

High-Order Stencil Computations on Multicore Clusters

Liu Peng, Richard Seymour, Ken-ichi Nomura, Rajiv K. Kalia, Aiichiro Nakano,
Priya Vashishta

Collaboratory for Advanced Computing and Simulations, Department of Computer Science,
 Department of Physics & Astronomy, Department of Chemical Engineering & Material Science,

University of Southern California, Los Angeles, CA 90089-0242, USA
(liupeng, rseymour, knomura, rkalia, anakano, priyav)@usc.edu

Alexander Loddoch, Michael Netzband, William R. Volz, Chap C. Wong

Technical Computing, Chevron ETC, Houston, TX 77002, USA
(loddoch, mknetzband , Bill.Volz, ChapWong)@chevron.com

Abstract

 Stencil computation (SC) is of critical importance
for broad scientific and engineering applications.
However, it is a challenge to optimize complex, high-
order SC on emerging clusters of multicore processors.
We have developed a hierarchical SC parallelization
framework that combines: (1) spatial decomposition
based on message passing; (2) multithreading using
critical section-free, dual representation; and (3)
single-instruction multiple-data (SIMD) parallelism
based on various code transformations. Our SIMD
transformations include translocated statement fusion,
vector composition via shuffle, and vectorized data
layout reordering (e.g. matrix transpose), which are
combined with traditional optimization techniques such
as loop unrolling. We have thereby implemented two
SCs of different characteristics—diagonally dominant,
lattice Boltzmann method (LBM) for fluid flow
simulation and highly off-diagonal (6-th order) finite-
difference time-domain (FDTD) code for seismic wave
propagation—on a Cell Broadband Engine (Cell BE)
based system (a cluster of PlayStation3 consoles), a
dual Intel quadcore platform, and IBM BlueGene/L and
P. We have achieved high inter-node and intra-node
(multithreading and SIMD) scalability for the
diagonally dominant LBM: Weak-scaling parallel
efficiency 0.978 on 131,072 BlueGene/P processors;
strong-scaling multithreading efficiency 0.882 on 6
cores of Cell BE; and strong-scaling SIMD efficiency
0.780 using 4-element vector registers of Cell BE.
Implementation of the high-order SC, on the contrary,
is less efficient due to long-stride memory access and
the limited size of the vector register file, which points
out the need for further optimizations.

1. Introduction

 Stencil computation (SC) is a common kernel of a
wide range of scientific and engineering applications
such as Jacobi and multigrid solvers [1]. Examples
include explicit time-integration methods for numerical
solution of partial differential equations used in climate,
weather and ocean modeling [2], computational
electromagnetics [3] and quantum dynamics [4] codes
using the finite-difference time-domain (FDTD)
method, multimedia/image-processing applications that
perform smoothing and other neighbor pixel-based
computations [5], and certain cellular automata and
seismic simulations [6]. Because of its significance, SC
is included in a number of benchmark suites, such as
SPEC [7], HPFBECH [8], and NAS Parallel
Benchmarks [9].

SC involves a variable)(Rv defined for a set of
discrete grid points }{R in a regular lattice, and it
sweeps over }{R to update)(Rv as a function of the
values,)(R′v , of neighbor grid points

)(RR neighbor∈′ :
for ∀R ∈ {R}
v(R) ← f({v(R′)|R′ ∈ neighbor(R)})

where f is a mapping function. A typical SC thus
consists of doubly nested loops: The outer loop sweeps
over all grid points R in the lattice to update)(Rv ; and
the inner loop over)(RR neighbor∈′ computes

)})(({ R′vf . SC may be classified according to the
spatial pattern of)(Rneighbor as follows. First, the
order of a stencil is defined as the distance between the
central grid point R and the farthest grid points ′ R in

)(Rneighbor along a certain axis. (In a finite-
difference application, this order is identical to that of
Taylor expansion.) Second, we define the size of a
stencil as the cardinality |)(| Rneighbor , i.e. the

number of grid points ′ R in neighbor(R) including R
itself. In diagonally dominant SC, the computation
depends heavily on the local value)(Rv as well as
some)(R′v values from the nearest-neighbor grid
points. Figure 1(a) shows a diagonally dominant, first-
order, 19-point SC in the 3-dimensional lattice
Boltzmann method (LBM) flow simulation [10, 11]. SC
in other applications is often much higher order
involving distant neighbor grid points. For example, Fig.
1(b) shows a 6-th order, 25-point SC in a 2-dimenional
lattice. Such stencil is widely used in high-order finite-
difference calculations [12, 13].

Figure 1. (a) Diagonally dominant, first-order,
19-point stencil in a 3D lattice for LBM flow
simulation, and (b) 6-th order, 25-point stencil
in a 2D lattice. For a grid point R (gray circle),
the neighbor grid points R′ ∈ neighbor(R) are
shown as solid circles, while the rest of the
grid points as open circles.

Emerging parallel platforms comprised of
multicore compute nodes potentially provide enormous
computing power for SC. An example is a cluster of
general microprocessors consisting of multiple cores
such as Intel quadcore processor. Another example is
Cell Broadband Engine (Cell BE) in PlayStation3 and
QS22 blade [14]. It is a heterogeneous multicore chip
consisting of a traditional microprocessor called power
processing element (PPE) that controls eight single-
instruction multiple-data (SIMD) co-processing units
called synergistic processing elements (SPEs) [15].
 There have been extensive efforts to optimize SC
on multicore platforms. Williams et al. [16] have
optimized the LBM application on single Cell BE blade.
Traditional SC optimization techniques include tiling
[17] and iteration skewing (if the iteration structure
allows it) [1, 18-20]. Recently, Datta et al. have
performed comprehensive optimization of SC with both
cache-aware and cache-oblivious approaches [21].
These studies are mainly focused on low-order SC.
Since both SC and multicore architectures have wide
varieties as mentioned above, it is desirable to develop
a unified parallelization framework and perform
systematic performance optimization for various SCs

(e.g., diagonally dominant vs. high-order) on multicore
architectures.
 This paper presents our hierarchical SC
parallelization framework that combines: (1) spatial
decomposition based on message passing; (2)
multithreading using critical section-free, dual
representation; and (3) single-instruction multiple-data
(SIMD) parallelism based on various code
transformations. We employ SIMD transformations
such as translocated statement fusion, vector
composition via shuffle, and vectorized data layout
reordering (e.g. matrix transpose), which are combined
with traditional optimization techniques such as loop
unrolling. We thereby parallelize two SCs of different
characteristics—diagonally dominant (first order, 19-
point) LBM for fluid flow simulation, and high-order
(6th-order, 37-point) FDTD for seismic wave
propagation. The two SC applications have been
implemented on a Cell BE based platform
(PlayStation3 cluster), dual Intel quadcore, and IBM
BlueGene/L and P. Section 2 presents the hierarchical
SC parallelization framework applied to LBM,
followed by test results of inter- and intra-node
scalability on a PlayStation3 cluster and IBM
BlueGene/L and P, as well the effect of SIMD,
multithreading and their combination on a PlayStation3
cluster. In section 3, we discuss the optimization of the
seismic wave propagation code on a dual Intel quadcore
platform. Section 4 contains conclusions drawn from
our experiments.

2. Hierarchical Parallelization of Lattice
Boltzmann Method

 In the lattice Boltzmann method (LBM) for fluid
flow simulation, variable)(Rv is a density function
(DF) from which fluid density and velocity at R are
computed. The LBM simulation consists of timing-
stepping iterations, where each step consists of two
phases: (1) collision function that involves a large
number of floating-point operations that are strictly
local to each R; and (2) streaming function that
contains no floating-point operation but solely memory
copies between nearest-neighbor grid points.

Our hierarchical parallel Lattice Boltzmann
Method (pLBM) algorithm parallelizes LBM based on
spatial decomposition implemented with message
passing, multithreading using critical section-free, dual
representation, and SIMD parallelism, which
maximally exposes concurrency and data locality. The
following subsections describe these parallelization
layers.

2.1. Spatial Decomposition Based on Message
Passing

 In the uppermost level of the hierarchical spatial
decomposition in our pLBM algorithm, the total
simulation space Ω = {R} is decomposed into several
spatial sub-domains Ωi, where ii Ω∪=Ω and each
domain is mapped onto a processor. Figure 2 shows a
two-dimensional example, where a single domain
consists of Nx ×Ny grid points (Nx and Ny are the
numbers of lattice sites in the x and y directions,
respectively). Each domain is augmented with a
surrounding buffer layer used for inter-domain DF
migrations. We impose a boundary condition on DFs
propagating toward the closed nodes (i.e. spatial
regions with obstacles that exclude fluid flow), by
reflecting back DFs propagation into the closed nodes
toward the opposite direction. (The actual code
implements a 3D LBM with the 19-point stencil in Fig.
1.)

Figure 2. Schematic of spatial decomposition
in 2 dimensions with 4 domains (Ω0-Ω3). White
squares are open lattice sites that have the
DFs of flow particles. Black squares represent
obstacles, where flow is excluded. Gray
squares are buffer-layer sites for Ω0.

We have implemented the spatial decomposition
using the message passing interface (MPI) standard and
have tested the inter-node scalability on the IBM
BlueGene/L computer at the Lawrence Livermore
National Laboratory and the IBM BlueGene/P
computer at the Argonne National Laboratory. Figure
3(a) shows the running and communication times of the
pLBM code on up to 212,992 BlueGene/L and 131,072
BlueGene/P processors. Here, we scale the number of
lattice sites linearly with the number of processors:
1283P lattice sites on P processors. The computing time
increases only slightly when P increases from 1 to
131,072 on BlueGene/P. The weak-scaling parallel
efficiency is the running time on 1 processor divided by
that on P processors, and it is 0.978 on 131,072
BlueGene/P processors. Nearly ideal efficiency is also
evident on 212,992 IBM BlueGene/L processors in Fig.
3(a). Spatial decomposition is thus highly effective in

terms of inter-node scalability for SC up to 105 compute
nodes.

Figure 3. Running (circles) and communication
(squares) times of the pLBM flow simulation as
a function of the number of processors on: (a)
BlueGene/L (open symbols) and BlueGene/P
(solid symbols), where each processor is
assigned 1283P lattice sites; and (b)
PlayStation3 cluster with 643P lattice sites per
PlayStation3 console.

 Figure 3(b) shows the inter-console parallel
efficiency of pLBM on a cluster of 8 PlayStation3
consoles. Here, we scale the number of lattice sites
linearly with the number of processors: 643P lattice
sites on P processors. Despite the small bandwidth and
large latency of the low-cost Gigabyte Ethernet switch,
the parallel efficiency of the PlayStation3 cluster is
respectable (0.704 on 8 consoles).

2.2. Multithreading Based on Critical Section-
Free, Dual Representation

 On a cluster of PlayStation3 (PS3) consoles, pLBM
is implemented based on hierarchical spatial
decomposition: (1) inter-console parallelization with
the upper-level spatial decomposition into domains
based on message passing; and (2) intra-console
parallelization with the lower-level spatial

decomposition into interleaved rows of the lattice sites
within each domain through multithreading. Inside each
PS3 console, the main program running on the power
processing element (PPE) spawns multiple threads to
run on synergistic processing elements (SPEs). Data
transfer between the main memory of PPE and the local
storage of SPEs is handled by direct memory access
(DMA).
 For the collision function, 6 SPE programs are
performed simultaneously with 6 threads created by
PPE (due to the PS3 hardware restriction, only 6 SPEs
out of 8 are available for user programming). For
optimal load balancing, we adopt an interleaving
schema shown in Fig. 4(a), where the area enclosed by
the dotted lines shows the computational task assigned
to the first thread with thread ID 0, and chunk ID j is
assigned to SPE with thread ID j mod Nthread, j ∈

]1,0[−threadN (the number of threads Nthread is 6). Since
multiple threads may update a common lattice site, we
adopt a double-layered DF consisting of two floating-
point arrays DF0 and DF1 to avoid any critical section,
as shown in Fig. 4(b): The collision function transfers
DFs from array DF0 to local store on SPE, updates the
DFs, and subsequently copies it back to the array DF1.

Figure 4. (a) Schematic of a 2-dimensional
system setup for each domain in spatial
decomposition. White squares are open lattice
sites that have the DF’s, black squares
represent obstacles, where flow does not exist,
and gray squares are buffer-layer sites. The
simulation system is divided into Ny
computational chunks, each of which consists
of Nx lattice sites, and the chunks are
interleavingly assigned to SPEs. The numerals
show thread-ID responsible for each chunk. (b)
Schematic of a double-layered DF calculation
comprising two floating-point arrays DF0 and
DF1. The collision function reads DFs from
DF0 to do updates and then stores the result in
DF1. Subsequently, the streaming function
propagates DFs from DF1 to DF0.

 We have tested the intra-node (or multithreading)
scalability of pLBM on each PlayStation3 console.
Figure 5(a) shows the running time of pLBM involving

643 lattice sites as a function of the number of SPEs (i.e.
threads). The corresponding strong scaling (or fixed
problem-size) speedup (circles) in Fig. 5(b) is close to
the ideal speedup (solid line). The algorithm thus scales
nearly linearly with the number of SPEs. On 6 SPEs,
the speedup is 5.29, and the parallel efficiency (defined
as the speedup divided by the number of threads) is
0.882.

Figure 5. Running time (a) and strong scaling
speedup (b) of pLBM as a function of the
number of SPEs on a PlayStation3 console.

2.3. Single-Instruction Multiple-Data
Parallelism

 Most modern computing platforms have
incorporated single-instruction multiple-data (SIMD)
extensions into their processors [22] to exploit the
natural parallelism of applications if the data can be
SIMDized (i.e., if a single instruction can
simultaneously operate on a vector of consecutive data).
On Cell BE, each vector contains four floating-point
numbers that are operated concurrently, and thus the
ideal speedup is 4. We maximally expose SIMD
parallelism of pLBM using various code
transformations. The following subsections describe our
SIMD transformations: Translocated instruction fusion,
vector composition via shuffle, and vectorized data
layout reordering (e.g. matrix transpose).

2.3.1 Translocated Statement Fusion for SIMD

 The key to SIMD parallelization is to identify
SIMDizable statements, i.e., a set of statements that are
independent and thus are executable concurrently, when
the associate variables are packed into vectors.
Statements that satisfy this criterion can be transformed
into a single SIMD statement regardless of the positions
of the statements (e.g., in different loops) in the
program. The translocation of statements and their
fusion into a SIMD operation enhance the concurrency
of the program at the instruction level. In the following
subsection, we illustrate the use of such translocated
statement fusion for SIMD parallelization in pLBM.
 Here, the original code is doubly nested for loops,
where the inner loop traverses the 18 nearest neighbor
grid points in a cube to perform certain computation:

for(ic=0;ic<3;ic++){
 l=0;
 rho=0.0;
 for(u[ic]=0.0;l<18;l++){
 fi[l] =

 buffers[buf_idx].f[18*incz+1];
 u[ic] += fi[l]*v[l][ic];
 rho += fi[l];
 }
}

Our SIMD solution (Fig. 6) first exchanges the
order of the two for loops, and then unrolls the inner
loop over ic to 0, 1, and 2. Subsequently, we exploit
four floats, v[l][0], v[l][1],]v[l][2 and rho, which are
SIMDizable (i.e., they can be multiplied and added
simultaneously) and can be looped for 18 times each.
We pack them into a vector

rho}v[l][2],v[l][1],{v[l][0], ,
generate another vector

fi[l]}fi[l],fi[l],{fi[l], ,
and perform vector multiple and vector add instructions
on them. This is repeated by a for loop to get the final
vector, which is {u[0], u[1], u[2], rho}.

The resulting SIMDization can be expressed as
{u[0],u[1],u[2], rho} =

{fi[l],fi[l], fi[l], fi[l]}l= 0
17∑ * {v[l][0],v[l][1],v[l][2], rho} .

The speedup of this SIMDization can be analyzed as
follows. The original program performs 3×18×(2+2+1)
= 270 operations by counting both multiplication “*”
and addition “+” as one, while the SIMDized program
requires only 18×(2+2) = 72 operations. Thus the
speedup due to SIMD is estimated as 3.75.

Figure 6. Example of SIMDization by
translocated statement fusion in pLBM.

2.3.2 Vector Composition for SIMD

 The flexibility of composing new vectors is another
useful feature of SIMD supported by shuffle and extract
instructions. The shuffle(vec1, vec2, pattern) function
is a byte-oriented operation that selects bytes according
to the pattern (a control vector) from source vectors
vec1 and vec2 and places them in a target vector [23].
The control vector entries are indices of bytes in the 32-
byte concatenation of vec1 and vec2: To select byte n
from vec1, we define the corresponding byte of the
pattern as “0X0n”, while from vec2 as “0X1n”. Figure
7 illustrates the use of shuffle to generate a new vector

u[0]}u[0],u[0],{u[0],=0uvec from vector
u[3]}u[2],u[1],{u[0],=uvec . By assigning uvec to

vec1, vec2 and defining pattern0 as in Fig 7, we can
select desired bytes of the uvec to generate uvec0.

Figure 7. Example of shuffle to compose a new

vector in pLBM.

 Here, the original code is a doubly nested for loops
to calculate all u[i]*u[j] , where both i and j indices

run from 0 to 2:
for(i=0;i<3;i++)
 for(j=0;j<3;j++)
 pieq[i][j]= u[i]*u[j];

Our SIMD solution first packs all u[i] s into vector
uvec as u[3]}u[2],u[1],{u[0],=uvec , where u[3] is set
as NULL to fill the vector. We then define three
patterns and perform three shuffle operations with
different patterns to obtain three new vectors:

u[i]}u[i],u[i],{u[i],=iuvec (i = 0, 1, 2).
Subsequently, we multiply uveci (i = 0, 1, 2) by

uvec, and put the results into pieqveci (i = 0, 1, 2),
respectively. The pseudo-code of the above
SIMDization is given below:

 uvec= {u[0],u[1],u[2],u[3]}

 for(i=0;i<3;i++){
uveci=shuffle(uvec,uvec,patterni);

pieqveci = mul(uvec,uveci);

}

The speedup of this SIMDization can be analyzed

as follows. While the original program performs 3×3×1
= 9 operations, the SIMD program requires only 3.
Thus the speedup is 3. Memory access is analyzed as
well. While the original program accesses memory
3×3×3 = 27 times, the SIMD program only requires
1+3×1 = 4 memory accesses. Thus the memory access
time is reduced by a factor of 7 by the SIMDization.
The use of array of structure (AOS), i.e., the packing of
3 floats into a vector leaving the fourth element NULL,
incurs some overhead, which is largely offset by the
SIMD speedup.

It is highly beneficial to generate new data from
existing vector registers instead of fetching them from
cache or memory each time, and this greatly improves
the data reuse ratio and reduces the memory access time.
Data generation flexibility of SIMD via vector
composition thus not only reduces computation but also
reduces memory access.

2.3.3 Data Layout Reordering for SIMD

Data layout reordering is another SIMDizing
technique facilitated by shuffle. By defining appropriate
patterns, for instance, it is possible to transpose the
rows and columns of an array efficiently. Figure 8
shows a transpose function for a 4×4 array,
TRANSPOSE4*4(v0,v1,v2,v3), where each vi (i =
0,1,2,3) is a vector. The transpose procedure in Fig. 8
consists of two steps, both of which are shuffle
operations. First, the 4×4 array is arranged as four
vectors, where each row itself is a vector. We then
define patterns for shuffle operation, and execute the set
of four shuffles in Step 1 (Fig 8), followed by another
set of four shuffles in Step 2 (Fig 8) to obtain the

transposed array. Since all the vectors are in the vector
register, only four memory accesses are involved,
making this SIMDized transpose highly efficient.

Figure 8. Transpose of a 4×4 array by shuffle
operations for SIMDization.

We use this SIMDized transpose to parallelize
pLBM. Here, the original code is a doubly nested for
loops to do something like matrix multiplication:

for(j=0;j<3;j++){
 pi[i][j] = 0.0;
 for(l=0;l<18;l++)
 pi[i][j] += fi[l]* v[l][j];
}

The inner loop accesses an 18×3 array, v, column
by column. The resulting stride memory accessing
degrades the performance considerably and necessitates
data layout reordering. Our SIMD solution resolves this
problem in a two-step procedure: (1) transpose—v is
transposed using divide-and-conquer, first dividing it
into 5 small arrays and then using TRANSPOSE4*4()
to transpose each sub-array; and (2) calculation—the
transpose reduces the problem to the one described in
section 2.3.1, which is SIMDized using the same
transposed statement fusion schema. The pseudo-code
of the above SIMDization of transpose is given below:

TRANSPOSE18*3(v[][]){
 for(l=0,l<18,l=+4)
TRANSPOSE4*4(v[l], v[l +1], v[l + 2],NULL);
}

The speedup of the SIMDized transpose of an 18×3
array can be analyzed as follows. The original program
requires 3×18×(1+2) = 162 operations, while the SIMD
program operates 5×4×2 = 40. The speedup is thus 2.7.
This is remarkable considering the overhead of the
SIMDization. First, we transpose an array of 4×4 each
time, while the real program only has 4×3 data. Also,
the TRANSPOSE18*3 function in fact transposes 20×3
data instead of 18×3.

Using the techniques described above, we have
SIMDized pLBM, where the SIMDization was only
implemented to the collision function, which accounts
for the most computing time of pLBM. We first test the
SIMD effect with various problem sizes both for the
collision part (which is fully SIMDized) and the whole
pLBM application on a PS3, where the number of
threads is set to one. Figure 9(a) shows the SIMD
speedup of the collision function (i.e. the ratio of the
running time without SIMD and that with SIMD). It is
an ascending function of the problem size and reaches
3.72 for 2.61×105 grid points, which is close to the
ideal speedup of 4 (SIMD efficiency is 0.930). Figure
9(b) shows the SIMD effect for the whole pLBM
application. The SIMD speedup of pLBM is again an
ascending function of the problem size and reaches 3.12
for 2.614×105 grid points (SIMD efficiency 0.780). The
SIMD optimization is thus highly effective for pLBM.

Figure 9. Effect of SIMD with problem size on a
PS3. The speedup of collision function due to
SIMD (a) and the speedup of pLBM due to
SIMD (b) are plotted as a function of the
problem size.

Next, we test the SIMD speedup for different

numbers of threads for the collision part and the whole
pLBM application on a PS3 for 2.614×105 grid points.
Figure 10(a) shows that the speedup for the collision
(i.e. pure SIMD) part is nearly constant around 3.5 with
varying number of threads. The SIMD optimization
thus has very good scalability with different numbers of

threads. However, for the whole pLBM application, the
speedup is a decreasing function of the number of
threads and reduces to 2.1 for 6 threads (i.e. the
maximum number of threads on a PS3). This is because
both communication and streaming-computation times
do not decrease for larger numbers of threads.
Consequently, the overall speedup for the whole pLBM
is not as good as for the pure SIMD part.

Figure 10. SIMD speedup for different numbers
of threads on a PS3 for (a) collision function
and (b) the entire pLBM.

3. High-Order Seismic Stencil
Computation on Dual Intel Quadcore

 We have applied the same parallelization
framework as described in section 2 to a finite-
difference time-domain (FDTD) code for seismic wave
propagation, which performs a large stencil
computation with typical problem sizes of 1,0243 grid
points. This section describes some specific
performance features of the FDTD code. The 3D stencil
computation here is highly off-diagonal (6-th order) and
involves 37 points, i.e., each grid point interacts with 12
other grid points in each of the x, y and z Cartesian
directions. The original FDTD code is written with
standard POSIX threads to run on x86 multicore
systems, and we choose a dual Intel quadcore platform
as a testbed. Spatial decomposition divides the system

into 2D layers, and each thread works on its layer in the
x direction, taking 12 inputs from the main array
outputting a data point into a temporary array. Then the
temporary array is run through again with a 12-point
stencil and sent into the final array. For the y and z
directions, the initial 3D array is transposed before
being operated on, and the final array is then summed
out in strides in order to return to the 3D arrangement.

3.1. Optimization Schema for Seismic Code

 As mentioned above, the 37-point SC in the
seismic code accesses 12 neighbor points in each
Cartesian direction, in order to update the value of one
grid point. To find the bottleneck of the code, we have
run the code with the Intel VTune profiler on a dual
Intel quadcore platform, and the result shows that the
most time-consuming parts are nine computations and
two stride memory accessing. Each of the nine
computations (three for each of the x, y, z directions)
contains nested for loops over central and neighbor grid
points. The two stride memory accessing transpose the
3D array data to make the memory access in the y and z
directions contiguous, respectively, for the
computations.

We have applied the SIMDization approaches
described in section 2.3 to the parallel seismic code.
Here, we illustrate the procedure using a representative
code segment shown below, which calculates one value
from 12 nearest neighbors:

for(i=istart;i<iend;i++){
 bD[i+5] = −(b[i+5]+b[i+6]) *

(a6 * (u[i] − u[i + 11])
+a5 * (u[i +1] − u[i + 10])
+a4 * (u[i + 2] − u[i + 9])
+a3 * (u[i + 3] − u[i + 8])
+a2 * (u[i + 4] − u[i + 7])
+a1 * (u[i + 5] − u[i + 6]));

}

 Our SIMD solution first unrolls the loop four times
(we choose four for alignment), and then makes use of
the translocated statement fusion and vector
composition for SIMD as described in section 2.3. Prior

to the for loop, we pack floats u[i] to u[i+11] to
three vectors, uvec0, uvec1, and uvec2:

}3]4ku[i2],4ku[i1],+4ku[i4k],{u[i ++++++=kuvec (k
= 0, 1, 2).

We also pack the constants ak (k = 1, 2, … ,6) to three
vectors:

}a,a,a,{a 3456=0avec ,
}a,a,a,{a 2112 −=1avec ,

}a,a,a,a{ 6543 −−−−=2avec .
First, we initialize utmpk as uveck (k= 0, 1, 2). For the
first loop, we multiply each utmpk with aveck
(k=0, 1, 2) and store the product to vector sumvec.
After calling horizontal addition hadd (as defined in Fig.
11(b)) twice, we extract the first float value of sumvec
with extract. Subsequently, the float value is multiplied
by b to get a bD. Next, we load uvec3=
{u[i + 12],u[i + 13],u[i + 14], u[i + 15]} . For the second
loop, we first use shuffle operations to get new utmp0,
utmp1, utmp2, and do the same computation to get
another bD. Similar operations are repeated in the third
and the fourth loops except for different patterns for
shuffle. After the fourth loop, the four bDs are written
back as a vector and then update uvec0, uvec1, uvec2
with uvec1, uvec2, uvec3 for use in the next round.
The pseudo-code below and Fig. 11 illustrate the
SIMDization:
 subroutines:

compute(bD[i+5]){
sumvec=avec0*utmp0+avec1*utmp1+avec2*
utmp2;
 sumvec=hadd(sumvec);
 sumvec=hadd(sumvec);
 bD[i+5]=-(b[i+5]+ b[i+6])
 *extract(sumvec);
}
shuffle(patterni){

utmp0=shuffle(uvec0,uvec1,patterni);
utmp1=shuffle(uvec1,uvec2,patterni);
utmp2=shuffle(uvec2,uvec3,patterni);

}

main function:
pack uveci and aveci (i=0,1,2)
define patterns:

Figure 11. (a) Loop unrolling for seismic code and (b) SIMD calculation using the Intel SSE3
hadd instruction.

pattern0,pattern1,pattern2
for(i=istart;i<iend;i+=4){
 Loop one:
 utmpk=uveck (k=0,1,2);
 compute(bD[i+5]);
 load uvec3;
 Loop two:
 shuffle(pattern0);
 compute(bD[i+6]);
 Loop three:
 shuffle(pattern1);
 compute(bD[i+7]);
 Loop four:
 shuffle(pattern2);
 compute(bD[i+8]);
 store
 { bD[i+5], bD[i+6], bD[i+7], bD[i+8]}
{uvec0,uvec1,uvec2}=
{uvec1,uvec2,uvec3} //data reuse
}

The speedup of this SIMDization can be analyzed

as follows. The original program requires 19 operations
to get one bD while the SIMDized program operates
10×4 = 40 to get four bDs. Thus the speedup is 1.9.
Memory access can also be analyzed as follows: The
original program requires 15 memory accesses to get
one bD, while the SIMDized program needs only one
load, nine shuffle and one store to get four bDs—in
each round, we reuse three vectors from the last round
(see the last statement of the above pseudo-code), and
consequently only one vector u4 needs to be loaded.
After obtaining four bDs, the SIMD code writes back it
as a vector of
{ bD[i + 5], bD[i + 6], bD[i + 7], bD[i + 8]}.
The memory access is thus reduced by a factor of over
5. In summary, this solution not only utilizes SIMD and
loop unrolling but also enhances data reuse.

3.2. Performance Tests

 We have tested the performance of SIMD
parallelization for the seismic code on Intel dual
quadcore Xeon with 2.33 GHz clock, which has 32 KB
L1 data cache per core with shared 2×4 MB L2 cache
and 16 GB DDR2 memory. The processor also includes
128-bit wide registers and a separate register for data
movement. It also features Streaming SIMD Extension
2 (SSE2) and Streaming SIMD Extension 3 (SSE3)
instructions to support SIMDization.

Figure 12(a) shows the running time (to perform
one of the major for loops for the stencil computation in
the x direction) of the FDTD simulation without and
with SIMDization for different numbers of threads for
4003 grid points (the results are averaged over ten runs),
while Fig. 12(b) shows the corresponding speedup due
to SIMDization. Our SIMD solution achieves 2-3 fold
speedup for all numbers of threads. Figure 12(c) shows
the running time of the code segment to perform stencil
computation in the x direction (mainly consisting of
three for loops) without SIMD optimization, with one
of the three loops SIMDized, and with all three loops
SIMDized. The figure shows that our SIMD solution
reduces the running time when one third of computation
is SIMDized, while it cannot improve the performance
when SIMD is implemented in all three loops.

Fig 12. (a) Running time of seismic code with
and without SIMD for different numbers of
threads. (b) Speedup due to SIMDization. (c)
Running time of the code segment for stencil
computation in the x direction without SIMD,
with SIMD in one calculation and with SIMD for
all the three calculations in x direction.

Obviously, SIMD optimization on the seismic code
is not as effective as on pLBM, for which several
reasons are conceivable. The first is the problem size—
the pLBM is tested with the largest size of 643 while the

seismic code is with 4003. The large problem size has
caused a high TLB (translation lookaside buffer) miss
ratio of 0.2% on the Intel platform and thereby
decreased the performance. The large problem size also
causes large stride memory access when transposing the
array in the y and z directions, which further degrades
the performance of the whole program. Another reason
is the hardware restriction. The Intel platform has only
eight vector registers, which cannot feed 30 vectors
required for each round of computation in the seismic
code. This may cause frequent exchanges of data
between vector registers and main memory, which
greatly decreases the performance. This also explains
the performance decrease when the whole x-direction
computations are SIMDized instead of only one-third of
it. On the contrary, on Cell BE based PlayStation3,
there are 128 vector registers per SPE, which is more
than enough to satisfy the needs of pLBM, and
accordingly the SIMDized pLBM has achieved a better
performance.

4. Conclusion

 In summary, we have developed a hierarchical
parallelization framework that combines spatial
decomposition, multithreading with critical section-free,
dual representation, and SIMDization using
translocated statement fusion, vector composition and
vectorized data layout transformation. For diagonally
dominant stencil computations such as LBM, the SIMD
parallelization has been found highly effective on
multicore platforms such as a Cell BE based
PlayStation3 cluster. However, for highly off-diagonal
stencil computations such as the high-order FDTD code,
the SIMDization has proved less effective on a Intel
quadcore platform due to high TLB miss, large stride
memory accessing, and lack of vector registers. This
points out the need for further optimizations to increase
the data locality of the high-order stencil computation.

This work was partially supported by Chevron—
CiSoft, NSF, DOE, ARO, and DTRA. Scalability and
performance tests were carried out using the
Playstation3 cluster at the Collaboratory for Advanced
Computing and Simulations of the University of
Southern California, the BlueGene/L at the Lawrence
Livermore National Laboratory, and BlueGene/P at the
Argonne National Laboratory. We thank Dr. Lin H.
Yang for his help on the BlueGene/L benchmark and
the Argonne Leadership Computing Facility for their
help on the BlueGene/P benchmark.

References

[1] L. Renganarayanan et al., in Proc. of Int’l Parallel

and Distributed Processing Symp. (IPDPS) (IEEE,
2007).

[2] A. Sawdey and M.T.O’Keefe, in Proc. of Int'l
Workshop on Languages and Compilers for
Parallel Computing (LCPC, 1997).

[3] A. Taflove and S.C.Hagness, Computational
Electrodynamics: The Finite-Difference Time-
Domain Method, 3rd Ed. (Artech House Publisher,
2005).

[4] A. Nakano, P. Vashishta, and R. K. Kalia, Comput
Phys Commun 83, 181 (1994).

[5] R. Hararlick and L. Shapiro, Computer and Robot
Vision (Addision Wesley, 1992).

[6] M. Paleczny, K. Kennedy, and C. Koelbel,
Technical Report, Rice University, 94509S (1994).

[7] R. Schreiber and J. Dongarra, Technical Report,
University of Tennessee (1990).

[8] F. Desprez et al., Journal of Information Science
and Engineering 14, 167 (1998).

[9] K. Kamil et al., in Proc. of Workshop on Memory
System Performance (MSP) (ACM, 2006).

[10] A. J. C. Ladd and R. Verberg, J Stat Phys 104,
1191 (2001).

[11] L. Peng et al., Lecture Notes in Computer Science
5168, 763 (2008).

[12] A. Stathopoulos et al., Comput Sci Eng 2, 19
(2000).

[13] F. Shimojo et al., Phys Rev B 77, 085103 (2008).
[14] J. A. Kahle et al., IBM Journal of Research

Development 49, 589 (2005).
[15] D. A. Bader et al., Parallel Computing 33, 720

(2007).
[16] S. Williams et al., in Proc. of Int'l Parallel and

Distributed Processing Symp. (IPDPS) (IEEE,
2008).

[17] G. Rivera and C. Tseng, in Proc. of
Supercomputing (SC00) (IEEE/ACM, 2000).

[18] M. Frigo and V. Strumpen, in Proc. of Annual Int'l
Conf. on Supercomputing (ACM, 2005).

[19] D. Wonnacott, in Proc. of Int'l Parallel and
Distributed Processing Symp. (IPDPS) (IEEE,
2000).

[20] S. Krishnamoorthy et al., in Proc. of SIGPLAN
(ACM, 2007).

[21] K. Datta et al., in Proc. of Supercomputing (SC08)
(IEEE/ACM, 2008).

[22] D. Nuzman, I. Rosen, and A. Zaks, in Proc. of
Conf. on Programming Language Design and
Implementation (PLDI) (ACM, 2004).

[23] M. Gschwind et al., IEEE Micro 26, 10 (2006).

