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Abstract 
 

In this paper, we apply in-core optimization techniques to high-order stencil computations, including: (1) cache 

blocking for efficient L2 cache use; (2) register blocking and data-level parallelism via single-instruction multiple-

data (SIMD) techniques to increase L1 cache efficiency; and (3) software prefetching techniques. Our generic 

approach is tested with a kernel extracted from a 6
th

-order stencil based seismic wave propagation code on a suite 

of Intel Xeon architectures. Cache blocking and prefetching techniques are found to achieve modest performance 

improvement, whereas register blocking and SIMD implementation reduce L1 cache line miss dramatically 

accompanied by moderate decrease in L2 cache miss rate. Optimal register blocking sizes are determined through 

analysis of cache performance of the stencil kernel for different sizes of register blocks, thereby achieving over 4.3-

fold speedup on Intel Harpertown. We also examine lower precision (3
rd

, 4
th

, and 5
th

 orders) stencil computations to 

analyze the dependency of data-level parallel efficiency on the stencil order. 

 

1. Introduction 
 

The search for ways to improve performance while improving power efficiency has led architecture community 

to the development of heterogeneous multicore processors with complex cache hierarchies [1]. The shift in 

architectural design has provided incentives for software developers and application scientists to investigate cache 

efficient algorithms [2] and on-chip optimizations to utilize underlying hardware for broad computational 

applications.  

Due to ever-increasing cooling challenges, general-purpose commercial microprocessors added single-instruction 

multiple-data (SIMD) vector extensions to achieve high performance while running at slower clock speed by 

exploiting data-level parallelism (DLP) with minimal changes to instruction set architecture. The Intel x86 

architecture added the MMX instruction extensions, and the PowerPC architecture added Altivec, both of which 

allowed four single-precision floating-point operations to execute simultaneously using SIMD instructions. The IBM 

Cell architecture derives most of its performance from DLP thanks to its eight vector processors, called synergistic 

processing elements (SPE), which execute four single-precision floating-point operations per cycle each. 

A common computational kernel used in a variety of scientific and engineering applications is stencil 

computation (SC). Extensive efforts have been made to optimize SC on multicore platforms with the main focus on 

low-order SC. For example, Williams et al. [3] have optimized a lattice Boltzmann application on leading multicore 

platforms, including Intel Itanium2, Sun Niagara2 and STI Cell. Datta et al. have recently performed comprehensive 

SC optimization and auto-tuning with both cache-aware and cache-oblivious approaches on a variety of state-of-the-

art architectures, including NVIDIA GTX280, etc. [4]. Other approaches to SC optimization include tiling [5] and 

iteration skewing [6-8]. Due to the importance of high-order SC in broad applications and the wide landscape of 

multicore architectures as mentioned above, it is desirable to optimize SC to get maximal performance. 

While it is possible to employ divide-and-conquer strategies for structured grid problems and perfectly scale such 

algorithms on massively parallel computers [9], utilizing in-core level optimization techniques is essential to exploit 

flops performance of the underlying computational units. In this paper, we explore in-core optimization techniques 

addressing high-order stencil computations. Our tests include (1) cache blocking (CB) targeting efficient L2 cache 

use; (2) register blocking (RB) and data-level parallelism via single-instruction multiple-data (SIMD) techniques to 
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increase L1 cache efficiency; and (3) software prefetching techniques. We test our generic approach with a kernel 

extracted from a 6
th

-order stencil based seismic wave propagation code on a suite of Intel Xeon architectures. CB 

and prefetching techniques achive modest improvement. However, our results show RB and SIMD implementation 

reduce L1 cache line miss dramatically accompanied by a moderate level decrease in L2 cache miss rate. We 

analyze cache performance of our stencil kernel for different sizes of register blocks to find optimal RB size and 

thereby achieve over 4.3-fold speedup on Intel Harpertown. We also explore lower precision stencil computations at 

3
rd

, 4
th

 and 5
th

 orders to analyze dependency of data-level parallel efficiency on the stencil order and to show use of 

RB technique in applications of other stencil orders. 

This paper is organized as follows: An overview of the stencil problem is given in Section 2 together with the 

description of the kernel. Section 3 includes our in-core optimization techniques and performance analysis results. 

Finally, we summarize our study in Section 4. 

 

2. High-order stencil application 
 

This section introduces the general concept of high-order stencil based computation as well as details of our 

experimental kernel. 

 

2.1. Stencil computations  
 

Stencil computation (SC) is at the heart of a wide range of scientific and engineering applications. A number of 

benchmark suites, such as PARKBENCH [10] and NAS Parallel Benchmarks [11], include stencil computations. 

Implementation of special purpose stencil compilers highlights the common use of stencil computation based 

methods [12].  

SC involves a field that assigns values vt(r) to a set of discrete grid points !  = {r}, for the set of simulation time 

steps T = {t}. SC routine sweeps over !  iteratively to update vt(r) using a numerical approximation technique as a 

function of the values of the neighboring nodal set including the node of interest, !"  = {r"  #  r"  $  neighbor(r)} 

which is determined by the stencil geometry. The pseudocode below shows a naïve stencil computation: 

for %t $  T 

   for %r $  !  

      vt+1(r) & f({vt(r") #  r"  $  neighbor(r)}) 

where f is the mapping function and vt is the scalar field at time step t. SC may be classified according to the 

geometric arrangement of the nodal group neighbor(r) as follows: First, the order of a stencil is defined as the 

distance between the grid point of interest, r, and the farthest grid point in neighbor(r) along a certain axis. (In a 

finite-difference application, the order increases with required level of precision.) Second, we define the size of a 

stencil as the cardinality #{r"  #  r"  $  neighbor(r)} # , i.e., the number of grid points involved in each stencil iteration. 

Third, we define the footprint of a stencil by the cardinality of minimum bounding orthorhombic volume, which 

includes all involved grid points per stencil. For example, Figure 1 shows a 6
th

 order, 25-point SC whose footprint is 

13
2
 = 169 on a 2-dimensional lattice. Such stencil is widely used in high-order finite-difference calculations [13, 14]. 

 

Figure 1. 6-th order, 25-point SC whose footprint is 132 on a 2-dimensional lattice. 

In Figure 1, the grid point of interest, r, is shown as the central grey circle while the set of neighbor points, 

excluding r, i.e., {r"  #  r"  $  neighbor(r)} – {r}, is illustrated as solid circles. White circles show the other lattice 

sites within the stencil footprint, which are not used for calculation of v(r). 
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2.2. Experimental application 
 

This subsection introduces our experimental kernel, which is taken from an application that simulates seismic 

wave propagation by employing a 3D equivalent of the stencil in Figure 1 to compute spatial derivatives on uniform 

grids using a finite difference method. The 3D stencil geometry is highly off-diagonal (6-th order) and involves 37 

points (footprint is 13
3
 = 2,197), i.e., each grid point interacts with 12 other grid points in each of the x, y and z 

Cartesian directions.  

Figure 2 shows a pseudocode of our experimental kernel. The pseudocode sweeps the problem domain of size 

NX'NY'(NZ-2'STENCILORDER) in the x—unit stride—direction, to accumulate contributions of grid points 

neighboring in z direction, which has the largest stride (NX'NY). The target grid points (nextGrid array) are 

updated with the contributions of the source grid points (currentGrid array) at each sweep of the domain. 

LINEARINDEX is a macro defined to map 3D problem grid onto linear memory allocated for nextGrid and 

currentGrid arrays. The bounds of the uppermost loop are shrunk by STENCILORDER (6 in our case) since our 

kernel does not handle the boundary conditions (in the actual application boundary grids are approximated by lower 

order derivative approximations). Our experimental kernel has NX'NY'NZ = 384
2'372 = 54.85 million points. For 

each grid point, the code allocates 5 floats to hold temporary arrays and intermediate physical quantities and the 

result, therefore its memory footprint is 5'4bytes'5.5'10
7
 = 1.1 GB. 

 
FOR z = STENCILORDER to NZ-STENCILORDER  

 FOR y = 1 to NY 
    FOR x = 1 to NX 
        FOR s = -STENCILORDER to STENCILORDER 
           COMPUTE nextGrid[LINEARINDEX(x,y,z)] as the accumulation of  
           currentGrid[LINEARINDEX(x,y,z+s)] contributions 
        END FOR 
    END FOR 
 END FOR 

END FOR  

Figure 2. Pseudocode of the high-order stencil kernel. 
 

3. Optimizations and performance analysis 
 

In this section, we describe our in-core optimizations and present a comprehensive comparison of their 

effectiveness. We test our implementations in lower and higher models of Intel Xeon Clovertown series quadcore 

processors (E5320-E5345) and Intel Xeon Harpertown (E5420) architecture. Harpertown, clocked at 2.5 GHz, has a 

4!32 KB, 8-way set associative L1 data and instruction cache as well as a large L2 cache (2!6144 KB, 24-way set 

associative) both featuring 64-byte line size. Clovertown series includes a similar L1 cache, but differs in L2 where 

each chip shares a 4MB, 16-way set associative cache. Xeon E5320 is clocked at 1.83 GHz and has a 1066 MHz 

front side bus (FSB) frequency, whereas Xeon E5345 (2.33 GHz clock speed), and Xeon E5420 features a FSB 

running at 1333 MHz.  

 

3.1. Cache blocking (CB) 
 

The data set in our application is 1.1 GB whereas cache size for the processors in current HPC literature is limited 

to a few MBs. The fact that higher performance can be achieved for smaller data sets fitting into cache memory 

suggests a divide-and-conquer strategy for larger problems. We use CB to increase spatial locality, i.e. referencing 

nearby memory addresses consecutively, and reduce effective memory access time of the application by keeping 

blocks of future array references at the cache for re-use. Figure 3 shows our implementation of CB. 

In Figure 3, loops are subdivided into smaller loops of size blockParam. The blocking parameter, blockParam, 

should be selected large enough to amortize the cost of the added loops but the size of the blocks should not exceed 

physically available cache size. In fact, for a d dimensional stencil problem with m intermediate physical quantities 

per grid point, e.g., pressure and/or temperature, and of size stencilsize as defined in Section 2.1, given each physical 

quantity is represented by data of type datatype, the blocking parameter should be chosen such that (blockParam)
d 

' m ' stencilsize ' sizeof(datatype) = effective cache size, where we refer to effective cache size instead of physical 

size to account for memory mapping rules. For example, for an Intel Harpertown (Xeon E5420) with 6 MB L2 cache 
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shared between two cores on each chip, we try a variety of blockParam values in the range of 32-48 for our 3D 

problem which requires 5 float arrays of size equal to the number of global grid points. 

 
FOR z = STENCILORDER,NZ-STENCILORDER,blockParam 

 FOR y = 1,NY,blockParam 
    FOR x = 1,NX,blockParam 
       FOR zz = z,MIN(z+blockParam,NZ-STENCILORDER),1 
          FOR yy = y,MIN(y+blockParam,NY),1 
             FOR xx = x,MIN(x+blockParam,NX),1 
                FOR s = -STENCILORDER to STENCILORDER 
                COMPUTE nextGrid[LINEARINDEX(XX,YY,ZZ)] as the accumulation of  
                currentGrid[LINEARINDEX(XX,YY,ZZ+s)] contributions 
                END FOR 
             END FOR 
          END FOR 
       END FOR 
    END FOR 
 END FOR 

END FOR  

Figure 3. Pseudocode for cache blocking implementation. 
 

The performance results are given in Figure 4, where the wall-clock time per iteration step (for one complete 

sweep of 3D problem domain) of the original code is compared with that of the CB-optimized code on Xeon 

Clovertown (E5320-E5345) and Harpertown series (E5420) in Figure 4(a), and the corresponding speedup over the 

original program is shown in Figure 4(b). (Figure 4(b) normalizes the wall-clock times on each processor with 

respect to its own timings as it visualizes speedup per architecture.) The figure shows modest speedup due to CB. 

 

 
Figure 4. A comprehensive comparison of our optimization techniques. 

 

We next SIMDize the COMPUTE statement inside the innermost loop in Figure 3 for implementation of CB and 

analyze the cache behavior. For SIMDization, we use Streaming SIMD Extensions (SSE3) intrinsics on Intel based 

architectures, whose prototypes are given in Intel’s xmmintrin.h and pmmintrin.h. Figure 4 exhibits slight 

performance increase of the combined CB + SIMD optimization over the CB-optimized code. For further analysis, 

we profile the code on Xeon E5320 architecture using Intel’s Vtune Performance Analyzer. Cache analysis shows 

that CB (+SIMD) approach decreases the number of load operations that miss the L1 data cache and send a request 

to the L2 cache to fetch the missing cache line by 20%. The number of load operations that miss the L2 cache and 

result in bus request to fetch the missing cache line is also decreased by 12%, confirming the slight speed up in 

Figure 4. This is consistent with Yelick et al.’s findings in their study on sparse matrix operations [15], as stencil 

computations can be viewed as an extension of sparse linear algebra problems with known patterns. Since high 
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stride accesses are still present in the code even after CB, cache miss rate does not decrease considerably, and even 

when a cache hit occurs, only one float per cache line is utilized in actual computation. We address this issue in the 

next subsection with RB technique. 

 

3.2. Register blocking (RB) 
 

In stencil applications, it is not possible to have small strides for all directions of computation at the same time, 

e.g., for computations in z direction stride size is 59 KB in our kernel whereas x stride is unit stride, i.e. 4 bytes. CB 

methodology suffers from suboptimal use of the referenced cache lines and pays the penalty of accessing to memory 

units at a later time for a word located adjacent to a previously addressed memory location. 

We completely eliminate these multiple sweeps over the neighboring memory addresses by rearranging 

computation and exploit spatial locality through use of machine registers maximally. Figure 5 schematically 

represents our approach to RB for high-order stencil computation. In the original kernel, red square indicates target 

grid points to be updated at certain time. Blue, yellow and green squares respectively show memory locations of the 

nearest neighbor points in x, y, and z Cartesian coordinates. During each iteration, the red square is updated by 

accessing all neighbors (not necessarily the nearest neighbors, and the stencil order determines the distance of the 

furthest accessed neighbor.) Memory stride for each direction is 1, NX, and NX'NY, respectively, as shown in Figure 

2. Instead of the original kernel shown in the upper part of Figure 5, RB deals with a chunk of target grid points 

contiguous in the x direction. The same size of neighboring cells is fetched to update the block of target grids, which 

maximally utilize register. This is shown in the lower part of Figure 5. 

 

 

Figure 5. Memory access pattern for register blocking technique compared to original version. 

 
The use of register blocks saves 3 accesses to floats in neighboring grid points per 16-byte block and clearly 

increases cache performance at both levels as the following performance analysis shows. Note that we also unroll 

the innermost loop shown in Figure 3 for RB scheme since the block sizes are fixed. This avoids loop overhead and 

improves opportunity for better instruction scheduling with increased instruction level parallelism. 

Figure 4(a) compares RB performance for several block sizes (4, 8, and 12) to find the optimal block size. In 

Figure 4(b), 8 float-sized register blocks show over 4-fold speedup on all platforms, with the best speedup of 4.3 on 

Harpertown. Even though E5345 times are less than Xeon E5320 in Figure 4(a), Xeon E5320 and Xeon E5345 

normalized speedups almost exactly match in Figure 4(b). It should be noted that two processors have the same 

cache organization, therefore our cache-utilization targeting optimizations showed similar speedups on both 

processors albeit run times for E5345 is less due to its higher clock frequency. The Harpertown (E5420) processor 

however shows slightly better speedup than both Clovertowns, due to its enhanced cache capacity. 

Figure 6 shows cache behavior on Xeon E5320 processor for RB + CB + SIMD implementation with a variety of 

block sizes shown in numerals. Here, Figure 6(a) shows the number of cache lines fetched from the L2 cache by the 

retired loads as the number of missed L1 data cache lines on the first y-axis. Second y-axis has the number of cache 

lines fetched from memory by retired loads as the number of L2 cache line misses. Both counts only account for 

loads from cacheable memory. It should also be noted that Figure 6 counts multiple misses from the same cache line 

as single line miss. Figure 6(b) scales the numbers in Figure 6(a) with the number of instructions that retire 

execution of each RB implementation. We observe the highest cache performance for register blocks of 8 float 

numbers, which we propose as the optimal register block size for our problem depending on speedup and cache line 

miss reduction: 2.68-fold decrease in missed L1 line rate and 23% decrease in L2 cache line miss rate. As one might 

expect, overuse of machine registers saturates the speedup, therefore 12 float sized register blocks show suboptimal 

performance improvement. 
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Figure 6. L1 and L2 cache line misses. 
 

In the RB approach, contrary to the common SIMDization frameworks, we do not use zero padded registers to 

have dense blocks, i.e. to fill them. Therefore machine registers are maximally used. In order to show this property, 

we modify our kernel to simulate lower-order stencil problems requiring less precision, and implement by 

previously mentioned CB + SIMD technique employing zero padded SIMD vectors. Figure 7 compares the wall-

clock time of this approach to that of the optimally sized RB scheme. A dramatic increase in wall-clock time of CB 

+ SIMD approach is observed between 4
th

 and 5
th

 order stencil computations, since 5
th

 order stencil requires another 

4 float sized SIMD vector, which is padded by 3 zeros—only effectively uses 4 bytes. Since RB approach packs 

consecutive addresses instead of adjacent nodes in stencil geometry, which are away in memory for non-unit stride 

dimension, it avoids the jump between 4
th

 and 5
th

 order stencils. 

 

 
Figure 7. Effects of stencil order.

 

3.3. Prefetching 
 

The RB method significantly reduces the number of cache misses, but still missed L2 data cache lines pays the 

penalty of accessing to memory which is application specific and usually around ~150 clock cycles, an order of 

magnitude more than L2 access penalty. Therefore, we use software prefetching to hide memory latency as the 

highest level of our memory optimization framework. 

We use Intel’s _mm_prefetch intrinsic to implement fetching data from memory to second level cache. Since 

prefetch scheduling distance (PSD) is not a well-defined metric, and to achieve better performance, we spread the 

prefetch instructions inside the instruction sequence of the innermost loop rather than clustering prefetches together 

and experimentally try variety of PSDs up to 3 full iterations of the innermost loop. Considering high stride access 
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due to the topology of stencil computation, we also combine this by translation lookaside buffer (TLB) priming to 

preload the page table entry for the z-neighboring grid points, which are 59KB away. This is similar to prefetch, but 

instead of a data cache line, the page table entry is being loaded in advance of its use to avoid TLB miss.  

Figure 4 shows experimental results. Prefetching does not provide significant speedup, which we have also 

confirmed by micro-architecture level analysis of second-level cache utilization. This is because the innermost loop 

in stencil kernel is predominately memory bandwidth-bound and already features competing techniques such as CB 

and loop unrolling. It should also be noted that RB technique improves cache performance and this also contributes 

in less effectiveness of prefetching the data to L2 cache. Similar results were reported by Kaushik et al. for similar 

memory bound problems [16].  

 

4. Conclusions 
 

In summary, in-core optimization techniques, including CB, RB and prefetching, have been explored on a suite of 

Intel Xeon architectures using a kernel extracted from a 6
th

-order stencil based seismic wave propagation code. 

Modest improvements are seen for implementation of CB and prefetching, due to the slightly decreased number of 

missed L1 and L2 cache lines. On the contrary, the implementation of RB shows as high as 4.3-fold speed up on 

Intel Harpertown as a result of the 2.68-fold decrease in L1 line miss rate and 23% decrease in L2 cache line miss 

rate. We have also quantified the effect of above mentioned optimization techniques for lower order stencil 

applications on the multicore processors with same complex cache hierarchies. Results reveal that, compared to CB 

and prefetching, RB can potentially be a more generic optimization technique because its speed up on cache 

performance is less affected by the order of the application’s stencil. Future work will include further micro-

architecture level optimization approaches. This work was partially supported by Chevron—CiSoft, NSF, DOE, 

ARO, and DTRA. Performance tests were carried out at Collaboratory of Advanced Computing and Simulations and 

High Performance Computing and Communications cluster of the University of Southern California. 
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