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Abstract 
 
 Stencil computation (SC) is of critical importance 
for broad scientific and engineering applications. 
However, it is a challenge to optimize complex, high-
order SC on emerging clusters of multicore processors. 
We have developed a hierarchical SC parallelization 
framework that combines: (1) spatial decomposition 
based on message passing; (2) multithreading using 
critical section-free, dual representation; and (3) 
single-instruction multiple-data (SIMD) parallelism 
based on various code transformations. Our SIMD 
transformations include translocated statement fusion, 
vector composition via shuffle, and vectorized data 
layout reordering (e.g. matrix transpose), which are 
combined with traditional optimization techniques such 
as loop unrolling. We have thereby implemented two 
SCs of different characteristics—diagonally dominant, 
lattice Boltzmann method (LBM) for fluid flow 
simulation and highly off-diagonal (6-th order) finite-
difference time-domain (FDTD) code for seismic wave 
propagation—on a Cell Broadband Engine (Cell BE) 
based system (a cluster of PlayStation3 consoles), a 
dual Intel quadcore platform, and IBM BlueGene/L and 
P. We have achieved high inter-node and intra-node 
(multithreading and SIMD) scalability for the 
diagonally dominant LBM: Weak-scaling parallel 
efficiency 0.978 on 131,072 BlueGene/P processors; 
strong-scaling multithreading efficiency 0.882 on 6 
cores of Cell BE; and strong-scaling SIMD efficiency 
0.780 using 4-element vector registers of Cell BE. 
Implementation of the high-order SC, on the contrary, 
is less efficient due to long-stride memory access and 
the limited size of the vector register file, which points 
out the need for further optimizations. 
 
 
1. Introduction 

 
 Stencil computation (SC) is a common kernel of a 
wide range of scientific and engineering applications 
such as Jacobi and multigrid solvers [1]. Examples 
include explicit time-integration methods for numerical 
solution of partial differential equations used in climate, 
weather and ocean modeling [2], computational 
electromagnetics [3] and quantum dynamics [4] codes 
using the finite-difference time-domain (FDTD) 
method, multimedia/image-processing applications that 
perform smoothing and other neighbor pixel-based 
computations [5], and certain cellular automata and 
seismic simulations [6]. Because of its significance, SC 
is included in a number of benchmark suites, such as 
SPEC [7], HPFBECH [8], and NAS Parallel 
Benchmarks [9]. 

SC involves a variable )(Rv  defined for a set of 
discrete grid points }{R  in a regular lattice, and it 
sweeps over }{R  to update )(Rv  as a function of the 
values, )(R′v , of neighbor grid points 

)(RR neighbor∈′ : 
for ∀R ∈ {R} 
v(R) ← f({v(R′)|R′ ∈ neighbor(R)}) 

where f is a mapping function. A typical SC thus 
consists of doubly nested loops: The outer loop sweeps 
over all grid points R in the lattice to update )(Rv ; and 
the inner loop over )(RR neighbor∈′  computes 

)})(({ R′vf . SC may be classified according to the 
spatial pattern of )(Rneighbor  as follows. First, the 
order of a stencil is defined as the distance between the 
central grid point R and the farthest grid points ′ R  in 

)(Rneighbor  along a certain axis. (In a finite-
difference application, this order is identical to that of 
Taylor expansion.) Second, we define the size of a 
stencil as the cardinality |)(| Rneighbor , i.e. the 



 

number of grid points ′ R  in neighbor(R)  including R 
itself. In diagonally dominant SC, the computation 
depends heavily on the local value )(Rv  as well as 
some )(R′v  values from the nearest-neighbor grid 
points. Figure 1(a) shows a diagonally dominant, first-
order, 19-point SC in the 3-dimensional lattice 
Boltzmann method (LBM) flow simulation [10, 11]. SC 
in other applications is often much higher order 
involving distant neighbor grid points. For example, Fig. 
1(b) shows a 6-th order, 25-point SC in a 2-dimenional 
lattice. Such stencil is widely used in high-order finite-
difference calculations [12, 13]. 
 

 
Figure 1. (a) Diagonally dominant, first-order, 
19-point stencil in a 3D lattice for LBM flow 
simulation, and (b) 6-th order, 25-point stencil 
in a 2D lattice. For a grid point R (gray circle), 
the neighbor grid points R′ ∈ neighbor(R) are 
shown as solid circles, while the rest of the 
grid points as open circles. 
 

Emerging parallel platforms comprised of 
multicore compute nodes potentially provide enormous 
computing power for SC. An example is a cluster of 
general microprocessors consisting of multiple cores 
such as Intel quadcore processor. Another example is 
Cell Broadband Engine (Cell BE) in PlayStation3 and 
QS22 blade [14]. It is a heterogeneous multicore chip 
consisting of a traditional microprocessor called power 
processing element (PPE) that controls eight single-
instruction multiple-data (SIMD) co-processing units 
called synergistic processing elements (SPEs) [15]. 
 There have been extensive efforts to optimize SC 
on multicore platforms. Williams et al. [16] have 
optimized the LBM application on single Cell BE blade. 
Traditional SC optimization techniques include tiling 
[17] and iteration skewing (if the iteration structure 
allows it) [1, 18-20]. Recently, Datta et al. have 
performed comprehensive optimization of SC with both 
cache-aware and cache-oblivious approaches [21]. 
These studies are mainly focused on low-order SC. 
Since both SC and multicore architectures have wide 
varieties as mentioned above, it is desirable to develop 
a unified parallelization framework and perform 
systematic performance optimization for various SCs 

(e.g., diagonally dominant vs. high-order) on multicore 
architectures. 
 This paper presents our hierarchical SC 
parallelization framework that combines: (1) spatial 
decomposition based on message passing; (2) 
multithreading using critical section-free, dual 
representation; and (3) single-instruction multiple-data 
(SIMD) parallelism based on various code 
transformations. We employ SIMD transformations 
such as translocated statement fusion, vector 
composition via shuffle, and vectorized data layout 
reordering (e.g. matrix transpose), which are combined 
with traditional optimization techniques such as loop 
unrolling. We thereby parallelize two SCs of different 
characteristics—diagonally dominant (first order, 19-
point) LBM for fluid flow simulation, and high-order 
(6th-order, 37-point) FDTD for seismic wave 
propagation. The two SC applications have been 
implemented on a Cell BE based platform 
(PlayStation3 cluster), dual Intel quadcore, and IBM 
BlueGene/L and P. Section 2 presents the hierarchical 
SC parallelization framework applied to LBM, 
followed by test results of inter- and intra-node 
scalability on a PlayStation3 cluster and IBM 
BlueGene/L and P, as well the effect of SIMD, 
multithreading and their combination on a PlayStation3 
cluster. In section 3, we discuss the optimization of the 
seismic wave propagation code on a dual Intel quadcore 
platform. Section 4 contains conclusions drawn from 
our experiments. 
 
2. Hierarchical Parallelization of Lattice 
Boltzmann Method 
 
 In the lattice Boltzmann method (LBM) for fluid 
flow simulation, variable )(Rv  is a density function 
(DF) from which fluid density and velocity at R are 
computed. The LBM simulation consists of timing-
stepping iterations, where each step consists of two 
phases: (1) collision function that involves a large 
number of floating-point operations that are strictly 
local to each R; and (2) streaming function that 
contains no floating-point operation but solely memory 
copies between nearest-neighbor grid points. 

Our hierarchical parallel Lattice Boltzmann 
Method (pLBM) algorithm parallelizes LBM based on 
spatial decomposition implemented with message 
passing, multithreading using critical section-free, dual 
representation, and SIMD parallelism, which 
maximally exposes concurrency and data locality. The 
following subsections describe these parallelization 
layers. 

 
2.1. Spatial Decomposition Based on Message 
Passing 



 

 
 In the uppermost level of the hierarchical spatial 
decomposition in our pLBM algorithm, the total 
simulation space Ω = {R} is decomposed into several 
spatial sub-domains Ωi, where ii Ω∪=Ω  and each 
domain is mapped onto a processor. Figure 2 shows a 
two-dimensional example, where a single domain 
consists of Nx ×Ny grid points (Nx and Ny are the 
numbers of lattice sites in the x and y directions, 
respectively). Each domain is augmented with a 
surrounding buffer layer used for inter-domain DF 
migrations. We impose a boundary condition on DFs 
propagating toward the closed nodes (i.e. spatial 
regions with obstacles that exclude fluid flow), by 
reflecting back DFs propagation into the closed nodes 
toward the opposite direction. (The actual code 
implements a 3D LBM with the 19-point stencil in Fig. 
1.) 

 
Figure 2. Schematic of spatial decomposition 
in 2 dimensions with 4 domains (Ω0-Ω3). White 
squares are open lattice sites that have the 
DFs of flow particles. Black squares represent 
obstacles, where flow is excluded. Gray 
squares are buffer-layer sites for Ω0. 
 

We have implemented the spatial decomposition 
using the message passing interface (MPI) standard and 
have tested the inter-node scalability on the IBM 
BlueGene/L computer at the Lawrence Livermore 
National Laboratory and the IBM BlueGene/P 
computer at the Argonne National Laboratory. Figure 
3(a) shows the running and communication times of the 
pLBM code on up to 212,992 BlueGene/L and 131,072 
BlueGene/P processors. Here, we scale the number of 
lattice sites linearly with the number of processors: 
1283P lattice sites on P processors. The computing time 
increases only slightly when P increases from 1 to 
131,072 on BlueGene/P. The weak-scaling parallel 
efficiency is the running time on 1 processor divided by 
that on P processors, and it is 0.978 on 131,072 
BlueGene/P processors. Nearly ideal efficiency is also 
evident on 212,992 IBM BlueGene/L processors in Fig. 
3(a). Spatial decomposition is thus highly effective in 

terms of inter-node scalability for SC up to 105 compute 
nodes. 

 

 
Figure 3. Running (circles) and communication 
(squares) times of the pLBM flow simulation as 
a function of the number of processors on: (a) 
BlueGene/L (open symbols) and BlueGene/P 
(solid symbols), where each processor is 
assigned 1283P lattice sites; and (b) 
PlayStation3 cluster with 643P lattice sites per 
PlayStation3 console. 

 
 Figure 3(b) shows the inter-console parallel 
efficiency of pLBM on a cluster of 8 PlayStation3 
consoles. Here, we scale the number of lattice sites 
linearly with the number of processors: 643P lattice 
sites on P processors. Despite the small bandwidth and 
large latency of the low-cost Gigabyte Ethernet switch, 
the parallel efficiency of the PlayStation3 cluster is 
respectable (0.704 on 8 consoles). 
 
2.2. Multithreading Based on Critical Section- 
Free, Dual Representation 
 
 On a cluster of PlayStation3 (PS3) consoles, pLBM 
is implemented based on hierarchical spatial 
decomposition: (1) inter-console parallelization with 
the upper-level spatial decomposition into domains 
based on message passing; and (2) intra-console 
parallelization with the lower-level spatial 



 

decomposition into interleaved rows of the lattice sites 
within each domain through multithreading. Inside each 
PS3 console, the main program running on the power 
processing element (PPE) spawns multiple threads to 
run on synergistic processing elements (SPEs). Data 
transfer between the main memory of PPE and the local 
storage of SPEs is handled by direct memory access 
(DMA). 
 For the collision function, 6 SPE programs are 
performed simultaneously with 6 threads created by 
PPE (due to the PS3 hardware restriction, only 6 SPEs 
out of 8 are available for user programming). For 
optimal load balancing, we adopt an interleaving 
schema shown in Fig. 4(a), where the area enclosed by 
the dotted lines shows the computational task assigned 
to the first thread with thread ID 0, and chunk ID j is 
assigned to SPE with thread ID j mod Nthread, j ∈ 

]1,0[ −threadN  (the number of threads Nthread is 6). Since 
multiple threads may update a common lattice site, we 
adopt a double-layered DF consisting of two floating-
point arrays DF0 and DF1 to avoid any critical section, 
as shown in Fig. 4(b): The collision function transfers 
DFs from array DF0 to local store on SPE, updates the 
DFs, and subsequently copies it back to the array DF1. 

 
Figure 4. (a) Schematic of a 2-dimensional 
system setup for each domain in spatial 
decomposition. White squares are open lattice 
sites that have the DF’s, black squares 
represent obstacles, where flow does not exist, 
and gray squares are buffer-layer sites. The 
simulation system is divided into Ny 
computational chunks, each of which consists 
of Nx lattice sites, and the chunks are 
interleavingly assigned to SPEs. The numerals 
show thread-ID responsible for each chunk. (b) 
Schematic of a double-layered DF calculation 
comprising two floating-point arrays DF0 and 
DF1. The collision function reads DFs from 
DF0 to do updates and then stores the result in 
DF1. Subsequently, the streaming function 
propagates DFs from DF1 to DF0. 
 
 We have tested the intra-node (or multithreading) 
scalability of pLBM on each PlayStation3 console. 
Figure 5(a) shows the running time of pLBM involving 

643 lattice sites as a function of the number of SPEs (i.e. 
threads). The corresponding strong scaling (or fixed 
problem-size) speedup (circles) in Fig. 5(b) is close to 
the ideal speedup (solid line). The algorithm thus scales 
nearly linearly with the number of SPEs. On 6 SPEs, 
the speedup is 5.29, and the parallel efficiency (defined 
as the speedup divided by the number of threads) is 
0.882. 

 

 
Figure 5. Running time (a) and strong scaling 
speedup (b) of pLBM as a function of the 
number of SPEs on a PlayStation3 console. 
 
2.3. Single-Instruction Multiple-Data  
Parallelism 
 
 Most modern computing platforms have 
incorporated single-instruction multiple-data (SIMD) 
extensions into their processors [22] to exploit the 
natural parallelism of applications if the data can be 
SIMDized (i.e., if a single instruction can 
simultaneously operate on a vector of consecutive data). 
On Cell BE, each vector contains four floating-point 
numbers that are operated concurrently, and thus the 
ideal speedup is 4. We maximally expose SIMD 
parallelism of pLBM using various code 
transformations. The following subsections describe our 
SIMD transformations: Translocated instruction fusion, 
vector composition via shuffle, and vectorized data 
layout reordering (e.g. matrix transpose).  
 
2.3.1 Translocated Statement Fusion for SIMD 



 

 The key to SIMD parallelization is to identify 
SIMDizable statements, i.e., a set of statements that are 
independent and thus are executable concurrently, when 
the associate variables are packed into vectors. 
Statements that satisfy this criterion can be transformed 
into a single SIMD statement regardless of the positions 
of the statements (e.g., in different loops) in the 
program. The translocation of statements and their 
fusion into a SIMD operation enhance the concurrency 
of the program at the instruction level. In the following 
subsection, we illustrate the use of such translocated 
statement fusion for SIMD parallelization in pLBM. 
 Here, the original code is doubly nested for loops, 
where the inner loop traverses the 18 nearest neighbor 
grid points in a cube to perform certain computation: 

for(ic=0;ic<3;ic++){ 
  l=0; 
  rho=0.0; 
  for(  u[ic]=0.0;l<18;l++){ 
    fi[l] =  

  buffers[buf_idx].f[18*incz+1]; 
    u[ic] +=   fi[l]*v[l][ic]; 
  rho +=   fi[l]; 
  } 
} 

Our SIMD solution (Fig. 6) first exchanges the 
order of the two for loops, and then unrolls the inner 
loop over ic to 0, 1, and 2. Subsequently, we exploit 
four floats, v[l][0], v[l][1], ]v[l][2  and rho, which are 
SIMDizable (i.e., they can be multiplied and added 
simultaneously) and can be looped for 18 times each. 
We pack them into a vector 

rho}v[l][2],v[l][1],{v[l][0], , 
generate another vector 

fi[l]}fi[l],fi[l],{fi[l], , 
and perform vector multiple and vector add instructions 
on them. This is repeated by a for loop to get the final 
vector, which is {u[0], u[1], u[2], rho}. 

The resulting SIMDization can be expressed as 
{u[0],u[1],u[2], rho} =  

{fi[l],fi[l], fi[l], fi[l]}l= 0
17∑ * {v[l][0],v[l][1],v[l][2], rho} . 

The speedup of this SIMDization can be analyzed as 
follows. The original program performs 3×18×(2+2+1) 
= 270 operations by counting both multiplication “*” 
and addition “+” as one, while the SIMDized program 
requires only 18×(2+2) = 72 operations. Thus the 
speedup due to SIMD is estimated as 3.75. 
 

 

 

 
Figure 6. Example of SIMDization by 
translocated statement fusion in pLBM. 
 
2.3.2 Vector Composition for SIMD 
 
 The flexibility of composing new vectors is another 
useful feature of SIMD supported by shuffle and extract 
instructions. The shuffle(vec1, vec2, pattern) function 
is a byte-oriented operation that selects bytes according 
to the pattern (a control vector) from source vectors 
vec1 and vec2 and places them in a target vector [23]. 
The control vector entries are indices of bytes in the 32-
byte concatenation of vec1 and vec2: To select byte n 
from vec1, we define the corresponding byte of the 
pattern as “0X0n”, while from vec2 as “0X1n”. Figure 
7 illustrates the use of shuffle to generate a new vector 

u[0]}u[0],u[0],{u[0],=0uvec from vector 
u[3]}u[2],u[1],{u[0],=uvec . By assigning uvec to 

vec1, vec2 and defining pattern0 as in Fig 7, we can 
select desired bytes of the uvec to generate uvec0. 
 

 
Figure 7. Example of shuffle to compose a new 

vector in pLBM. 

 

 Here, the original code is a doubly nested for loops 
to calculate all  u[i]*u[j] , where both i and j indices 

run from 0 to 2: 
for(i=0;i<3;i++) 
  for(j=0;j<3;j++) 
     pieq[i][j]= u[i]*u[j]; 



 

Our SIMD solution first packs all u[i] s into vector 
uvec as u[3]}u[2],u[1],{u[0],=uvec , where u[3]  is set 
as NULL to fill the vector. We then define three 
patterns and perform three shuffle operations with 
different patterns to obtain three new vectors: 

u[i]}u[i],u[i],{u[i],=iuvec  (i = 0, 1, 2). 
Subsequently, we multiply uveci (i = 0, 1, 2) by 

uvec, and put the results into pieqveci (i = 0, 1, 2), 
respectively. The pseudo-code of the above 
SIMDization is given below:   

 
  uvec= {u[0],u[1],u[2],u[3]} 

       for(i=0;i<3;i++){ 
uveci=shuffle(uvec,uvec,patterni); 

pieqveci = mul(uvec,uveci); 

} 
 
The speedup of this SIMDization can be analyzed 

as follows. While the original program performs 3×3×1 
= 9 operations, the SIMD program requires only 3. 
Thus the speedup is 3. Memory access is analyzed as 
well. While the original program accesses memory 
3×3×3 = 27 times, the SIMD program only requires 
1+3×1 = 4 memory accesses. Thus the memory access 
time is reduced by a factor of 7 by the SIMDization. 
The use of array of structure (AOS), i.e., the packing of 
3 floats into a vector leaving the fourth element NULL, 
incurs some overhead, which is largely offset by the 
SIMD speedup. 

It is highly beneficial to generate new data from 
existing vector registers instead of fetching them from 
cache or memory each time, and this greatly improves 
the data reuse ratio and reduces the memory access time. 
Data generation flexibility of SIMD via vector 
composition thus not only reduces computation but also 
reduces memory access. 
 
2.3.3 Data Layout Reordering for SIMD 
 

Data layout reordering is another SIMDizing 
technique facilitated by shuffle. By defining appropriate 
patterns, for instance, it is possible to transpose the 
rows and columns of an array efficiently. Figure 8 
shows a transpose function for a 4×4 array, 
TRANSPOSE4*4(v0,v1,v2,v3), where each vi (i = 
0,1,2,3) is a vector. The transpose procedure in Fig. 8 
consists of two steps, both of which are shuffle 
operations. First, the 4×4 array is arranged as four 
vectors, where each row itself is a vector. We then 
define patterns for shuffle operation, and execute the set 
of four shuffles in Step 1 (Fig 8), followed by another 
set of four shuffles in Step 2 (Fig 8) to obtain the 

transposed array. Since all the vectors are in the vector 
register, only four memory accesses are involved, 
making this SIMDized transpose highly efficient. 
 

 
Figure 8. Transpose of a 4×4 array by shuffle 
operations for SIMDization. 
 

We use this SIMDized transpose to parallelize 
pLBM. Here, the original code is a doubly nested for 
loops to do something like matrix multiplication: 

for(j=0;j<3;j++){ 
   pi[i][j] = 0.0; 
  for(l=0;l<18;l++) 
     pi[i][j] +=  fi[l]* v[l][j]; 
} 

The inner loop accesses an 18×3 array, v, column 
by column. The resulting stride memory accessing 
degrades the performance considerably and necessitates 
data layout reordering. Our SIMD solution resolves this 
problem in a two-step procedure: (1) transpose—v is 
transposed using divide-and-conquer, first dividing it 
into 5 small arrays and then using TRANSPOSE4*4() 
to transpose each sub-array; and (2) calculation—the 
transpose reduces the problem to the one described in 
section 2.3.1, which is SIMDized using the same 
transposed statement fusion schema. The pseudo-code 
of the above SIMDization of transpose is given below: 

TRANSPOSE18*3(  v[][]){ 
  for(l=0,l<18,l=+4) 
TRANSPOSE4*4( v[l], v[l +1], v[l + 2],NULL); 
} 

The speedup of the SIMDized transpose of an 18×3 
array can be analyzed as follows. The original program 
requires 3×18×(1+2) = 162 operations, while the SIMD 
program operates 5×4×2 = 40. The speedup is thus 2.7. 
This is remarkable considering the overhead of the 
SIMDization. First, we transpose an array of 4×4 each 
time, while the real program only has 4×3 data. Also, 
the TRANSPOSE18*3 function in fact transposes 20×3 
data instead of 18×3. 



 

Using the techniques described above, we have 
SIMDized pLBM, where the SIMDization was only 
implemented to the collision function, which accounts 
for the most computing time of pLBM. We first test the 
SIMD effect with various problem sizes both for the 
collision part (which is fully SIMDized) and the whole 
pLBM application on a PS3, where the number of 
threads is set to one. Figure 9(a) shows the SIMD 
speedup of the collision function (i.e. the ratio of the 
running time without SIMD and that with SIMD). It is 
an ascending function of the problem size and reaches 
3.72 for 2.61×105 grid points, which is close to the 
ideal speedup of 4 (SIMD efficiency is 0.930). Figure 
9(b) shows the SIMD effect for the whole pLBM 
application. The SIMD speedup of pLBM is again an 
ascending function of the problem size and reaches 3.12 
for 2.614×105 grid points (SIMD efficiency 0.780). The 
SIMD optimization is thus highly effective for pLBM. 

 

 

 
Figure 9. Effect of SIMD with problem size on a 
PS3. The speedup of collision function due to 
SIMD (a) and the speedup of pLBM due to 
SIMD (b) are plotted as a function of the 
problem size. 

 
Next, we test the SIMD speedup for different 

numbers of threads for the collision part and the whole 
pLBM application on a PS3 for 2.614×105 grid points. 
Figure 10(a) shows that the speedup for the collision 
(i.e. pure SIMD) part is nearly constant around 3.5 with 
varying number of threads. The SIMD optimization 
thus has very good scalability with different numbers of 

threads. However, for the whole pLBM application, the 
speedup is a decreasing function of the number of 
threads and reduces to 2.1 for 6 threads (i.e. the 
maximum number of threads on a PS3). This is because 
both communication and streaming-computation times 
do not decrease for larger numbers of threads. 
Consequently, the overall speedup for the whole pLBM 
is not as good as for the pure SIMD part. 

 

 

 
Figure 10. SIMD speedup for different numbers 
of threads on a PS3 for (a) collision function 
and (b) the entire pLBM. 
 
3. High-Order Seismic Stencil 
Computation on Dual Intel Quadcore 
 
 We have applied the same parallelization 
framework as described in section 2 to a finite-
difference time-domain (FDTD) code for seismic wave 
propagation, which performs a large stencil 
computation with typical problem sizes of 1,0243 grid 
points. This section describes some specific 
performance features of the FDTD code. The 3D stencil 
computation here is highly off-diagonal (6-th order) and 
involves 37 points, i.e., each grid point interacts with 12 
other grid points in each of the x, y and z Cartesian 
directions. The original FDTD code is written with 
standard POSIX threads to run on x86 multicore 
systems, and we choose a dual Intel quadcore platform 
as a testbed. Spatial decomposition divides the system 



 

into 2D layers, and each thread works on its layer in the 
x direction, taking 12 inputs from the main array 
outputting a data point into a temporary array. Then the 
temporary array is run through again with a 12-point 
stencil and sent into the final array. For the y and z 
directions, the initial 3D array is transposed before 
being operated on, and the final array is then summed 
out in strides in order to return to the 3D arrangement. 
 
3.1. Optimization Schema for Seismic Code 
 
 As mentioned above, the 37-point SC in the 
seismic code accesses 12 neighbor points in each 
Cartesian direction, in order to update the value of one 
grid point. To find the bottleneck of the code, we have 
run the code with the Intel VTune profiler on a dual 
Intel quadcore platform, and the result shows that the 
most time-consuming parts are nine computations and 
two stride memory accessing. Each of the nine 
computations (three for each of the x, y, z directions) 
contains nested for loops over central and neighbor grid 
points. The two stride memory accessing transpose the 
3D array data to make the memory access in the y and z 
directions contiguous, respectively, for the 
computations. 

We have applied the SIMDization approaches 
described in section 2.3 to the parallel seismic code. 
Here, we illustrate the procedure using a representative 
code segment shown below, which calculates one value 
from 12 nearest neighbors: 

for(i=istart;i<iend;i++){ 
    bD[i+5] = −(b[i+5]+b[i+6]) * 

  

(a6 * (u[i] − u[i + 11])
+a5 * (u[i +1] − u[i + 10])
+a4 * (u[i + 2] − u[i + 9])
+a3 * (u[i + 3] − u[i + 8])
+a2 * (u[i + 4] − u[i + 7])
+a1 * (u[i + 5] − u[i + 6]));

 

} 

 Our SIMD solution first unrolls the loop four times 
(we choose four for alignment), and then makes use of 
the translocated statement fusion and vector 
composition for SIMD as described in section 2.3. Prior 

to the for loop, we pack floats   u[i]  to   u[i+11]  to 
three vectors, uvec0, uvec1, and uvec2: 

}3]4ku[i2],4ku[i1],+4ku[i4k],{u[i ++++++=kuvec (k 
= 0, 1, 2). 

We also pack the constants ak (k = 1, 2, … ,6) to three 
vectors:  

}a,a,a,{a 3456=0avec ,  
}a,a,a,{a 2112 −=1avec ,  

}a,a,a,a{ 6543 −−−−=2avec .  
First, we initialize utmpk as uveck (k= 0, 1, 2). For the 
first loop, we multiply each utmpk with aveck  
(k=0, 1, 2) and store the product to vector sumvec. 
After calling horizontal addition hadd (as defined in Fig. 
11(b)) twice, we extract the first float value of sumvec 
with extract. Subsequently, the float value is multiplied 
by b to get a bD. Next, we load uvec3= 
{u[i + 12],u[i + 13],u[i + 14], u[i + 15]} . For the second 
loop, we first use shuffle operations to get new utmp0, 
utmp1, utmp2, and do the same computation to get 
another bD. Similar operations are repeated in the third 
and the fourth loops except for different patterns for 
shuffle. After the fourth loop, the four bDs are written 
back as a vector and then update uvec0, uvec1, uvec2 
with uvec1, uvec2, uvec3 for use in the next round. 
The pseudo-code below and Fig. 11 illustrate the 
SIMDization: 
      subroutines: 

compute(  bD[i+5]){ 
sumvec=avec0*utmp0+avec1*utmp1+avec2*
utmp2; 
  sumvec=hadd(sumvec); 
  sumvec=hadd(sumvec); 
   bD[i+5]=-(  b[i+5]+  b[i+6]) 
  *extract(sumvec); 
} 
shuffle(patterni){ 

utmp0=shuffle(uvec0,uvec1,patterni); 
utmp1=shuffle(uvec1,uvec2,patterni); 
utmp2=shuffle(uvec2,uvec3,patterni); 

} 

main function: 
pack uveci and aveci (i=0,1,2) 
define patterns:  



 

Figure 11. (a) Loop unrolling for seismic code and (b) SIMD calculation using the Intel SSE3 
hadd instruction. 

 
pattern0,pattern1,pattern2 
for(i=istart;i<iend;i+=4){ 
  Loop one: 
  utmpk=uveck (k=0,1,2); 
  compute(  bD[i+5]); 
  load uvec3; 
  Loop two: 
  shuffle(pattern0); 
  compute(  bD[i+6]); 
  Loop three: 
  shuffle(pattern1); 
  compute(  bD[i+7]);  
  Loop four: 
  shuffle(pattern2); 
  compute(  bD[i+8]); 
  store   
 {  bD[i+5],  bD[i+6],  bD[i+7],  bD[i+8]} 
{uvec0,uvec1,uvec2}= 
{uvec1,uvec2,uvec3}  //data reuse 
} 

 
The speedup of this SIMDization can be analyzed 

as follows. The original program requires 19 operations 
to get one bD while the SIMDized program operates 
10×4 = 40 to get four bDs. Thus the speedup is 1.9. 
Memory access can also be analyzed as follows: The 
original program requires 15 memory accesses to get 
one bD, while the SIMDized program needs only one 
load, nine shuffle and one store to get four bDs—in 
each round, we reuse three vectors from the last round 
(see the last statement of the above pseudo-code), and 
consequently only one vector u4 needs to be loaded. 
After obtaining four bDs, the SIMD code writes back it 
as a vector of  
{ bD[i + 5], bD[i + 6], bD[i + 7], bD[i + 8]}. 
The memory access is thus reduced by a factor of over 
5. In summary, this solution not only utilizes SIMD and 
loop unrolling but also enhances data reuse. 
 

3.2. Performance Tests 
 
 We have tested the performance of SIMD 
parallelization for the seismic code on Intel dual 
quadcore Xeon with 2.33 GHz clock, which has 32 KB 
L1 data cache per core with shared 2×4 MB L2 cache 
and 16 GB DDR2 memory. The processor also includes 
128-bit wide registers and a separate register for data 
movement. It also features Streaming SIMD Extension 
2 (SSE2) and Streaming SIMD Extension 3 (SSE3) 
instructions to support SIMDization. 

Figure 12(a) shows the running time (to perform 
one of the major for loops for the stencil computation in 
the x direction) of the FDTD simulation without and 
with SIMDization for different numbers of threads for 
4003 grid points (the results are averaged over ten runs), 
while Fig. 12(b) shows the corresponding speedup due 
to SIMDization. Our SIMD solution achieves 2-3 fold 
speedup for all numbers of threads. Figure 12(c) shows 
the running time of the code segment to perform stencil 
computation in the x direction (mainly consisting of 
three for loops) without SIMD optimization, with one 
of the three loops SIMDized, and with all three loops 
SIMDized. The figure shows that our SIMD solution 
reduces the running time when one third of computation 
is SIMDized, while it cannot improve the performance 
when SIMD is implemented in all three loops. 

 



 

 

 

 
Fig 12. (a) Running time of seismic code with 
and without SIMD for different numbers of 
threads. (b) Speedup due to SIMDization. (c) 
Running time of the code segment for stencil 
computation in the x direction without SIMD, 
with SIMD in one calculation and with SIMD for 
all the three calculations in x direction. 
 

Obviously, SIMD optimization on the seismic code 
is not as effective as on pLBM, for which several 
reasons are conceivable. The first is the problem size—
the pLBM is tested with the largest size of 643 while the 

seismic code is with 4003. The large problem size has 
caused a high TLB (translation lookaside buffer) miss 
ratio of 0.2% on the Intel platform and thereby 
decreased the performance. The large problem size also 
causes large stride memory access when transposing the 
array in the y and z directions, which further degrades 
the performance of the whole program. Another reason 
is the hardware restriction. The Intel platform has only 
eight vector registers, which cannot feed 30 vectors 
required for each round of computation in the seismic 
code. This may cause frequent exchanges of data 
between vector registers and main memory, which 
greatly decreases the performance. This also explains 
the performance decrease when the whole x-direction 
computations are SIMDized instead of only one-third of 
it. On the contrary, on Cell BE based PlayStation3, 
there are 128 vector registers per SPE, which is more 
than enough to satisfy the needs of pLBM, and 
accordingly the SIMDized pLBM has achieved a better 
performance. 
 
4. Conclusion 
 
 In summary, we have developed a hierarchical 
parallelization framework that combines spatial 
decomposition, multithreading with critical section-free, 
dual representation, and SIMDization using 
translocated statement fusion, vector composition and 
vectorized data layout transformation. For diagonally 
dominant stencil computations such as LBM, the SIMD 
parallelization has been found highly effective on 
multicore platforms such as a Cell BE based 
PlayStation3 cluster. However, for highly off-diagonal 
stencil computations such as the high-order FDTD code, 
the SIMDization has proved less effective on a Intel 
quadcore platform due to high TLB miss, large stride 
memory accessing, and lack of vector registers. This 
points out the need for further optimizations to increase 
the data locality of the high-order stencil computation. 
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