)

where URb and Uref are the potential energies of the target (Rb)
and reference systems, respectively. By integrating both sides
of Eq. (1) with respect to λ from 0–1, we obtain

F (λ = 1) − F (λ = 0) =
∫ 1

0
〈URb − Uref〉NV T dλ, (3)

where F (λ = 1) and F (λ = 0) are the free energies of the
target and reference systems, respectively.

The free energy is obtained by numerically integrating
the right-hand side of Eq. (3) using the molecular-dynamics
(MD) method in the canonical ensemble. To ensure that the
canonical ensemble is accurately generated, an independent

FIG. 1. Structure of a simple feed-forward neural network
(FFNN). The value in the output layer (yellow) is obtained as a
function of the input values x in the input layer (cyan). There are
several hidden layers comprised of nodes. The black arrows represent
the weight parameters ωk, l

i, j . The bias weights Bl
j (cyan arrows) are

used as adjustable parameters to shift the activation function.

Nosé-Hoover chain is attached to each degree of freedom
of the system involving the ES [26], because a harmonic
oscillator does not exhibit an ergodic behavior. On the other
hand, the standard Nosé-Hoover thermostat for the entire
system is used for the liquid state.

B. Artificial neural network (ANN)

Accurate numerical integration in Eq. (3) requires a pro-
hibitively large number of MD steps, for which we use an
interatomic potential constructed by the ANN method [16].
ANN is a collection of connected nodes called artificial
neurons, which are inspired by biological neurons in brain.
The coupling strength between the artificial neurons can be
changed by training, with which ANN has an ability to
approximate any function.

The feed-forward neural network (FFNN) is the simplest
type of ANN [28,29], where only forward propagation of
information from input nodes to output nodes is allowed. It
has been applied to MD simulations for more than a decade
[30–32]. Figure 1 shows the structure of a simple FFNN
comprising an input layer, one or more hidden layers, and
an output layer. The nodes of each layer are connected to the
nodes in the adjacent layers by weight parameters, which are
determined by fitting FPMD results. The value yl

j of node j in
layer l is given by

yl
j = f l

j

(
Bl

j +
∑

i

ωk, l
i, j · yk

i

)
, (4)

where ωk, l
i, j is the weight parameter from node i in layer k to

node j (= i + 1) in layer l (= k + 1), yk
i is the input value

from the previous layer k, and Bl
j is the bias weight, which is

used as an adjustable parameter to shift the activation function
f l

j . The activation function used in this study is given by [33]

f l (x) = a tanh (bx) + cx, (5)

where a = 1.7195, b = 2/3 and c = 0.1.
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FIG. 2. Schematic of ANN potential construction [16]. The
Cartesian coordinates {Ri} (cyan) are transformed into a set of
symmetry function values Gi associated with each atom. These
values depend on the position of all atoms in the system indicated
by the gray arrows. The Gi values are used as the input values for the
FFNNs and the atomic energies Ei are obtained as the output values.
The total energy E (yellow) is obtained by summing Ei.

C. Symmetry functions

The total energy E is a sum of atomic energies [16],

E =
∑

i

Ei, (6)

where Ei is the energy associated with the ith atom.
Figure 2 shows a schematic of ANN-potential construction.
First, the Cartesian coordinates {Ri}, which are obtained by
first-principles calculations, are transformed into a set of sym-
metry function values Gi associated with each atom. These
values depend on the positions of all atoms in the system.
Next, the Gi values are used as the input values x for the FFNN
(Fig. 1), and the atomic energies Ei are obtained as the output
values. Finally, the total energy E is obtained by summing up
Ei.

Symmetry functions were introduced in Ref. [34] and have
been used for the construction of various ANN potentials
[35,36] and other machine-learning tasks [37]. We use two
types of symmetry functions: a radial function Grad

i and an
angular function Gang

i . The radial function Grad
i is given by

Grad
i =

∑
j

e−η(Ri j−Rs )2 · fc(Ri j ), (7)

where Ri j = | �Ri j | is the distance between the ith and jth
atoms, η and Rs are adjustable parameters, and fc(Ri j ) is a
cutoff function defined as

fc(Ri j ) =
{

0.5
[
cos

(πRi j

Rc

) + 1
]

(Ri j � Rc)

0 (Ri j � Rc),
(8)

where Rc is the cutoff distance. The angular function Gang
i is

expressed as

Gang
i = 21−ζ

all∑
j,k �=i

(1 + λ cos θi jk )ζ · e−η(R2
i j+R2

ik+R2
jk )

· fc(Ri j ) · fc(Rik ) · fc(Rjk ), (9)

TABLE I. Parameter of the radial function Grad
i of Eq. (7).

No. η (Å−2) Rs No. η (Å−2) Rs

1 0.003 0.0000 9 0.070 4.0000
2 0.030 0.0000 10 0.120 4.0000
3 0.070 0.0000 11 0.200 4.0000
4 0.120 0.0000 12 0.070 5.0000
5 0.200 0.0000 13 0.120 5.0000
6 0.070 3.0000 14 0.200 5.0000
7 0.120 3.0000 15 0.070 6.0000
8 0.200 3.0000 16 0.120 6.0000

17 0.200 6.0000

where θi jk is the angle between �Ri j and �Rik with λ, ζ , and η

being adjustable parameters.
Tables I and II list the parameters of the symmetry func-

tions used in this study. The cutoff distance Rc is set to 10.5 Å.
To construct ANN potentials based on the results of FPMD
simulations, we use the atomic energy network (AENET)
package [33,38].

D. FPMD simulations

FPMD simulations are carried out using a highly par-
allelized plane-wave DFT program [39], which calculates
electronic states using the projector-augmented-wave (PAW)
method [40,41]. The generalized gradient approximation
(GGA) is used for the exchange-correlation energy [42].
The plane-wave cutoff energies are 8.0 and 60.0 Ry for the
electronic pseudowave functions and pseudocharge density,
respectively. The projector functions are generated for the 5s
state of Rb. Three systems containing 54, 128, and 432 Rb
atoms in a cubic supercell are used under periodic boundary
conditions. Isothermal-isobaric (NPT) ensemble is employed
for all FPMD simulations. The pressure is set to the ambient
pressure. The equations of motion are solved via an explicit
reversible integrator [43] with a time step of 	t = 2.88 fs. The
Gaussian broadening [44] is used for the occupation numbers

TABLE II. Parameter of the angular function Gang
i of Eq. (9).

No. η (Å−2) λ ζ No. η (Å−2) λ ζ

18 0.0003 −1.0 1.0 33 0.0003 1.0 2.0
19 0.0100 −1.0 1.0 34 0.0100 1.0 2.0
20 0.0300 −1.0 1.0 35 0.0300 1.0 2.0
21 0.0500 −1.0 1.0 36 0.0500 1.0 2.0
22 0.0900 −1.0 1.0 37 0.0900 1.0 2.0
23 0.0003 1.0 1.0 38 0.0003 −1.0 2.0
24 0.0100 1.0 1.0 39 0.0100 −1.0 4.0
25 0.0300 1.0 1.0 40 0.0300 −1.0 4.0
26 0.0500 1.0 1.0 41 0.0500 −1.0 4.0
27 0.0900 1.0 1.0 42 0.0900 −1.0 4.0
28 0.0003 −1.0 2.0 43 0.0003 1.0 4.0
29 0.0100 −1.0 2.0 44 0.0100 1.0 4.0
30 0.0300 −1.0 2.0 45 0.0300 1.0 4.0
31 0.0500 −1.0 2.0 46 0.0500 1.0 4.0
32 0.0900 −1.0 2.0 47 0.0900 1.0 4.0
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FIG. 3. Temperature dependence of the volume of the 128-atom
system.

of one-electron KS states with a broadening parameter of
0.2 eV. The effect of this smearing on the TI results is
likely small, owing to the cancellation when subtracting free
energies between the solid and liquid phases.

III. RESULTS AND DISCUSSION

A. Freezing-melting hysteresis

To obtain the temperatures at which melting and crystal-
lization phenomena occur in the current model system for Rb,
we begin with the 128-atom system in the bcc crystalline state.
When the temperature is increased from 150 K in increments
of 50 K every 87 ps (30000 steps), melting occurs at 350 K.
When the temperature is decreased in the same cooling rate
as heating, the system in the liquid state crystallizes at 150 K.
Figure 3 shows the dependence of the volume on temperature.
The temperature range of this freezing-melting hysteresis
becomes smaller if longer FPMD simulations are carried out.
However, it is not possible to determine the phase-transition
temperature precisely in this way due to the long time to
perform such simulations.

B. Construction of ANN potentials

We construct the ANN potentials using the numerical data
from the FPMD simulations for the 54-, 128-, and 432-atom
systems. For both the liquid and solid phases at different
temperatures, the respective ANN potentials are obtained by
fitting the FFNN weight parameters to model Ei in Eq. (6)
to reproduce the energies of 5000 ∼ 20000 atomic configu-
rations. We randomly choose 10% of the reference data as
the test data (test set) to detect overfitting, i.e., determining
whether the ANN potential fits the test set as well as the
remaining 90% of the data (training set) used to construct the
ANN potential. The Levenberg-Marquardt method [45–47] is
used for the fitting algorithm, which is highly parallelized in
the reference-data space and scales linearly with the number
of reference structures. Table III shows the root-mean-square
errors (RMSEs) of the energies obtained by the ANN poten-
tials for the training and test sets. The results show that the
RMSEs are at most 0.03 meV/atom, corresponding to a small

TABLE III. Root-mean-square errors (RMSEs) of the energies
obtained by the ANN potentials for the training and test sets.

RMSE [meV/atom]

Solid Liquid

No. of atoms T [K] Training set Test set Training set Test set

54 220 0.0140 0.0155 0.0069 0.0072
240 0.0267 0.0287 0.0078 0.0079

128 200 0.0086 0.0086 0.0055 0.0059
250 0.0178 0.0184 0.0092 0.0095
300 0.0082 0.0083 0.0047 0.0051

250 250 0.0023 0.0025 0.0022 0.0025
300 0.0023 0.0030 0.0024 0.0025

432 250 0.0015 0.0017 0.0015 0.0017
300 0.0016 0.0017 0.0016 0.0018

temperature of 0.3 K, even for the test set. Namely, the ANN
potentials are constructed accurately enough to estimate the
melting temperature.

In Fig. 4, the total energies predicted by the ANN potentials
are compared with their corresponding FPMD reference ener-
gies for the training and test sets in the case of the solid phase
at 250 K of the 128-atom system. The inset in Fig. 4 shows
the difference between the two energies. The small 	E value
demonstrates that the ANN potentials reproduce the FPMD
reference data very well.

To demonstrate the accuracy of the ANN potentials in MD
simulations, we calculate the radial distribution function g(r),
as shown in Fig. 5, where the solid and dotted lines represent
the results obtained by the FPMD simulations and the ANN
potentials, respectively. The results show that, in the 54-, 128-,
250-, and 432-atom systems, the g(r)′s for both the solid and
liquid phases obtained by the ANN potentials are in good
agreement with those calculated from the FPMD simulations.
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N
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V
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FIG. 4. Comparison of the ANN potential energies EANN and the
corresponding FPMD reference energies EFPMD for the training set
(red open circles) and the test set (black dots) in the case of the
solid phase at 250 K of the 128-atom system. The inset shows the
difference, 	E = EANN–EFPMD, as a function of EFPMD.
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FIG. 5. Radial distribution functions g(r) obtained for the solid
(a) and liquid (b) phases at 220 K of the 54-atom system; solid
(c) and liquid (d) phases at 250 K of the 128-atom system;
solid (e) and liquid (f) phases at 250 K of the 250-atom system; and
solid (g) and liquid (h) phases at 250 K of the 432-atom system.
The solid and dotted lines represent the g(r) calculated by FPMD
simulations and ANN potentials, respectively. The g(r)’s obtained
by the ANN potentials are in good agreement with those obtained by
the FPMD simulations.

From these results, we expect that MD simulations using
the ANN potentials have the same quality as the FPMD
simulations regarding structural properties.

C. Thermodynamic integration (TI)

To confirm whether the ANN potentials can be applied
to obtain the thermodynamic quantities, TI calculations are
carried out for the solid and liquid phases at 220 K of
the 54-atom system using the MD simulations based on the
ANN potentials. The results are compared with those by
the FPMD simulations. For the solid phase, the ES is used
as the reference system. The potential energy UES is given by

UES({ri}) = 1

2

N∑
i=1

mω2|ri − ri0|2, (10)

where ri0 is the equilibrium position of the ith atom. The
frequency ω = 7.4 (ps−1) is determined from the peak posi-
tion of the Fourier transform of the velocity autocorrelation
function of Rb atoms. To evaluate the Helmholtz free energy
FSol of the solid phase, numerical integration of the right-hand
side of Eq. (3) is performed by MD simulation for at least
58 ps (20000 steps) using 12 different λ values: 0, 0.3690,
0.6019, 0.7488, 0.8415, 0.9000, 0.9369, 0.9602, 0.9749,
0.9842, 0.9900, and 1. Figure 6(a) shows 〈URb − U 〉ESNV T
as a function of λ, where the circles and crosses represent
the results obtained by the FPMD simulations and the ANN
potentials, respectively. It is seen that both results are in
good agreement with each other. The difference between the
Helmholtz free energies is only 	Fdirect = –0.45 meV/atom,
which is sufficiently small for the evaluation of the melting
temperature Tm as discussed below. More precisely, the dif-
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FIG. 6. λ dependence of (a) 〈URb − UES〉NV T for the solid phase
and (b) 〈URb − USC〉NV T for the liquid phase at 220 K of the 54-atom
system. The circles and crosses represent the results obtained by the
FPMD simulations and the ANN potentials, respectively.

ference corresponds to the temperature of approximately 4 K;
hence, we can discuss Tm within this accuracy.

For the liquid phase, the ideal gas is used as the reference
system, whose potential energy UIG is zero. The problem in
numerically integrating the right-hand side of Eq. (3) for the
liquid phase is that the distance between atoms becomes very
small when λ approaches zero, which makes the electronic-
structure calculations impossible to perform. To avoid short
atomic distances in the FPMD simulations, we introduce a
soft-core (SC) potential defined by

USC({ri}) =
N∑

i< j

ε

(
σ

ri j

)n

, (11)

where ε = 5.0 × 10−3 hartree, σ = 8.0 bohr, and n = 12,
which are determined to make the first peak of g(r) similar
to that in the FPMD simulations. Therefore, the Helmholtz
free energy Fliq of the liquid phase is obtained by two TIs:
first from the ideal gas to the soft-core liquid, then from
the soft-core liquid to the actual liquid. The former can be
performed easily because the computational cost required
for simulations of the soft-core liquid is very small. For
the latter, we performed MD simulation for at least 58 ps
(20000 steps) using 11 different λ values from zero to one
with intervals of 0.1. As shown in Fig. 6(b), the λ depen-
dence of 〈URb − USC〉NV T calculated by the ANN potentials
agrees very well with that obtained by the FPMD simulations.
The difference between the Helmholtz free energies is only
	Fdirect = 0.17 meV/atom, which is again sufficiently small.

The free energies reported in this paper were obtained
using at least 20000 MD steps and more than 10 different
λ values to achieve high numerical accuracies. Since these
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TABLE IV. Free-energy difference, 	FTI = FFPMD–FANN, be-
tween TI calculations using DFT-based FPMD and ANN potential.

	FTI[meV/atom]

No. of atoms T [K] Solid Liquid

54 220 −0.42 0.17
128 250 −0.06 −0.02
250 250 −0.05 −0.03
432 250 −0.04 −0.04

computations using FPMD simulations are extremely time
consuming for over 100 atoms, we have employed the ANN
potentials instead to study the size effects on the melting
temperature.

Reliability of the free energies thus calculated for more
than 100 atoms was confirmed by estimating the free-energy
difference, 	FTI = FFPMD–FANN, using TI calculations with
DFT-based FPMD and ANN potential, as was done in
Refs. [12,13,21]. For this purpose, much shorter MD runs
and smaller number of λ values are expected to be sufficient,
since 	U = UFPMD–UANN is very small as shown in Fig. 4.
We found that 3000 MD steps and at most five different
λ values are sufficient for TI within an error of less than
0.01 meV/atom. The results are shown in Table IV. For the
54-atom system, 	FTI values obtained for the solid and liquid
states were consistent with 	Fdirect described above. It is seen
that |	FTI| of the systems with more than 100 atoms are less
than 0.1 meV/atom, corresponding to a temperature within
1 K.

D. Size effects on melting temperature

As validated in the previous subsection, the TI method
using ANN potentials is efficient and reliable. The ANN
potentials constructed for the 54-, 128-, 250-, and 432-atom
systems in Sec. IIIB are used in the TI method to obtain
the Helmholtz free energy of the solid (FSol) and liquid (Fliq)
phases of the respective systems. Figure 7 shows the free-
energy difference 	F (= Fliq − FSol ) for the three systems as
a function of temperature (solid symbols). From this figure, Tm

is estimated to be 199 ± 4, 251 ± 4, 275 ± 4, and 283 ± 4 K
for the 54-, 128-, 250-, and 432-atom systems, respectively,
as shown in Fig. 8 (solid circles). Since Tm is systematically
higher for larger systems, it is important to carefully consider
the dependence of Tm on the system size. Using an asymptotic
expansion of Tm up to the first-order term of 1/N to fit the data,

Tm = T ∞
m − b

N
, (12)

we estimate the transition temperature of bulk Rb to be T ∞
m =

293 ± 4 K, which is comparable to the experimental value
of 312 K [48]. The agreement is satisfactory considering
that GGA was used in our FPMD simulations, and that the
quantum corrections for the motion of atomic nuclei were not
included. It has been shown that GGA provides lower melting
temperatures than experiments [13], which is consistent with
our results shown above.

The open circles in Fig. 7 show the 	F obtained for
the 432-atom system using the ANN potential constructed

200 250 300
T [K]

-4

-2

0

2

4

ΔF
 [m

eV
/a

to
m

]

 432
 250
 128
   54
 432 with NN128

N

FIG. 7. Temperature dependence of 	F (= Fliq − FSol ). The
solid up-pointing triangles, solid squares, solid down-pointing trian-
gles, and solid circles represent the results for the 54-, 128-, 250-,
and 432-atom systems, respectively, obtained by the ANN potentials
constructed for the respective systems. The open circles represent the
results for the 432-atom system using the ANN potential constructed
with 128 atoms (NN128).

with 128 atoms. These values are not close to those for the
432-atom system (solid circles), but instead close to those for
the 128-atom system (solid squares) using the ANN potential
constructed with the same number of atoms. The Tm is esti-
mated to be 255 ± 4 K as shown by the open circle in Fig. 8,
which is almost the same as Tm for the 128-atom system,
despite the result using 432 atoms. Further, Tm of a larger
system containing 1,024 atoms was estimated using ANN
potentials constructed with 128 and 432 atoms, as shown by
black and red open diamonds, respectively, in Fig. 8. The two
Tm values are close to those at which the respective ANN
potentials are constructed (solid black square and solid red
circle). These findings clearly indicate that it is important for
the precise evaluation of Tm by the TI method to construct
the ANN potential using the same number of atoms as that

0 200 400 600 800 1000
N

150

200

250

300

T m
 [K

]

FIG. 8. Melting temperature Tm as a function of the number of
atoms N . The symbols represent Tm values corresponding to those
in Fig. 7. The black and red open diamonds represent the results for
N = 1024 but using ANN potentials constructed with 128 and 432
atoms, respectively. The line represents the best fit, Tm = a − b/N ,
with a = 293.4 and b = 5139.
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in a target system up to at least 432 atoms. Since the fitted
weight parameters in an ANN potential learn the periodicity
of the system used in the training, the results obtained by the
ANN potential would reflect the same periodicity, irrespective
of the size of system. The size dependence likely arises from
spatially extended correlations in QMD simulations, which
will be investigated in future work.

We have investigated the effects of semicore 4p electrons
on the free energy for the 128-atom system. The difference
between the free energies of solid and liquid phases calculated
with and without 4p electrons are approximately 0.6 and
0.1 meV/atom, respectively, at 250 K. The results indicate
that the melting temperature is affected only by several kelvins
by the inclusion of 4p electrons.

Finally, we study the influence of k-point sampling in the
Brillouin zone. We have calculated the free energy of the
liquid state at 300 K for the 54-atoms system using 2 × 2
× 2 k points, which corresponds to the system size of 432
atoms. The free energy decreases by 1.3 meV/atom, which
is much smaller than the difference between the free energies
of the 54- and 432-atom systems, 6.3 meV/atom, obtained
by � point only. These results indicate that the accurate esti-
mation of the melting temperature requires direct simulations
of larger systems, and merely increasing the k points is not
adequate for this purpose.

IV. CONCLUSION

We have demonstrated that the TI method using ANN
potentials based on FPMD simulations is very efficient in
obtaining the Helmholtz free energies of alkali metals with
high accuracy and low computational cost. We have shown
that the melting temperature becomes higher as the number
of atoms in the system is increased, which suggests that
size dependence should be carefully taken into account in
TI calculations. Furthermore, we found that the estimated
melting temperature of bulk material agrees well with the
experimental value.
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