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Abstract
We have developed a metascalable (or ‘design once, scale on new architectures’) parallel
application-development framework for first-principles based simulations of
nano-mechano-chemical processes on emerging petaflops architectures based on spatiotemporal
data locality principles. The framework consists of (1) an embedded divide-and-conquer (EDC)
algorithmic framework based on spatial locality to design linear-scaling algorithms, (2) a
space–time-ensemble parallel (STEP) approach based on temporal locality to predict long-time
dynamics, and (3) a tunable hierarchical cellular decomposition (HCD) parallelization
framework to map these scalable algorithms onto hardware. The EDC-STEP-HCD framework
exposes and expresses maximal concurrency and data locality, thereby achieving parallel
efficiency as high as 0.99 for 1.59-billion-atom reactive force field molecular dynamics (MD)
and 17.7-million-atom (1.56 trillion electronic degrees of freedom) quantum mechanical (QM)
MD in the framework of the density functional theory (DFT) on adaptive multigrids, in addition
to 201-billion-atom nonreactive MD, on 196 608 IBM BlueGene/L processors. We have also
used the framework for automated execution of adaptive hybrid DFT/MD simulation on a grid
of six supercomputers in the US and Japan, in which the number of processors changed
dynamically on demand and tasks were migrated according to unexpected faults. The paper
presents the application of the framework to the study of nanoenergetic materials:
(1) combustion of an Al/Fe2O3 thermite and (2) shock initiation and reactive nanojets at a void
in an energetic crystal.

1. Introduction

The ever-increasing capability of high-end computing plat-
forms is enabling unprecedented scales of first-principles based
simulations to predict system-level behavior of complex sys-
tems [1]. An example is large-scale molecular dynamics (MD)
simulation involving a million to a billion atoms, in which in-
teratomic forces are computed quantum mechanically to accu-
rately describe chemical reactions [2]. Such simulations can
couple chemical reactions at the atomistic scale and mechani-
cal processes at the mesoscopic scale to solve broad mechano-
chemistry problems of great societal impact such as stress cor-
rosion cracking, where chemical reactions at the crack tip are
inseparable from long-range stress fields, and the sensitivity

of high-energy-density nanomaterials, in which chemical reac-
tions sustain shock waves.

Specifically, several computing platforms offer great
promise. One is petaflops (1015 floating-point operations
per second) computers to be built in the next few
years [3, 4]. Already, the 212 992-processor IBM
BlueGene/L supercomputer at the Lawrence Livermore
National Laboratory has achieved 0.478 petaflops for solving
a linear system of equations [5]. The second platform is a
Grid of geographically distributed supercomputers [6]. For
example, the US TeraGrid connects a number of high-end
supercomputers via a high-speed optical-fiber network [7, 8].
Also promising are many-core microprocessors. Computer
industry is facing a historical shift, in which Moore’s law due to
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ever-increasing clock speeds has been subsumed by increasing
numbers of cores in microchips [4, 9]. The number of cores
per microprocessor is expected to double at each generation,
reaching a thousand in ten years. We can thus envision a
Grid of 102 parallel computing clusters, each consisting of 105

compute nodes, where each node contains 103 cores.
The many-core revolution will mark the end of the

free-ride era (i.e., legacy software will run faster on
newer chips), resulting in a dichotomy—subsiding speed-
up of conventional software and exponential speed-up of
scalable parallel applications [9]. Recent progress in high-
performance technical computing has led to key technologies
for parallel computing with portable scalability. An example
is an embedded divide-and-conquer (EDC) algorithmic
framework to design linear-scaling algorithms for broad
scientific and engineering applications (e.g. equation solvers,
constrained optimization, search, visualization, and graphs
involving massive data) based on spatiotemporal locality
principles [2, 10]. The EDC framework maximally exposes
concurrency and data locality, thereby achieving reusable
‘design once, scale on new architectures’ (or metascalable)
applications. It is expected that such metascalable algorithms
will continue to scale on future many-core architectures.
‘Seven dwarfs’ (a dwarf is an algorithmic method that captures
a pattern of computation and communication), which were first
identified by Phillip Colella of the Lawrence Berkeley National
Laboratory, have been used widely to develop scalable parallel
programming models and architectures [4]. We expect that
the EDC algorithmic framework will serve as a ‘metascalable
dwarf’ to represent broad large-scale scientific and engineering
applications.

On the advanced computing platforms mentioned above,
we will use a hierarchy of atomistic simulation methods. In
MD simulation, the system is represented by a set of N
point atoms whose trajectories are followed to study material
properties. Quantum mechanical (QM) simulation further
treats electronic wavefunctions explicitly to describe chemical
reactions. To seamlessly couple MD and QM simulations, we
have found it beneficial to introduce an intermediate layer, the
first-principles based reactive force field (ReaxFF) approach,
in which interatomic interaction adapts dynamically to the
local environment to describe chemical reactions [2, 10, 11].
The ReaxFF is trained by performing thousands of small QM
calculations.

This paper is organized as follows. Section 2 describes
metascalable computing technologies for billion-atom simu-
lations of chemical reactions based on data locality princi-
ples. First, we develop an EDC framework to design linear-
scaling algorithms for broad applications based on spatial lo-
cality. Second, we develop space–time-ensemble parallelism
(STEP) to predict long-time dynamics based on temporal lo-
cality. We also develop a tunable hierarchical cellular decom-
position (HCD) framework to map these O(N) algorithms onto
parallel computers with deep memory hierarchy. In section 3,
we discuss the application of these computational techniques
to mechano-chemical processes at the nanoscale: combustion
and shock-induced initiation of energetic materials.

2. A metascalable dwarf

2.1. Embedded divide-and-conquer (EDC) algorithmic
framework

We have designed linear-scaling algorithms for large-
scale atomistic simulations based on a unified algorithmic
framework. In the embedded divide-and-conquer (EDC)
algorithms, the physical system is divided into spatially
localized computational cells [2, 10]. These cells are
embedded in a global field that is computed efficiently with
tree-based algorithms (figure 1).

Within the EDC framework, we have designed a number
of O(N) algorithms (N is the number of atoms). For example,
we have designed a space–time multiresolution MD (MRMD)
algorithm to reduce the O(N2) complexity of the N-body
problem to O(N) [12]. MD simulation follows the trajectories
of N point atoms by numerically integrating coupled ordinary
differential equations. The hardest computation in MD
simulation is the evaluation of the long-range electrostatic
potential at N atomic positions. Since, each evaluation
involves contributions from N − 1 sources, direct summation
requires O(N2) operations. The MRMD algorithm uses
the octree-based fast multipole method (FMM) [13–15] to
reduce the computational complexity to O(N) based on spatial
locality. We also use multiresolution in time [16], where
temporal locality is utilized by computing forces from further
atoms with less frequency [14, 17].

We have also designed a fast ReaxFF (F-ReaxFF)
algorithm to solve the O(N3) variable N-charge problem in
chemically reactive MD in O(N) time [18]. To describe
chemical bond breakage and formation, the ReaxFF potential
energy is a function of the positions of atomic pairs,
triplets and quadruplets as well as the chemical bond orders
of all constituent atomic pairs [11]. To describe charge
transfer, ReaxFF uses a charge-equilibration (QEq) scheme,
in which atomic charges are determined at every MD step to
minimize the electrostatic energy with the charge-neutrality
constraint [19–21]. This variable N-charge problem amounts
to solving a dense linear system of equations, which requires
O(N3) operations. The F-ReaxFF algorithm uses the FMM
to perform the matrix–vector multiplications with O(N)
operations. It further utilizes the temporal locality of the
solutions to reduce the amortized computational cost averaged
over simulation steps to O(N). To further speed up the
solution, we use a multilevel preconditioned conjugate gradient
(MPCG) method [22]. This method splits the Coulomb
interaction matrix into far-field and near-field matrices and uses
the sparse near-field matrix as a preconditioner. The extensive
use of the sparse preconditioner enhances the data locality,
thereby increasing the parallel efficiency.

To approximately solve the exponentially complex
quantum N-body problem, we use a divide-and-conquer (DC)
density functional theory (DFT) algorithm [23–25]. The DFT
reduces the exponential complexity to O(N3), by solving Nel

one-electron problems self-consistently instead of one Nel-
electron problem (the number of electrons, Nel, is of the order
of N) [26, 27]. The DFT problem can be formulated as a
minimization of an energy functional with respect to electronic
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(a)

(b)

Figure 1. (a) Schematic diagram of embedded divide-and-conquer (EDC) algorithms. The physical space is subdivided into spatially
localized cells, with local atoms constituting subproblems, which are embedded in a global field solved with tree-based algorithms. To solve
the subproblem in domain !α in the divide-and-conquer density functional theory (DC-DFT) algorithm, coarse multigrids are used to
accelerate iterative solutions on the original real-space grid (corresponding to the grid refinement level l = 3). Fine grids are adaptively
generated near the atoms to accurately operate the ionic pseudopotentials on the electronic wavefunctions. (b) Tree-structured processor
organization in the hierarchical space–time-ensemble parallelization (STEP). An ensemble consists of B bands, each consisting of S states.
Each state in turn contains D spatial domains.

wavefunctions. In the DC-DFT algorithm, the physical space
is a union of overlapping domains (figure 1),

! = #α!α, (1)

and physical properties are computed as linear combinations
of domain properties that in turn are computed from local
electronic wavefunctions. For example, the electronic density
ρ(r) is calculated as

ρ(r) = #α pα(r)#n f (εα
n )|ψα

n (r)|2 (2)

where the support function pα(r) vanishes outside domain !α

and satisfies the sum rule, #α pα(r) = 1, and f (εα
n ) is the

Fermi distribution function corresponding to the energy εα
n of

the nth electronic wavefunction (or Kohn–Sham orbital) ψα
n (r)

in !α [24]. For DFT calculation within each domain, we
use a real-space approach based on finite differencing [28],
where iterative solutions are accelerated using the multigrid
preconditioning [29]. The multigrid is augmented with high-
resolution grids that are adaptively generated near the atoms to
accurately operate atomic pseudopotentials (figure 1) [30].

The DC-DFT algorithm has an algorithmic parameter that
controls the data locality, i.e. the depth of a buffer layer
that augments each domain to reduce the effect of artificial
domain boundaries [23–25]. Figure 2(a) shows that the
energy converges rapidly as a function of the localization
parameter. The algorithm also conserves the total energy
during MD simulation (figure 2(b)), in contrast to many
O(N) DFT algorithms that suffer energy-drift problems.
We have also validated our DC-DFT based MD simulation
against experimental data. For example, the calculated pair

distribution function of liquid rubidium in figure 2(c) agrees
well with recent x-ray diffraction data [31].

The EDC framework has also been used to develop
multiscale QM/MD simulation, in which DC-DFT calculation
is embedded within MD simulation [32]. We use an additive
hybridization scheme [33], in which the energy is a linear
combination of MD and QM energies,

EQM/MD = E system
MD + #α(Eα

QM − Eα
MD). (3)

Here, E system
MD is the MD energy of the entire system, whereas

Eα
QM and Eα

MD are the QM and MD energies of the α th
domain, respectively. The buffer layer scheme in DC-DFT
makes the accuracy of QM/MD simulation insensitive to the
location of embedded QM domains. This is essential to an
adaptive QM/MD simulation, in which a DFT calculation is
dynamically embedded only when and where high accuracy is
required [8]. We have estimated the errors in our approach by
performing QM/MD simulations with various sizes of the QM
region. For example, the maximum errors in interatomic forces
and atomic displacements are 0.01 and 0.05 au, respectively,
for Si crystal involving 70-atom DFT calculation [34].

We have applied QM/MD simulations extensively to
covalent systems [8, 35]. For metallic systems, a similar
multiscale simulation approach has been developed, in
which DFT calculation is embedded within an orbital-
free DFT (OFDFT) calculation that is in turn embedded
within MD simulation based on an embedded atom method
(EAM) [36–38].

Starting with a pioneering work by Abraham et al
[39, 40] multiscale simulations combining QM/MD and
continuum calculations have widely been applied to materials
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Figure 2. Validation of the DC-DFT algorithm. (a) Controlled convergence of the potential energy of amorphous CdSe by buffer depth (with
the domain size fixed as 11.416 bohr). (b) Energy conservation in DC-DFT based MD simulation of liquid Rb. The domain size and buffer
depth are 16.424 and 8.212 bohr, respectively. (c) Radial distribution function of liquid Rb at 350 K. The solid curve shows a 432-atom
DC-DFT based MD result, which agrees well with recent x-ray diffraction data (open circles).

research [32]. Recent progress in this field is found in a
review article [41]. A notable example is the ‘learning on
the fly’ approach, in which the interatomic potential in MD
simulation is adaptively refined during simulation to better fit
QM calculation [42].

2.2. Space–time-ensemble parallelism (STEP) for predicting
long-time dynamics

A challenging problem is to predict long-time dynamics
because of the sequential bottleneck of time. Due to temporal
locality, however, the system stays near local minimum-energy
configurations most of the time, except for rare transitions
between them. In such cases, the transition state theory (TST)
allows the reformulation of the sequential long-time dynamics
as computationally more efficient parallel search for low-
activation-barrier transition events [43–45]. We also introduce
a discrete abstraction based on graph data structures, so that
combinatorial techniques can be used for the search [45]. We
have developed a directionally heated nudged elastic band
(DH-NEB) method [46], in which an NEB consisting of a
sequence of S states [47, 48], Rs ∈ R3N (s = 0, . . . , S−1, and
R is the set of real numbers), at different temperatures searches
for transition events (figure 3):

M
d2

dt2
Rs = Fs − Mγs

d
dt

Rs , (4)

where M ∈ R3N×3N is the diagonal mass matrix and γs is a
friction coefficient. Here, the forces are defined as

Fs =






∂V
∂Rs

|⊥ + Fspr
s |‖ (1 ! s ! S − 2)

− ∂V
∂Rs

(s = 0, S − 1),
(5)

where V (R) is the interatomic potential energy, Fspr
s are

spring forces that keep the states equidistant, and ⊥ and ‖
denote respectively the projections of a 3N-element vector
perpendicular and parallel to the tangential vector connecting
the consecutive states.

We use an ensemble consisting of B bands to perform
long-time simulation in the framework of kinetic Monte Carlo

Figure 3. Schematic diagram of the directionally heated nudged
elastic band (DH-NEB) method. (a) An NEB consists of a sequence
of S states (gray parallelograms) Rs (s = 0, . . . , S − 1), where each
state consists of N atoms (spheres), i = 1, . . . , N . Corresponding
atoms in consecutive states interact via harmonic forces represented
by wavy lines. (b) Abstraction of an NEB consisting of S states
(circles) connected by harmonic forces (lines). (c) Algorithmic steps
of the DH-NEB method: thermalization, directional heating, and
quench of a band. Black solid curves represent the potential energy
surface V (R), whereas circles (with gray-scaled temperature) are the
states interconnected by harmonic forces (gray lines) to form the
band. The letters i and f mark the initial and final ends of the band.

simulation [46, 49]. Here, our space–time-ensemble parallel
(STEP) approach combines a hierarchy of concurrency, i.e.,
the number of processors is P = BSD: (1) spatial
decomposition within each state (D is the number of
spatial subsystems); (2) temporal parallelism across the
states within each band; and (3) band-ensemble parallelism
(figure 1).
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Figure 4. In tunable hierarchical cellular decomposition (HCD), the
physical volume is subdivided into spatial subsystems that are
assigned to process groups PGγ , each of which is spatially
decomposed into processes Pγ

π . Each process consists of a number of
computational cells (e.g. linked-list cells in MD or domains in
DC-DFT) of size lcell, which are traversed concurrently by threads
(denoted by dots with arrows) to compute blocks of cells. Pγ

π is
augmented with nlayer layers of cached cells from neighbor processes.

2.3. Tunable hierarchical cellular decomposition (HCD) for
mapping metascalable algorithms onto parallel computers

To map the above O(N) algorithms onto parallel computers,
we have developed a tunable hierarchical cellular decomposi-
tion (HCD) framework (figure 4) [10]. Our parallelization is
based on spatial decomposition, in which each spatial subsys-
tem is assigned to a compute node in a parallel computer. At
the finest level, EDC algorithms consist of computational cells,
such as linked-list cells in MD and domains in DC-DFT. On a
multicore–multiprocessor compute node, a block of cells is as-
signed to a thread. Furthermore, a group of spatial subsystems
is assigned to each parallel computer on a Grid of parallel com-
puters.

The hierarchy of computational cells provides an efficient
mechanism for performance optimization—we make both
the layout and size of the cells as tunable parameters
that are optimized on each computing platform. Our
EDC algorithms are implemented as hybrid MPI + OpenMP
programs, in which the numbers of MPI processes and
OpenMP threads are also tunable parameters. The HCD
framework thus exposes data locality and concurrency. We are
currently collaborating with compiler and artificial intelligence
(AI) research groups to use (1) knowledge-representation
techniques for expressing the exposed concurrency and
(2) machine-learning techniques for optimally mapping the
expressed concurrency to hardware [50].

Our parallelization framework includes load balancing
capability. For irregular data structures, the number of atoms
assigned to each processor varies significantly, and this load
imbalance degrades the parallel efficiency. Load balancing
can be stated as an optimization problem. We minimize
the load imbalance cost as well the size and the number
of messages. Our topology-preserving spatial decomposition
allows message passing to be performed in a structured way in
only six steps, so that the number of messages is minimized.

To minimize the load imbalance cost and the size of messages,
we have developed a computational space decomposition
scheme [51]. The main idea is that the computational space
shrinks in a region with high workload density, so that the
workload is uniformly distributed. The sum of load imbalance
and communication costs is minimized as a functional of
the computational space using simulated annealing. We
have found that wavelets allow compact representation of
curved partition boundaries and thus speed up the optimization
procedure [52].

2.4. Locality in massive data visualization and analysis

Data locality is also utilized for massive dataset visualization.
We use octree data structures to efficiently extract atoms within
the field of view. We then use a probabilistic approach to
remove far atoms that are occluded. We off-load these culling
tasks to a parallel computer using a hierarchical distributed
depth buffer [53], so that the graphics server is dedicated
to the rendering of a reduced subset. As a result, we have
succeeded in interactively visualizing a billion-atom dataset in
an immersive virtual environment [54].

Our visualization system is combined with various data
analysis tools. For example, we use a graph algorithm called
shortest-path circuit analysis to identify and track topological
defects in multimillion-vertex chemical bond networks, where
atoms are vertices of a graph and bonds are its edges
(figure 5) [55]. We have used this method to identify
a dislocation network created by hypervelocity impact on
ceramics (figure 5) [56–58].

2.5. Scalability test results

We have tested the scalability of our MD and QM
algorithms on a number of parallel supercomputers such
as IBM BlueGene/L, SGI Altix 3000, and AMD Opteron
cluster [2]. Figure 6(a) shows that the execution times
for the MRMD, F-ReaxFF, and DC-DFT algorithms scale
linearly with the number of atoms on all three platforms.
The largest benchmark tests include 201-billion-atom MRMD,
1.59 billion-atom F-ReaxFF MD, and 17.7-million-atom (or
1.56 trillion electronic degrees of freedom) DC-DFT based
MD simulations. The EDC algorithms expose maximal data
locality and consequently the parallel efficiency is as high as
0.99 on 196 608 processors.

We have also performed multiscale QM/MD simulation
on a Grid of six supercomputer centers in the US and
Japan [8]. To allow the number of processors to increase or
decrease at runtime, we use a hybrid Grid remote procedure
call + message passing interface Grid computing scheme.
The simulation involved 150 000 processor hours, where the
number of processors changed dynamically on demand; see
figure 6(b). Furthermore, computations were automatically
migrated between remote supercomputers due to schedules
and unexpected faults. The Grid QM/MD simulation involved
high-energy beam oxidation of silicon in the fabrication of low-
power microprocessors.
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Figure 5. Left, circuits for vertex x in a chemical bond network. Only the paths labeled a, b, and c constitute shortest-path circuits. Right,
dislocations and brittle cracks propagating to the surface in a 300-million-atom MD simulation of SiC ceramics under hypervelocity projectile
impact. Only atoms that participate in non-six-membered circuits are visualized. Here the color represents the pressure value.
(A perfect crystal has only six-membered circuits.)

(a)

(b)

Figure 6. (a) Benchmark tests of MD and QM simulations on 1920
Itanium2 processors of Altix 3000 (open symbols), 2000 Opteron
processors (solid symbols), and 196 608 BlueGene/L processors
(shaded symbols). The execution time per MD step is shown as a
function of the number of atoms for quantum mechanical MD based
on the divide-and-conquer density functional theory (DC-DFT,
circles); fast reactive force field MD (F-ReaxFF, squares); and
space–time multiresolution MD (MRMD, triangles). Lines show
ideal O(N) scaling. (b) Time evolution of the number of QM atoms
and the number of processors used for QM calculations in QM/MD
simulation on a US-Japan Grid.

3. Nano-mechano-chemistry applications

We have applied the EDC-STEP-TCD simulation framework
to study how atomistic processes determine material proper-

ties. Examples include nanoindentation on nanocomposite ma-
terials [59], oxidation of nanoenergetic materials [21], hyper-
velocity impact damage [56], fracture [60], and the interaction
of voids and nanoductility [61]. We have also studied col-
loidal [62, 63] and epitaxial [64–66] quantum dots and rods
for optoelectronic applications. In this section, we illustrate
the use of chemically reactive MD simulations for the study of
nano-mechano-chemical processes in energetic materials.

3.1. Combustion of nanoenergetic materials

Chemical reactions in energetic materials with nanometer-
scale microstructures (or nanoenergetic materials) are very
different from those in conventional energetic materials.
For example, in conventional thermite materials made of
aluminum and iron oxide, the combustion front propagates at
a speed of ∼cm s−1. In nanothermites of Al nanoparticles
embedded in iron oxide, the combustion speed is accelerated
to ∼km s−1 [67]. Such rapid reactions cannot be explained by
conventional diffusion based mechanisms.

We have performed DFT based ab initio MD simulation
to study electronic processes during a thermite reaction. Here,
the reactants are Al and Fe2O3, and the products are Al2O3 and
Fe (figure 7). The QM simulation allows quantitative study of
reaction rates. In figure 7, bond-overlap population analysis
shows that an oxygen atom changes its character from iron
oxide type to aluminum oxide type within 0.3 ps, as it crosses
the Al/Fe2O3 interface. Here, the partial sum of the bond-
overlap population (SBOP) Oα

i (t) (α = Fe or Al) for the i th
oxygen atom is defined as

Oα
i (t) =

∑

j∈α

Oi j (t), (6)

where Oi j (t) is the bond-overlap population between atoms
i and j [68]. The total SBOP is calculated as Oi (t) =
OFe

i (t) + OAl
i (t). We are currently performing reactive MD

simulation of the flash heating of an oxidized Al nanoparticle
in oxygen atmosphere to study how mechanical failure of the
oxide shell causes rapid reactions.
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Figure 7. DFT-based ab initio MD simulation of a thermite reaction. Initial (left) and final (center) configurations of atoms, where green, red,
and gray spheres show the positions of Fe, O, and Al atoms, respectively. (Right) Time evolution of the total and partial bond-overlap
populations, Oi (t) and Oα

i (t), associated with an oxygen atom. The black, red, and blue curves show Oi(t), OFe
i (t), and OAl

i (t), respectively.
Shown below the plot are atomic configurations near the oxygen atom of interest (pointed by yellow arrows) at different times.

3.2. Shock-induced initiation of energetic crystals

Initiation of an energetic crystal is highly sensitive to
microstructures such as voids and grain boundaries. We have
simulated shock initiation of an RDX crystal, which is a
molecular crystal comprising C3H6O6N6 molecules [69]. To
study the effect of microstructures, the crystal contains a void
of diameter 8 nm [70]. In the shock simulation, an RDX
crystal impacts a flat hard wall with a particle velocity Vp (=1–
5 km s−1), which generates a shock wave that propagates back
with a velocity Vs. In figure 8(a), the color-coded velocities
of RDX molecules show the formation of a hot spot at the
void. We have also observed the formation of a nanojet and the
acceleration of the nanojet velocity to 3Vp. This may be due to
the focusing of the nanojet illustrated in figure 8(a), where the
arrows represent the molecular velocities.

We have also found that the nanojet-focusing catalyzes
chemical reactions that do not occur otherwise [70].
Specifically, we observe two distinct reaction regimes as a
function of time. Figure 8(b) shows the number of molecular
fragments generated at the void surface as a function of time.
Initially, as the void collapses, NO2 fragments are produced.
When the nanojet hits the downstream wall of the void at
2.6 ps, we instead observe the production of other molecules
such as N2 and H2O.

4. Concluding remarks

In summary, we have developed high-end reactive atomistic
simulation programs within common algorithmic and com-
putational frameworks based on spatiotemporal data locality
principles. They have enabled billion-atom simulations of
mechano-chemical processes, which have applications in broad
areas such as energy and environment.

An important issue is the timescale studied by MD
simulations. We define the spatiotemporal scale, NT, of an
MD simulation as the product of the number of atoms N
and the simulated time span T . On petaflops computers,

(b)

(a)

Figure 8. Shock initiation of an RDX crystal with a nanovoid. (a) A
snapshot of the velocity distribution of RDX molecules around the
void, where the arrows representing the velocities of RDX molecules
are color coded by the magnitude of the velocity. The yellow dotted
curve indicates the position of the shock front. (b) Number of
molecular fragments near the void surface as a function of time.
From the arrival of the shock wave until the void closure (∼2.6 ps), a
rapid production of NO2 is observed. Shortly after this, when
molecules strike the downstream wall of the void (2.6–3.9 ps),
various chemical products such as N2, H2O, and HONO are
produced.

direct EDC MD simulations will be performed for NT =
1–10 atoms (i.e. multibillion-atom simulation for several
nanoseconds or multimillion-atom simulation for several
microseconds). STEP molecular-kinetics simulations will push
the spatiotemporal envelope to NT ∼ 10 and beyond, but they
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need to be fully validated against MD simulations at NT = 1–
10. Such large spatiotemporal scale atomistic simulations are
expected to further advance scientific knowledge.
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