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Abstract

Multimillion atom molecular-dynamics (MD) simulations are performed to investigate dynamics of oxidation of aluminum
nanoclusters and properties and processes in nanostructured silicon carbide (n-SiC) and nanostructured amorphous silica
(n-a-SiO2). The simulations are based on reliable interatomic interactions that include both ionic and covalent effects. The
simulations are carried out on parallel architectures using highly efficient O(N) multiresolutions algorithms which include an
adaptive load-balancing approach based on wavelets and a data-compression scheme based on fractals.

Results from the oxidation simulation reveal a passivating amorphous oxide layer of thickness∼40 Å, which is in excellent
agreement with experiments. The oxide layer is amorphous and has mixed tetrahedral, Al(O1/4)4, and octahedral, Al(O1/6)6,
configurations. The average mass density in the oxide region is 75% of the bulk alumina density. Local stresses in the oxide
scale are analyzed and their correlation with the dynamics of oxidation is determined.

Sintering, structural correlations, and mechanical behavior of n-SiC and n-a-SiO2 are investigated. In the case of n-SiC, both
experiment and simulation indicate the onset of sintering around 1500 K which is much lower than the sintering temperature
for coarse-grained SiC. In both n-SiC and n-a-SiO2, pores are found to be self-similar. They have a fractal dimension close to
2 and their surface roughness exponents are∼0.5. Pair-distribution functions and bond-angle distributions reveal a crystalline
core and an amorphous interface in the consolidated n-SiC. In the case of nanophase silica glasses, the short-range order (SRO)
is similar to that in the bulk glass but not the intermediate-range order (IRO). In the nanophase system the first sharp diffraction
peak (FSDP), the signature of IRO, has a much smaller height and is shifted toward smallerk relative to the FSDP in the bulk
system. The elastic moduli of nanophase silica glasses scale with the density as∼ρ3.5; the bulk, shear and Young’s moduli of
n-SiC scale as∼ρη, whereη is 3.51±0.02, 3.29±0.06, and 3.34±0.03, respectively. 2000 Elsevier Science B.V. All rights
reserved.
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1. Introduction

Materials synthesized by consolidation of nanome-
ter size atomic clusters are known as nanophase ma-
terials. In the mid 80’s, a research group at Argonne
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National Laboratory led by Dr. R. Siegel and a Ger-
man group led by Dr. H. Gleiter began synthesizing
them [1,2]. Since then, a wide variety of nanophase
metals, alloys, and ceramics have been synthesized
by various experimental methods. Prominent among
them are the condensed-phase, gas-phase, and vacuum
techniques [2].

Nanophase materials have unique physical proper-
ties that result from small grain sizes and the presence
of a large number of atoms at interfaces. The structure
of nanophase materials has been investigated by:
(i) transmission electron microscopy, scanning elec-

tron microscopy, scanning tunneling microscopy,
and field-ion microscopy;

(ii) electron, X-ray, and neutron diffraction tech-
niques; and

(iii) Mössbauer, Raman, and positron annihilation
spectroscopies.

The properties of nanophase materials are strongly
influenced by their grain-boundary volume (which
represents a significant fraction of their total volume).

Nanophase metals, intermetallic compounds, and
ceramics are significantly better than their conven-
tional coarse-grained counterparts [3–5]. For exam-
ple, nanophase materials sinter at much lower tem-
peratures than conventional coarse-grained solids. (In
the case of nanophase TiO2 the sintering tempera-
ture is lowered by 600◦C without any compacting or
sintering aids.) This leads to considerable savings in
the synthesis of such materials. Mechanical properties
of consolidated nanophase materials show remarkable
improvements in strength and hardness [6]. Cu and
Pd assembled from 5 to 7 nm diameter clusters have
hardness and yield strength values up to 500% greater
than conventional metals [7,8]. This large increase in
strength arises from the fact that the creation and mo-
tion of dislocations are hindered by small grains of
nanophase metals.

In ceramics, which are normally brittle, cluster as-
sembly yields a different benefit. Ceramics can be ren-
dered ductile when synthesized from clusters below
15 nm in diameter. The cause of enhanced ductility
is believed to be grain-boundary sliding. Small grains
also facilitate efficient impurity doping of these ma-
terials. Nanophase insulator and semiconductor mate-
rials can be doped at low temperatures allowing ef-
ficient introduction of impurity levels and therefore

their electrical, optical, and chemical properties can be
tailored.

The chemical properties of nanophase materials are
also quite unique. For example, the use of nanoparti-
cles as catalysts to remove sulfur from car exhaust has
been tested and found to be about five times more ef-
fective than conventional catalysts. This excellent per-
formance is due to the high surface-to-volume ratio of
small clusters in nanophase materials. Also the large
porosity of these materials increases the adsorption
area and makes them better catalysts [2,8–12].

This paper focuses on three kinds of systems:
(i) nanophase silica consisting of amorphous SiO2

nanoclusters;
(ii) nanophase SiC comprising crystalline nanoclus-

ters; and
(iii) passivation of aluminum nanoclusters with oxy-

gen.
The last one is the basic entity for a unique kind of
nanocomposite whose clusters have metallic interiors
and ceramic surfaces. Such a nanocomposite has been
synthesized by Sánchez–López et al. [13,14]. They
have found that Al nanoclusters of various sizes (120–
410 Å) form a 40 Å thick oxide scale regardless of the
oxygen dosage. Recently other experimental studies of
the passivation of ultrafine Al particles have also been
reported. They reveal the formation of a 25 to 50 Å
thick oxide scale in 500 to 700 Å size Al particles
exposed to air. The oxide scale remains intact even
after compaction. Thermogravimetric studies of small
metallic particles show an oxide scale of thickness 30
to 40 Å in a 200 Å Al cluster [15]. In connection
with ignition, Aumann et al. [16] have observed that
Al particles with diameters between 240 and 650 Å
oxidize with a square-root time dependence similar to
that for flat Al samples. Additionally, they find that
the increased surface area of Al particles lowers the
oxidizing activation energy relative to that of flat Al
samples.

Very little is known about the atomic-scale structure
of oxidized nanoclusters. The structure of the oxide
scale is believed to be amorphous, although there is no
detailed structural analysis of the oxide scale. Recent
studies indicate differences between the local structure
of the oxide scales formed on Al nanoclusters and
that on large Al surfaces. However, details of the
differences are not known [14,16–18].
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Starting with the pioneering works of Mott [19] and
Cabrera and Mott [20], most of the theoretical studies
on oxidation have focused on metal surfaces. In metals
like magnesium, the oxide scale grows linearly with
time. The resulting tensile stresses cause the oxide film
to crack and become porous. In metals like Al, Cu, Fe,
and Ti where the diffusion of ions or electrons through
a non-porous oxide layer controls the oxide growth, a
square root time dependence has been observed.

In this paper, we report the results of large-scale,
parallel MD simulations of the oxidation of an alu-
minum nanocluster of radius 100 Å. The simulations
take into account the effect of charge transfer between
Al and O dynamically on the basis of the electroneg-
ativity equalization principle. The resulting Coulomb
interaction is calculated with the O(N) fast multi-
pole method [21,22]. We also use a multiple time-
step approach to compute short-range and long-range
forces efficiently [23]. The parallel MD implementa-
tion is based on highly efficient load-balancing and
data-compression algorithms.

In the oxidation simulations, a passivating amor-
phous oxide layer of thickness∼40 Å is formed during
466 ps of simulation time. The average mass density
in the oxide region is 75% of the bulk alumina den-
sity. Local stresses in the oxide scale are analyzed and
their correlation with the dynamics of oxidation is de-
termined.

Large-scale, parallel MD simulations have also
been performed to investigate sintering, structure,
vibrational properties, and mechanical behavior of
nanophase silica glasses consisting of glassy silica
nanoclusters that are 70 Å in diameter. The system is
sintered at a temperature of 1000 K and at pressures
ranging from 0.6 to 2.4 GPa. During the sintering
process, the structure of pores remains self-similar
with a fractal dimension close to 2 and the surface
roughness exponents of pores is∼0.5. The short-range
order (SRO) in nanophase glasses is similar to that in
the bulk glass. However, the intermediate-range order
(IRO), as characterized by the first sharp diffraction
peak (FSDP), is quite different in nanophase and bulk
silica glasses. In the nanophase system, the FSDP has
a much smaller height and is shifted toward smaller
k relative to the FSDP in the bulk system. The low-
energy modes in the vibrational density of states are
significantly enhanced in the nanophase glass relative
to those in the bulk system. The elastic moduli of

nanophase silica glasses scale with the density as
M ∼ ρ3.5.

In this paper, we also present the results of the first
joint MD and neutron scattering study of nanophase
SiC (n-SiC). Both experiment and simulation indi-
cate that sintering ensues above 1500 K which is
much lower than the sintering temperature for coarse-
grained SiC. In the MD simulations, the sintered n-
SiC systems at different densities reveal self-similar
pores whose fractal dimensions are∼2.4 and surface
roughness exponents∼0.45. The mean-squared dis-
placements of both Si and C atoms in the nanoclusters
indicate that the primary sintering mechanism is sur-
face diffusion of atoms. Pair-distribution functions and
bond-angle distributions in the consolidated n-SiC re-
veal that cores of nanoparticles are crystalline and the
interfacial regions are amorphous. The elastic moduli
of n-SiC increase with the density as∼ ρη , whereη is
3.51±0.02, 3.29±0.06, and 3.34±0.03 for the bulk,
shear and Young’s moduli, respectively.

2. Molecular-dynamics simulations

Molecular-dynamics (MD) simulations for complex
physical systems can be computationally very de-
manding: they may require large numbers of atoms,
long simulation times, and computationally intensive
interatomic interactions. For example, MD simula-
tions of cluster-assembled nanophase materials require
106 to 107 atoms, since each cluster consists of 103 to
105 atoms. Preparation of well-thermalized nanophase
systems and calculation of mechanical and thermal
properties can require 105 to 107 time steps.

Molecular-dynamics simulations described in this
paper are based on complex interatomic potentials. For
nanophase silica and silicon carbide, these potentials
combine two-body and three-body terms. The two-
body terms include charge-transfer between atoms
through screened Coulomb potentials, charge-dipole
interactions, and steric repulsion between atoms. (In
SiC, there is an additional dipole–dipole interaction
term.) Covalent effects in silica and silicon carbide are
taken into account through three-body bond-bending
and bond-stretching terms.

To validate these potentials, MD simulations are
performed to determine various structural and dynami-
cal properties and the results are compared with exper-
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imental measurements. In the case of silica, we have
investigated the behavior of molten, crystalline and
amorphous states and also of permanently densified
amorphous SiO2. The MD results for pair-distribution
functions, static structure factors, vibrational densities
of states, bond-angle distributions, and elastic mod-
uli in crystalline and amorphous SiO2 are in good
agreement with experimental results [24–26]. The in-
teratomic potential for silicon carbide is validated by
comparing the MD results with experimental measure-
ments of lattice constant, cohesive energy, elastic mod-
uli (C11, C12, C44), bulk modulus, and the phonon
density-of-states of crystallineβ-SiC.

Molecular-dynamics simulations of oxidation of
aluminum nanoclusters are based on an interaction
model [27] that can successfully describe a wide range
of physical properties of Al and Al2O3. This so called
electrostatic plus (ES+) model is capable of treating:
(i) both metallic and ceramic systems; (ii) bond for-
mation and bond breakage; and (iii) changes in charge
transfer as the atoms move and their local environ-
ments are constantly altered. In the ES+ model, the po-
tential energy of the system is expressed as the sum of
an embedded-atom potential and an electrostatic po-
tential (ES):V = VEAM + VES. The latter is expressed
as,

VES=
∑
i

νi (qi)+ 1

2

∑
i 6=j

νij (r ij ;qi, qj ),

νi(qi)= νi(0)+ χ0
i qi + 1

2J
0
i q

2
i ,

(1)
νij = (r ij ;qi, qj )
=
∫

d3r1

∫
d3r2ρi(r i;qi)ρj (r2;qj)/r12,

where the local atomic energyνi(qi) is a second-order
Taylor expansion in the partial chargeqi , χi is the
electronegativity [28], andJi is associated with a self-
Coulomb repulsion [29]. In Eq. (1),νij (r ij ;qi, qj )
represents the electrostatic interaction energy due to
charge-density distributionsρi(r ;qi) and ρj (r ;qi)
around atomi and j (including the nuclear point
charge), respectively. It is possible to choose a realistic
charge-density distribution function that would allow
for directional dependence of bonds and local polar-
izability. For mathematical convenience, Streitz and
Mintmire [27] choseρi to be an extended form of a
Slater-type 1s orbital:

ρi(r ;qi)=Ziδ(r − r i)+ (qi +Zi)
×
(
ζ 3
i

π

)
exp

(−2ζi |r − r i |
)
, (2)

whereζi is the decay length for atomic orbitals andZi
is an effective core charge (0< Zi < Zi , with Zi the
total nuclear charge of an atom).

The parameters in the ES+ potential parameters are
fitted to the bulk properties of both fcc aluminum
andα-alumina crystal structures. The potential yields
reasonable surface energies and relaxations for several
low-index surfaces ofα-alumina.

The unique feature of the ES+ model potential is
that it explicitly includes dynamic charge transfer be-
tween anions and cations. Fig. 1 illustrates dynamic
charge transfer in a MD simulation of oxygen on an
aluminum surface. The method is based on a semi-
empirical approach in which atomic charges are deter-
mined according to the electronegativity equalization
condition [29,30]. In other words, as atomic positions
change dynamically charge is redistributed in such a
way as to cause the chemical potential or electronega-
tivity to be equal at every atomic site.

In MD simulations, the atomic charges,qi , are de-
termined at each time step by minimizing the electro-
static energy Eq. (1), subject to the charge-neutrality
constraint,

∑
i qi = 0. This constrained minimiza-

tion is algebraically equivalent to the electronegativ-
ity equalization condition that the chemical potentials
∂VES/∂qi be equal for all atoms. In practice the min-
imization involves concurrent solution of two sets of
unconstrained linear equations using a conjugate gra-
dient method [31]. A preconditioning scheme based
on splitting the Coulomb-interaction matrix into short-
range and long-range components has recently been
proposed by Nakano [32]. This scheme is found to
substantially improve the convergence and parallel ef-
ficiency by increasing data locality.

An alternative approach to the above variable charge
method is to treat the atomic charges as dynamic
variables in an extended Lagrangian [33]. Charges
are given fictitious masses and velocities and then
propagated with the atomic degrees of freedom in
Newton’s equations of motion. Typically, the timestep
for the charge degree of freedom is much smaller than
the time step for the atomic motion. Multiple time step
integration schemes can be applied to speed up the
computations [23].
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Fig. 1. Snapshots of a variable-charge molecular-dynamics simulation of oxygen (large spheres) on an aluminum (small spheres) surface. The
charge on an atom (represented by color) is allowed to vary with the environment.

The most compute-intensive part of the ES+ poten-
tial is the long-range Coulomb interaction. It is calcu-
lated with the Fast Multipole Method (FMM) devel-
oped by Greengard and Rokhlin [21,22]. In this hier-
archical scheme, the MD cell is recursively divided in
half along each of the Cartesian axes to obtain multi-
ple sets of cells. In three-dimensions the entire struc-
ture can be viewed as an oct-tree structure with the
MD cell as the root of the tree, corresponding to level
l = 0. At each level in the tree there are 8l number of
cells (each parent in levell − 1 produces 8 children).
The recursive decomposition continues to a levelL at
which point further refinements would make the cell
size smaller than the cutoff distance for the short-range
potential. In other words, at the highest level of refine-
ment each cell corresponds to a link-cell in the link-
cell list structure. Because the hierarchical decompo-
sition in FMM is related to a tree structure, the cells at
the highest level of refinement are often referred to as
leaf-cells.

The FMM algorithm decomposes into anupward
passand adownward pass. The upward passstarts
at the highest level of refinementL where the outer
multipoles Cmn for each leaf-cell (with respect to

the center of the leaf-cell) are computed from the
equation:

Cmn =
N∑
i=1

qir
n
i Y
−m
n (θi, φi). (3)

Since the information about each atom is used only
once, the computational cost is O(Np2), where p
is the order of the multipole expansion. The outer
multipolesDjl for each cellc in levelL− 1 are then
computed from the outer multipolesCmn of c’s children
in level L by using a transformation that translates
each child’s outer multipoles to the parent’s center
and then they are added together. This procedure is
repeated for each of the successive levels in the tree
until level 2 is reached. Since the maximum number of
possible leaf-cells isN and each translation involves
p4 operations the computational cost is O(Np4). At
the end of theupward passthe outer multipoles for all
cells at all levels are determined.

Before describing thedownward passit is necessary
to define some of the terminology used in the FMM
[21,22]. At a levell the nearest neighborsof a cell
c are defined to be the set of 26 cells that share a
boundary point withc. Two cells are said towell-
separatedif they are separated by at least one cell.
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The interaction setfor a cell c is defined to be the
set of cells at the same level asc that are notnearest
neighborsof c and whose parent cells arenearest
neighborsof the parent ofc. Note that at any level
there are at most 189 entries in theinteraction listof a
cell.

The downward passoperates by consistently com-
puting interactions between cells at the coarsest level
possible. This is accomplished for a given cell by com-
puting interactions with those cells which arewell-
separatedand whose interactions have not been ac-
counted for at the parent’s level. Thedownward pass
is initiated at the coarsest level by computing all the
inner multipoles for each cell in the level. When free
boundary conditions are used, the coarsest level that
containswell-separatedcells isl = 2. The inner multi-
poles for each cellc in the coarsest level are computed
by converting the outer expansion of each cell that is
well-separatedfrom c to an inner expansion about the
center ofc using the outer-to-inner translation and then
adding them together:

E
j

l =
∞∑
n=0

n∑
m=−n

O
−m−j
n+l (x2− x1)D

m
n , (4)

where

Om
n (x)=Om

n (r, θ,φ)

= (−1)ni|m|

Amn

YMn (θ,φ)

rn+1 , (5)

D
j
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l∑
n=0

n∑
m=−n

I
j−m
l−n (x1− x0)C

m
n , (6)

Imn (x)= Imn (r, θ,φ)
= i−|m|Amn rnYmn (θ,φ), (7)

and

Amn =A−mn =
(−1)n√

(n−m)!(n+m)! . (8)

In Eq. (5),Ynm are the spherical harmonics. Thedown-
ward passproceeds in a recursive manner, beginning
at the next coarsest level, as follows:
(i) for each cell c in level l the inner expansion

belonging toc’s parent is converted to an inner
expansion aboutc’s center using the inner-to-
inner translation (4);

(ii) for each cellc in level l the outer expansion of
each cell inc’s interaction list is converted to an

inner expansion aboutc’s center using the outer-
to-inner translation (4) and then they are added
together;

(iii) steps (i) and (ii) are repeated for levell + 1 until
they are completed for all levels including the
leaf-levelL.

Once steps (i) and (ii) have been completed at the
leaf-level, the inner expansion for each leaf-cell will
contain the interactions with all otherwell-separated
leaf-cells. The number of operations required for
steps (i) and (ii) is6190Np4. Finally, the far field
contribution to the potential at each atomic position
is computed from the inner expansion:

V(x)=
∞∑
l=0

l∑
j=−l

F
j

l I
j

l (x− x3), (9)

where

F
j
l =

∞∑
n=l

n∑
m=−n

I
m−j
n−l (x3− x2)E

m
n . (10)

This step requires6 Np2 operations. Altogether, the
computation for thedownward passscales asNp4.

The nearest neighborleaf-cell contributions are
computed directly using the link-cell lists with the
number of operations proportional toN/Nb , where
Nb =N/8L the average number of atoms per link-cell.
From the discussion of theupward pass, downward
pass, and direct calculation it can be seen that the
computational complexity of the FMM algorithm is
O(N). For realistic system sizes serial implementation
can still be impractical, thus motivating the need for
parallel computation.

3. Parallel implementation

To implement the MD algorithm on parallel com-
puters, we use a divide-and-conquer strategy based
on domain decomposition [34]. We consider a sys-
tem of N atoms contained in an MD cell. The par-
titioning of work amongP processors (nodes) is ac-
complished as shown in Fig. 2. The MD cell is sub-
divided intoP = Px × Py × Pz subsystems of equal
volume. All the attributes (coordinates, velocities, ac-
celerations, species, etc.) associated with atoms lo-
cated within a particular subsystem are stored within
the memory of the corresponding node. When atoms
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Fig. 2. Domain-decomposition scheme in two dimensions for nine
nodes. Arrows indicate the direction of message-passing. The
dashed line indicates the copied boundary regions for node 5.

move out of a subsystem into a neighboring sub-
system, the corresponding attributes (positions, ve-
locities, etc.) are transferred using standard message-
passing library routines [35].

The calculation of short-range interatomic forces in
a subsystem is done using the link-cell list scheme. To
calculate the forces on atoms within a subsystem, the
coordinates of all the boundary atoms that reside in the
26 nearest-neighbor subsystems are required. The co-
ordinates of boundary atoms are exchanged between
nearest-neighbor nodes usingnon-blockingsend and
blocking receive operations. Newly received bound-
ary atom coordinates are stored in augmented link-
cell lists. Boundary-atom exchange between nearest-
neighbor nodes is accomplished through six message-
passing steps: north, south, east, west, upper, and
lower. Boundary-atom coordinates that need to be ex-
changed with edge-sharing and corner-sharing neigh-
bors are first passed to the appropriate face sharing
neighbor and then forwarded to the appropriate des-
tination node during the subsequent message-passing
steps. Newton’s third law can be used to reduce the
number of message-passing steps by a factor of two. In
this case, it is necessary to send the forces computed
for boundary atoms back to the source node.

In the parallel FMM implementation, the unit MD
cell is decomposed intoP = Px×Py×Pz subsystems
with the requirement that eachPα be a power of 2.

Fig. 3. Domain decomposition scheme for FMM in a two-di-
mensional system. In the lower levels, cells are local to a node. Cell
information in the upper levels is made global to all nodes.

We define a levelLg = log2[max(Px,Py,Pz)] in the
FMM tree. In the lower levels of the hierarchy,l >Lg ,
each cell is uniquely assigned to a node. For upper
levels, l < Lg , the number of cells becomes smaller
than the number of nodes. In this case, assignment of
each cell to a node results in processors becoming idle.
An alternative approach is to duplicate the multipole
computations in the upper levels by setting the cells to
be global. Fig. 3 illustrates this decomposition scheme
for a two-dimensional system.

The upward passand downward passproceed as
in the serial case. The calculation of multipole expan-
sions for the leaf-cells is local to each node. Because
a parent cell and its children reside on the same node,
the outer-to-outer translations of the upward pass and
the inner-to-inner translations of the downward pass
do not require any communication between nodes. To
compute the outer-to-inner translations from a cell’s
interaction set, the outer multipoles of two boundary
layer cells must be copied from the nearest-neighbor
nodes. This is accomplished through message-passing
steps similar to those used in the short-range force cal-
culations. The 8l/P cells on a node are augmented
with outer multipoles copied from adjacent nodes to
form an array consisting of the outer multipoles of
(2l/Px +2)(2l/Py +2)(2l/Pz+2) cells at each layer.
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The outer-to-inner translations at each of the lower
levels (l > Lg) are computed using the augmented
set of outer multipoles. For upper levels(l < Lg) the
global set of outer multipoles is used.

Uniform spatial decomposition of a system contain-
ing an inhomogeneous distribution of atoms can re-
sult in unequal workloads among nodes. This degrades
the efficiency of the parallel implementation based
on conventional domain decomposition. Global struc-
tural rearrangement during a simulation can also lead
to load-imbalance. Dynamic load-balancing schemes
that adaptively repartition the workload are formulated
to address these issues.

We have designed an adaptive, low-overhead load-
balancing scheme that minimizes the communica-
tion and incorporates appropriate boundary condi-
tions [36]. The main idea is to introduce an adaptive
curvilinear-coordinate system,ξ , which is related to
the dimensionless atomic coordinate,s, by a mapping,
ξ = s+ u(s). We have implemented both plane-wave
and wavelet representations for the transformation:

u(s)=
∑
q

aq exp(iq · s), (11)

u(s)=
∑
n,m

dn,mΨn,m(s). (12)

We apply the uniform spatial decomposition in the
curvilinear space. The coordinate transformation is
then dynamically adapted to minimize the load-im-
balance and communication costs using the simulated-
annealing technique. Such a uniform decomposition
in the curvilinear space generally results in curved
partition boundaries in the Euclidean space. We find
that a multiresolution analysis based on wavelets leads
to a compact representation ofu(s), and accordingly to
fast convergence of the minimization procedure [37].

The load-balancer has been implemented on parallel
computers and incorporated into the existing MD
codes. In benchmark tests on 32 nodes, the load-
balancer reduced the time to compute forces by a
factor of 4.2, while the overhead due to the load-
balancer was only 3.2% of the total execution time
of the MD program (repartitioning with 5 simulated
annealing iterations after 60 MD steps) [36]. We also

find that the load-balancer is highly scalable: for a
1.04× 109 atom MD simulation on 64 IBM SP2
nodes, the parallel efficiency is 92% [37].

4. Data compression

A serious technological gap exists between the
growth in processor power and that of input/output
(I/O) speed. The I/O (including data transfer to remote
archival storage devices) has thus become the bottle-
neck in large-scale MD simulations.

We have developed a scalable data-compression
scheme to address the I/O problem. It uses octree
indexing and sorts atoms accordingly on the result-
ing spacefilling curve [38] (see Fig. 4). Space-filling
curve is a bijective mapping of a 1-dimensional ar-
ray to 3-dimensional grid points, which preserves
the spatial proximity of consecutive array elements
in the 3-dimensional space. By storing differences
between successive atomic coordinates, the I/O re-
quirement with the same error tolerance level re-
duces from O(N logN) to O(N). This, together with

Fig. 4. A spacefilling curve based on octree indexing maps the
3-dimensional space into a sequential list, while preserving spatial
proximity of consecutive list elements. (The panel shows a 2D
example.)
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Fig. 5. Snapshots showing the evolution of oxidation in a wedge cut from the Al nanocluster at 25 and 50 ps of simulation time. The larger
spheres correspond to oxygen and smaller spheres to aluminum; color represents the sign and magnitude of the charge on an atom.

a variable-length encoding to handle exceptional val-
ues (outliers), reduces the I/O size by an order-of-
magnitude (52 to 6 Bytes/atom) with a user-controlled
error bound. The compression algorithm is also light-
weight, and involves minimal computation. Since the
source code is written in the standard C language and
is portable to different architectures, it is readily inte-
grated into an existing MD code as a plug-in.

The compression algorithm for MD configurations
(atomic positions, velocities, and other attributes)
consists of the following major steps:
(1) Convert all double-precision data to integers by

dividing them by a user-specified error bound;
(2) Compute the octree index,Ri of atomic positions

for all the atoms,i = 1, . . . ,N (Ri is obtained by
interleaving the binary representation ofx, y, and
z coordinates);

(3) Sort the atoms in the increasing order ofRi ;
(4) Differentiate the atomic-position data:1Ri =

Ri −Ri−1;
(5) Store differentiated1Ri , velocities, and similar

data using variable-length encoding.

5. Oxidation of Al nanocluster

The initial oxide growth is characterized by large
stress gradients and rapid atomic diffusion. Fig. 5
shows the evolution of oxidation in a wedge cut from
the system at 25 and 50 ps of simulation time. The
thickness of the oxide increases linearly with time to
25 Å during the first 50 ps and subsequently it begins
to saturate. The initial oxide growth is accompanied by
a rapid increase in temperature (∼1500 K) in the sur-
face region (due to the energy released during Al–O
bond formation). The growth of the oxide is due to the
movement of oxygen towards the interior of the cluster
and movement of aluminum towards the oxide surface.
Movement of atoms through the oxide is consistent
with the distribution of the local stresses. Fig. 6 shows
the hydrostatic stress in a slice through the middle of
the nanocluster at 50 ps. It can be seen that while large
stress gradients exist throughout the nanocluster, the
hydrostatic stresses in the oxide region are predomi-
nately negative causing movement of atoms into the
oxide region. The hydrostatic stresses in the core re-
gion are predominately positive. The large stress gra-
dients cause rapid movement of atoms throughout the
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Fig. 6. Hydrostatic stress in a slice through the center of the oxidized Al nanocluster after 50 ps of simulation time. The stresses were calculated
by averaging the atomic virial in 6 Å voxels over a 1 ps interval.

Fig. 7. Snapshot of the oxidized Al nanocluster after 466 ps of simulation time. A 90◦ wedge is cut from the cluster to reveal the interior
structure. The larger spheres correspond to oxygen and smaller spheres to aluminum; color represents the sign and magnitude of the charge on
an atom.



R.K. Kalia et al. / Computer Physics Communications 128 (2000) 245–259 255

Fig. 8. Snapshot of the nanophase amorphous SiO2 system at a density of 1.07 g/cm3. The figure on the left shows the nanoclusters in red. On
the right is a 20 Å slice showing the pore regions in red.

oxide. For example, around 50 ps diffusivities of Al
and O are 1.4× 10−4 and 1.1× 10−4 cm3/s, respec-
tively. Radial and tangential diffusivities remain about
equal resulting in uniform growth of the oxide.

The oxidation simulation was continued to 466 ps.
During this time a 40 Å thick oxide scale with an
average mass density of 2.9 g/cm3 (about 75% of
the crystallineα–Al2O3 density) is formed, as shown
in Fig. 7. This is in agreement with oxidation ex-
periments in which a 20 to 50 Å thick oxide scale
forms on aluminum nanoclusters 100 to 700 Å in size.
Analysis of the oxide region shows how structural
correlations vary as we pass through the oxide from
the metal-oxide interface to the oxide-environment
interface. In the metal-oxide region the Al–O bond
length is 1.81 Å. It increases slightly in the inte-
rior and oxide-environment regions where the oxy-
gen density is higher. The coordination numbers for
Al are 3.1 in the metal-oxide interface region, 3.9 in
the interior of the oxide scale, and 4.3 in the oxide-
environment interface. Analysis of the O–Al–O bond-
angle distribution for each region in the oxide shows
that there are two distinct peaks at 90◦ and 109◦, in-
dicating mixed octahedral, Al(O1/6)6, and tetrahedral,
Al(O1/4)4, configurations. These structural results are
consistent with experimental results for amorphous

alumina which are known to consist of tetrahedrally
and octahedrally coordinated aluminum [39,40].

6. Nanophase silica and silicon carbide

We have performed large-scale parallel MD simula-
tions to investigate sintering, structure, and mechani-
cal properties of nanophase silicon carbide (3 nm clus-
ters) and nanophase silica (7 nm clusters), see Fig. 8.
In addition, a neutron scattering experiment has been
performed at the Intense Pulsed Neutron Source Divi-
sion (IPNS), Argonne National Laboratory to investi-
gate the sintering behavior of nanocrystalline silicon
carbide.

Experimental and MD results for the sintering of
nanophase silicon carbide (n-SiC) are compared in
Fig. 9 which shows the experimentally observed par-
ticle size (solid circles) and the molecular-dynamics
results for the rate of bond formation between the
nanoparticles (solid squares with lines) as a function
of sintering temperature [41]. The MD simulation is
able to provide detailed picture of the onset of sinter-
ing through a dramatic change in the rate of bond for-
mation around the experimental sintering temperature
of 1500 K. Both MD simulation and neutron scatter-
ing data indicate that the sintering temperature in n-
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Fig. 9. Neutron-scattering results (solid circles, left axis) indicating
the onset of sintering in nanophase SiC by a rapid increase in
the average particle size above 1500 K. Comparison is made with
molecular-dynamics results (solid squares, right axis) for the rate of
bond formation between nanoclusters as a function of temperature.

SiC is considerably lower than that (2100–2400 K) for
coarse-grained SiC.

MD simulations provide further details regarding
the structural changes in micropores during sintering
and consolidation. Pore analysis is performed by
dividing the MD box into small cubic cells (length
∼0.4 nm) and identifying contiguous unoccupied
cells using the breadth-first search approach. The
morphology of pores is determined from the variations
of the average pore radiusR and the interface width
W (a measure of the pore-surface roughness) with the
pore volumeV . Fig. 10 shows a log–log plot ofR
andW as a function of the pore volumeV for the
n-SiC at 2.83 g/cm3. The mean pore radiusR scales
as V η with η = 0.42 giving a fractal dimension of
2.4 (d = 1/η). The interface widthW scales asV µ

with µ= 0.47. Similar results are found for nanophase
silica, whereη = 0.47 (d = 1/η= 2.1) andµ= 0.51.
Within the statistical uncertainty, we find no difference
in the fractal dimension or the roughness exponent
of pores in n-SiC or nanophase silica at different
densities. A similar fractal dimension(d = 2.0) has
been observed in densified silica aerogels using small-
angle neutron scattering [42].

There has been considerable debate over the atomic
configuration in the vicinity of grain boundaries of
consolidated nanophase materials. While some exper-
iments concluded that atoms in the grain boundary
region were gas-like showing no organized structure

Fig. 10. Log–log plot of the average pore radius(R) and interface
width (W) as a function of the pore volume(V ) for nanophase SiC.
Solid lines are the best least-squares fits.

[43,44], other experiments claimed the presence of
short-range order similar to that in liquids or amor-
phous solids [45,46]. To address these issues we have
performed a complete structural characterization of
nanophase silica glasses at various densities and of the
fully consolidated n-SiC using large scale MD simula-
tions.

We find that in nanophase silica glasses the short-
range order (SRO) is similar to that of bulk silica
glass. Both the nanophase and bulk silica glass contain
corner-sharing Si(O1/4)4 tetrahedral units. Dramatic
changes in the first sharp diffraction peak (FSDP) in
the neutron-scattering static structure factor,Sn(k),
are observed for nanophase silica glasses. The FSDP
yields information about the intermediate-range order
(IRO) in glasses, and in the past decade it has been the
focus of many experimental and computer simulation
studies [47,48]. Fig. 11 shows the MD results for
Sn(k) in the region of the FSDP for bulk silica glass
and nanophase silica glasses at various densities. As
seen in Fig. 11 the height of the FSDP in the bulk
silica glass is 15% higher than that of the nanophase
glasses. Additionally, the position of the FSDP in
nanophase silica glasses shifts toward smallerk with
respect to the bulk. We find that the Si–O partial static
structure factor is largely responsible for the change
in the height of the FSDP in the nanophase glasses at
different densities. The behavior of the FSDP position
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Fig. 11. Neutron-scattering static structure factor,Sn(k), for bulk
(solid line) and nanophase (dashed lines) amorphous SiO2. Only the
region around the FSDP is shown in order to illustrate the different
behavior of the bulk and nanophase systems.

in the nanophase glasses is reflected in the Si–O and
O–O partial static structure factors.

Analysis of the short-range order (SRO) in nano-
phase SiC reveals that while the interior of the clusters
remains crystalline, the interfacial regions are more
disordered having a structure similar to that of amor-
phous SiC. The peaks in pair-distribution functions
and bond-angle distributions for atoms in interfacial
regions of nanophase systems appear broadened when
compared with the sharp peaks in the interior regions
of the nanoparticles. From the Si–C pair distribution
function, we find the average nearest-neighbor coordi-
nation for Si atoms reduces from 4 in the interior of
particles to 3.5 in the interface regions, indicating that
there are nearly the same number of three- fold and
four-fold coordinated atoms in the interface regions.
The pair-distribution functions, nearest-neighbor coor-
dinations, and bond-angle distributions in the interfa-
cial regions of n-SiC are found to be similar to those of
bulk amorphous SiC. These results are consistent with
neutron and X-ray diffraction measurements, and also
with electron microscopy studies [49].

In both the nanophase silica glasses and nanophase
SiC we find that the elastic moduli exhibit a power-
law dependence on the density. This can be seen in
Fig. 12, which shows a log–log plot of the Young’s
(E) moduli with respect to the relative density for
both nanophase systems. The nanophase and bulk sil-
ica glasses (solid squares) are given as a function of
the bulk silica density; results for the nanophase SiC

Fig. 12. Log–log plot of the Young’s modulus for nanophase SiC
(solid circles) and nanophase amorphous SiO2 (solid squares) as
a function of the relative density. The nanophase SiC densities are
relative to the bulk crystalline SiC density and the nanophase SiO2
densities are relative to the bulk amorphous SiO2 density. The solid
lines are the best least-squares fits.

(solid circles) are shown as a function of the density
relative to the bulk crystalline SiC. The solid lines
are the best least-squares fits for each of the systems.
The scaling exponents for the Young’s modulus of
nanophase silica and SiC are found to be 3.5± 0.2
and 3.34± 0.03, respectively. Experimental measure-
ments on high-density silica and carbon aerogels in-
dicate very similar power-law dependence of elastic
moduli on the density [50].

7. Conclusion

In summary, highly efficient O(N) multiresolution
algorithms on parallel architectures have enabled us to
perform multimillion atom molecular-dynamics simu-
lations of various nanostructured materials. These sys-
tems include dynamics of oxidation of aluminum nan-
oclusters and properties and processes in nanostruc-
tured silicon carbide and nanostructured amorphous
silica.

Petaflop computers expected to be build in ten years
will enable trillion-atom simulations. This will allow
the study of the effects of microstructures spanning di-
verse length scales above mesoscales. We also expect
that interatomic potential models used in molecular-
dynamics simulations will be further refined with in-
puts from first-principles calculations [51,52]. These
atomistic simulations will be combined with con-
tinuum schemes based on finite-element methods to
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model truly macroscopic materials properties [53,54].
With these developments, materials simulations will
soon be able to predict properties of materials reliably
in advance of fabrication.
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