
Scalability of a Low-Cost Multi-Teraflop Linux Cluster for
High-End Classical Atomistic and Quantum Mechanical Simulations

Hideaki Kikuchi,2 Rajiv K. Kalia,1,2 Aiichiro Nakano,1,2 Priya Vashishta1,2

1Collaboratory for Multiscale Simulations, Department of Computer Science, Department of Physics & Astronomy,
Department of Materials Science, Department of Biomedical Engineering,

University of Southern California, Los Angeles, CA 90089, USA
2Concurrent Computing Laboratory for Materials Simulations, Biological Computation and Visualization Center,

Department of Computer Science, Department of Physics & Astronomy,
Louisiana State University, Baton Rouge, LA 70803, USA
hkikuchi@phys.lsu.edu, (rkalia, anakano, priyav)@usc.edu

Fuyuki Shimojo
Faculty of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima, 739-8521, Japan

shimojo@minerva.ias.hiroshima-u.ac.jp

Subhash Saini
IT Modeling and Simulation, NASA Ames Research Center, Moffett Field, CA 94035, USA

saini@nas.nasa.gov

Abstract

Scalability of a low-cost, Intel Xeon-based, multi-
Teraflop Linux cluster is tested for two high-end
scientific applications: Classical atomistic simulation
based on the molecular dynamics method and quantum
mechanical calculation based on the density functional
theory. These scalable parallel applications use space-
time multiresolution algorithms and feature
computational-space decomposition, wavelet-based
adaptive load balancing, and spacefilling-curve-based
data compression for scalable I/O. Comparative
performance tests are performed on a 1,024-processor
Linux cluster and a conventional higher-end parallel
supercomputer, 1,184-processor IBM SP4. The results
show that the performance of the Linux cluster is
comparable to that of the SP4. We also study various
effects, such as the sharing of memory and L2 cache
among processors, on the performance.

1. Introduction

There is growing interest in constructing
supercomputers from commodity PCs and network
components [1, 2]. Recent growth in the processing
power of PCs has reduced the cost of a multi-Teraflop
PC cluster within the budget of an academic institute.
For example, Louisiana State University (LSU) has
recently acquired a Linux cluster consisting of 512 dual
Intel Xeon 1.8 GHz nodes (i.e., 1,024 processors)

connected by Myricom’s Myrinet interconnect, see Fig.
1 [3]. The performance of the $2.6 million cluster,
SuperMike, is rated as 2.21 Tflops, according to the
standard High Performance Linpack (HPL) benchmark
[4], and SuperMike was ranked as the 11th fastest
supercomputer in the world in August 2002 [5].

Figure 1. The 1,024-processor Xeon cluster,
SuperMike, at LSU.

Although the performance of low-cost multi-
Teraflop Linux clusters has thus been confirmed by
standard benchmark tests, there is a continuing concern
regarding the scalability of such architecture for real
high-end scientific/engineering applications at the
Terascale, in comparison with conventional higher-end
parallel supercomputers such as IBM SP4.

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

Computational materials science provides an
excellent test case for such a comparative study. Rich
variety of simulation methods — ranging from
empirical molecular-dynamics (MD) simulations to ab
initio quantum-mechanical (QM) calculations — is
being used to study advanced materials and devices at
the atomistic level. Recently, we have developed a
suite of scalable MD and QM programs based on space-
time multiresolution algorithms [6]. The production-
quality programs in the suite also feature wavelet-based
computational-space decomposition for adaptive load
balancing and spacefilling-curve-based adaptive data
compression with user-defined error bound for scalable
I/O.

This paper describes a comparative performance
study of two multi-Teraflop architectures — the 1,024-
processor Linux cluster, SuperMike, and the 1,184-
processors IBM SP4 system, Marcellus, at the Naval
Oceanographic Office (NAVO) Major Shared Resource
Center (MSRC) — for MD and QM applications. In
the next section, we describe linear-scaling parallel
algorithms for MD and QM calculations. Section 3
describes the two parallel architectures used in this
study. Results of benchmark tests are given in Section
4, and Section 5 contains conclusions.

2. Scalable Parallel Atomistic Simulation
Algorithms

Our linear-scaling MD and QM algorithms
encompass a wide spectrum of physical reality: i)
Classical MD based on a many-body interatomic
potential model, and ii) self-consistent QM calculation
based on the density functional theory (DFT). These
algorithms deal with: i) All-pairs function evaluation in
the N-body problem, and ii) exhaustive combinatorial
enumeration in the quantum N-body problem. This
section describes general algorithmic techniques to
obtain approximate solutions to these problems in O(N)
time, including i) clustering, ii) hierarchical abstraction,
and iii) the analysis of asymptotic solution properties.
This section also describes a scalable parallel-
computing framework to implement these algorithms
on massively parallel computers.

2.1. Multiresolution Molecular Dynamics

In the MD approach, one obtains the phase-space
trajectories of the system (positions and velocities of all
atoms at all time) [6-8]. Atomic force laws for
describing how atoms interact with each other is
mathematically encoded in the interatomic potential
energy, EMD(rN), which is a function of the positions of
all N atoms, rN = {r1, r2, ..., rN}, in the system. In our
many-body interatomic potential scheme, EMD(rN) is

expressed as an analytic function that depends on
relative positions of atomic pairs and triples [9]. Time
evolution of rN is governed by a set of coupled ordinary
differential equations.

For interatomic potentials with finite ranges, the
computational cost can be made O(N) using a linked-
cell-list approach [10]. For long-range electrostatic
interactions, the fast multipole method (FMM) [10, 11]
computes the interatomic forces recursively on an
octree data structure in O(N) time.

Our multiresolution molecular dynamics
(MRMD) algorithm [10] also uses an approach called
the multiple time-scale (MTS) method [12-14]. The
MTS method uses different force-update schedules for
different force components, i.e ., forces from the
nearest-neighbor atoms are computed at every MD step,
and forces from farther atoms are computed with less
frequency. This not only reduces the computational
cost but also enhances the data locality, and accordingly
the parallel efficiency is increased. These different
force components are combined using a reversible
symplectic integrator [14], and the resulting algorithm
consists of nested loops to use forces from different
spatial regions. It has been proven that the phase-space
volume occupied by atoms is a simulation-loop
invariant in this algorithm [14], and this loop invariant
results in excellent long-time stability of the solutions.

For parallelization of MD simulations, we use
spatial decomposition [10]. The total volume of the
system is divided into P subsystems of equal volume,
and each subsystem is assigned to a processor in an
array of P processors. To calculate the force on an
atom in a subsystem, the coordinates of the atoms in the
boundaries of neighbor subsystems are “cached” from
the corresponding processors. After updating the
atomic positions due to a time-stepping procedure,
some atoms may have moved out of its subsystem.
These atoms are “migrated” to the proper neighbor
processors. With the spatial decomposition, the
computation scales as N/P while communication scales
in proportion to (N/P)2/3 for an N-atom system.

2.2. Linear-scaling Quantum-mechanical
Calculation Based on the Density
Functional Theory

Empirical interatomic potentials used in MD
simulations fail to describe chemical processes.
Instead, interatomic interaction in reactive regions
needs to be calculated by a QM method that can
describe breaking and formation of bonds. An atom
consists of a nucleus and surrounding electrons, and
quantum mechanics explicitly treats the electronic
degrees-of-freedom. Since each electron’s wave
function is a linear combination of many states, the

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

combinatorial solution space for the many-electron
problem is exponentially large. The density functional
theory (DFT) avoids the exhaustive enumeration of
many-electron correlations by solving M single-electron
problems in a common average environment (M is the
number of independent wave functions and is on the
order of N). As a result, the problem is reduced to a
self-consistent matrix eigenvalue problem, which can
be solved with O(M3) operations [15, 16]. The DFT
problem can also be formulated as a minimization of
the energy, EQM(rN, yM), with respect to electron wave
functions, yM(r) = {y1(r), y2(r), ..., yM(r)}, subject to
orthonormalization constraints between the wave
functions.

Efficient parallel implementation of DFT is
possible with real-space approaches based on higher-
order finite differencing [17] and multigrid acceleration
[18, 19]. We include electron-ion interaction using
norm-conserving pseudopotentials [20] and the
exchange-correlation energy associated with electron-
electron interaction in a generalized gradient
approximation [21]. For larger systems (M > 1,000),
however, the O(M3) orthonormalization becomes the
bottleneck.

For scalable DFT calculations, linear-scaling
algorithms are essential [22]. We have implemented
[23, 24] an O (M) algorithm [25] based on
unconstrained minimization of a modified energy
functional and a localized-basis approximation. This
algorithm is based on the observation that, for most
materials at most temperatures, the off-diagonal
elements of the density matrix decays exponentially
[22]. Such a diagonally dominant matrix can be
represented by maximally localizing each wave
function, yn(r), by a unitary transformation and then
truncating it with a finite cut-off radius. A Lagrange-
multiplier-like technique is also used to perform
unconstrained minimization, avoiding the O (M 3)
orthonormalization procedure. In the parallel linear-
scaling density functional theory (LSDFT) algorithm,
the computation time scales as O(M/P) on P processors,
whereas the communication scales as O((M/P)2/3). This
is in contrast to the O(M(M/P)2/3) communication in the
conventional parallel real-space DFT algorithm. Global
communication for calculating overlap integrals of the
wave functions (which scales as M2l ogP in the
conventional DFT algorithm) is unnecessary in the
linear-scaling algorithm.

2.3. Load Balancing and Data Compression

Practical simulations involving multibillion atoms
are associated with a number of computational
challenges, which have been addressed by a number of
software tools.

For example, many MD simulations are
characterized by irregular atomic distribution and
associated load imbalance. We have developed a
computational-space-decomposition approach to load
balancing [26]. This scheme partitions the system in a
computational space, which is related to the physical
space by a curvilinear coordinate transformation. (The
computational space shrinks where the workload
density is high and expands where the density is low, so
that the workload is uniformly distributed.) The
optimal coordinate system is determined to minimize
the load-imbalance and communication costs. We have
found that wavelet representation leads to compact
representation of curved partition boundaries, and
accordingly to fast convergence of the minimization
procedure [27].

Another challenge is massive input/output (I/O). A
1.5-billion-atom MD simulation we are currently
performing produces 150 GB of data per time step (or
per minute), including atomic species, positions,
velocities, and stresses. For scalable I/O of such large
datasets, we have designed a data compression
algorithm [28]. It uses octree indexing and sorts atoms
accordingly on the resulting spacefilling curve. By
storing differences between successive atomic
coordinates, the I/O requirement for the same error
tolerance level reduces from O(NlogN) to O (N). An
adaptive, variable-length encoding scheme is used to
make the scheme tolerant to outliers and optimized
dynamically. An order-of-magnitude reduction in I/O
was achieved for actual MD data with user-controlled
error bound.

3. Multi-Teraflop Testbeds

We test the scalability of the MRMD and LSDFT
algorithms on two multi-Teraflop computers: i) A
1,024-processor Intel Xeon system connected by
Myrinet and ii) a 1,184-processor IBM SP4 system.
This section describes the hardware architectures and
software of the two machines, which are relevant to the
interpretation of the performance results.

3.1. Intel Xeon-based Cluster: SuperMike

Recently, LSU has acquired through Atipa
Technologies a Beowulf-class supercomputer named
SuperMike. The system consists of 512 nodes each
with dual Intel Xeon 1.8GHz processors, 2GB DDR
SDRAM (i.e., 1TB total), on a Tyan Thunder i7500
motherboard (utilizing the Intel E7500 chipset). 512KB
L2 cache is integrated on die running at core clock on
each Xeon processor. The Intel E7500 chipset
optimized for dual Xeon processors delivers 3.2 GB/s
of bandwidth across the 400 MHz system bus.

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

These nodes are interconnected by Myrinet with
500 MB/s of point-to-point bandwidth in the duplex
mode. The Myrinet network consists of 12 E128 switch
units (8 with line cards in the “Clos64+64”
configuration and 4 with line cards in the “Spine”
configuration) and 512 Myrinet-2000-Fiber/PCI
interface cards. With this configuration, 64 nodes are
connected within each of the 8 switches, which are in
turn connected through Spine. Network software such
as MPI, VI, Sockets, and TCP/IP are layered efficiently
over “Glenn’s Messages” (GM). The Red Hat Linux
7.2 operating system, GM 1.5, MPICH-GM 1.2.4.8a,
and PBS Pro 5.2 are installed on SuperMike.

3.2. IBM SP4: Marcellus

The NAVO-MSRC has acquired an IBM SP-
POWER4 supercomputer named Marcel lus — a
“Scalable Parallel” system assembled with workstation-
class POWER4 processors, a dedicated high-speed
network, and IBM’s GPFS file system.

The 1,184-processor Marcellus consists of 148
nodes or LPARs (Logical Partitions), each with eight
1.3 GHz POWER4 processors. (Four LPARs, i.e., 32
processors, in turn constitute a physical unit.) An
LPAR contains four dual-processor chips, and in each
chip, the two processors share L2 cache. The total
memory size is 1.4 TB, and the system runs the AIX 5.1
operating system.

Marcellus uses a proprietary network and IBM’s
Colony II switch to communicate between nodes. The
network switch provides 360 MB/s bi-directional
bandwidth with 21 ms latency. There are two switch
adapters per 8-way node, for a total of 296 adapters.
The aggregate bi-directional bandwidth is 53.3 GB/s.

For MPI message passing between CPUs in the
same LPAR (8 CPUs/LPAR), the IBM MPI Library can
use fast shared memory, rather than the slower network
switch. Message passing between CPUs on different
nodes must use the network switch.

4. Performance Test Results

This section describes the performance test results
for the MRMD and LSDFT applications on the Linux
cluster, SuperMike, and the IBM SP4, Marcellus.

Figure 2 shows the execution time of the MRMD
algorithm for silica material as a function of the number
of processors, P . In this algorithm, the interatomic
potential energy is split into the long-range and short-
range contributions, where the long-range contribution
is computed after 10 steps. We scale the system size
linearly with the number of processors, so that the
number of atoms, N = 648,000 P.

On the Linux cluster, the execution time increases
only slightly as a function of P up to P = 512, which
signifies excellent parallel efficiency. (On 512
processors, the parallel efficiency is 87%.) The sudden
increase in the execution time from 512 to 1,024
processors is due to performance degradation by
sharing main memory between the two processors
within a dual-processor node. This arises since the test
uses only one processor per node up to P = 512 and
both processors for P = 1,024.

The computational time on the SP4 is less than that
on the Linux cluster, but the communication time grows
much faster as a function of P on the SP4 than on the
Linux cluster. Consequently the total wall-clock time
on the Linux cluster becomes less than that on the SP4
for larger numbers of processors (P > 512).

Figure 2. Wall-clock (circles) and
communication (squares) times per time step
of the MD algorithm with scaled workloads —
648,000 P atom silica systems on P processors
(P = 1, ..., 1,024) of the Linux cluster (solid
symbols) and the IBM SP4 (open symbols).

The above result suggests a detrimental effect of
sharing main memory by the two processors within a
node on the Linux cluster. To confirm this effect, Fig.
3 compares the results of two sets of MRMD
benchmark tests. In the first set, only one processor per
dual-processor node is used, whereas in the second set,
both processors are used for P = 2, ..., 512.

The performance degradation due to sharing main
memory in the execution time is nearly constant (~
17%) from 2 to 512 processors. Figure 3 also shows
performance degradation in the communication time,
because the shared memory is used for communication
between two processors in the same node. The
resulting congestion in memory and/or internal bus
significantly degrades the performance.

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

Figure 3. Wall-clock (circles) and
communication (squares) times per time step
of the MD algorithm with scaled workloads —
648,000 P atom silica systems on P processors
(P = 1, ..., 512) of the Linux cluster using single
processor per node (solid symbols) and two
processors per node (open symbols).

On the IBM SP4, there is additional performance
degradation due to the sharing of L2 cache by the two
processors within a chip. To quantify this effect, we
use a set of tools, bindUtils, provided by IBM, which
allow us to use only a single processor per chip. This
reduces congestions caused by sharing L2 cache
between two processors in the same chip.

In Fig. 4, solid and open symbols denote the results
of MRMD benchmark tests with and without bindUtils,
respectively. In these tests, only the first chip in each
node is used up to 128 processors, first and second
chips for 256 processors, and all four chips for 512
processors. The use of bindUtils significantly reduces
not only the execution time but also the communication
time. The maximum reduction is observed on 64
processors, where the execution and communication
times are reduced by 31% and 60%, respectively.

The two jumps (one from 8 to 16 processors and
the other from 32 to 64 processors) in the
communication time without bindUti ls can be
understood as communication bottleneck across 8-
processor LPARs and that across 32-processor physical
units, respectively. While the communication time with
bindUtils is larger than that without the tools up to 8
processors, the wall-clock time is always reduced by
bindUtils.

Figure 4. Wall-clock (circles) and
communication (squares) times per time step
of the MD algorithm with scaled workloads —
648,000 P atom silica systems on P processors
(P = 1, ..., 1,024) of the IBM SP4 with (solid
symbols) and without (open symbols) the use
of bindUtils.

We also study the difference in performance using
two different (Intel and PGI) compilers for the MRMD
algorithm on the Linux cluster, see Fig. 5. The
compilers used in the present benchmark tests are the
Intel Compiler 6.0 and the PGI compiler 4.0. The Intel
compiler makes better use of the architecture, including
the Streaming SIMD Extensions 2 (SSE2) that
augments the floating-point functional unit to deliver
two results per cycle in the ideal case. Accordingly, the
execution time using the Intel compiler is smaller than
that with the PGI compiler.

Figure 5. Wall-clock (circles) and
communication (squares) times per time step
of the MD algorithm with scaled workloads —
648,000 P atom silica systems on P processors
(P = 1, ..., 1,024) of the Linux cluster with the
Intel (solid symbols) and PGI (open symbols)
compilers.

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

We also perform benchmark tests of the LSDFT
algorithm for gallium arsenide material, in which the
localization region for the wave functions is defined as
a sphere with radius 4.4 Å. Figure 6 shows the wall-
clock and communication times per conjugate gradient
(CG) iteration on 1,024 Xeon and SP4 processors. The
wall-clock time scales linearly with N above N ~ 10,000
(the number of wave functions, M = 2N). The
interprocessor communication scales as O(N0.6) for N >
10,000.

The LSDFT application is characterized by heavier
communication and memory access, compared with the
MRMD application. The wall-clock times on the Linux
cluster and the SP4 are nearly identical, though the SP4
has more advanced memory architecture (memory
bandwidth is 11 GB/s) compared with the Linux cluster
(memory bandwidth is 3.2 GB/s). In contrast, the
communication time on the Linux cluster (using
Myrinet) is significantly less than that on SP4.

Figure 6. Wall-clock (circles) and
communication (squares) times per CG step as
a function of the number of atoms for the
parallel LSDFT algorithm on the Linux cluster
(solid symbols) and the IBM SP4 (open
symbols). The system is gallium arsenide
crystal in the zinc-blende structure. The
number of processors is fixed at 1,024.

To understand why the advanced memory
architecture of the IBM SP4 does not yield a better
performance for the LSDFT application compared with
that on the Linux cluster, we carry out LSDFT
benchmark tests on the SP4 using four different bind
configurations on 256 processors: (Nproc/Nchip, Nchip/Nnode,
Nnode) = (1, 2, 128), (1, 4, 64), (2, 2, 64), (2, 4, 32),
where N proc, Nchip, and N node are the numbers of
processors, chips, and nodes, respectively. The second
and the third bind configurations require the same
amount of communication across nodes, whereas the
first and the fourth configurations are characterized by

the lightest and the heaviest communication,
respectively. The third and the fourth bind
configurations include the effect of sharing L2 cache,
but not the first and the second configurations.

Figure 7 compares the benchmark test results for
the four bind configurations. The wall-clock time is
almost the same for the first three configurations,
whereas that of the fourth configuration is significantly
larger. This indicates that the performance degradation
on the IBM SP4 is not due to sharing L2 cache between
processors. Instead, the heavy congestion inside a chip
significantly slows down memory access.
Consequently, the wall-clock time on the SP4 becomes
comparable to that on the Linux cluster, even though
the SP4 has more advanced memory architecture.

Figure 7. Wall-clock (solid symbols) and
communication (open symbols) times per CG
step as a function of the number of atoms for
the parallel LSDFT algorithm on the IBM SP4,
using four different bind configurations on 256
processors: (Nproc/Nchip, Nchip/Nnode, Nnode) = (1, 2,
128) — triangles; (1, 4, 64) — reverse triangles;
(2, 2, 64) — squares; (2, 4, 32) — circles.

5. Conclusions

The 1,024-processor Xeon cluster with Myrinet
interconnect has exhibited excellent performance for
two scientific applications with rather different
characteristics — molecular dynamics and quantum
mechanics. For these applications, the performance of
the Linux cluster is comparable to (or even exceeding)
that of a higher-end parallel supercomputer, IBM SP4.
(Comparison with other supercomputers such as
Compaq AlphaServer is in progress.) This
demonstrates the viability of low-cost, PC-based, multi-
Teraflop Linux clusters for real-world applications.

Considering that the 1.8 GHz Xeon used in this
study is by no means the state of the art (2.8 GHz Xeon
is currently available and 4.2 GHz Xeon is expected in

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

2003 with much enhanced system bus), this
architecture, with powerful commodity-based
interconnect, is very promising as high-performance
computing platforms.

On the other hand, the measured performance of
the MRMD and LSDFT algorithms clearly reflects the
different architectures of the Linux cluster and the SP4,
suggesting an urgent need to develop improved
versions of these applications with portable
performance.

Acknowledgements This work was partially supported
by NASA, NSF, ARL, AFOSR, DOE, USC-Berkeley-
Princeton DURINT, and Louisiana Board of Regents.
The 1,024-processor Xeon cluster, SuperMike, was
acquired by LSU’s Center for Applied Information
Technology and Learning (LSU CAPITAL) through
funds appropriated by the Louisiana legislature as part
of the Governor’s information technology initiative.
Benchmark tests were also performed on the 1,184-
processor IBM SP4 computer, M a r c e l l u s , at
Department of Defense’s Naval Oceanographic Office
(NAVO) Major Shared Resource Center (MSRC) under
a DoD Challenge Project.

References

[1] T. Sterling (editor). Beowulf Cluster Computing
with Linux. MIT Press, Cambridge, MA, 2001.

[2] R. Buyya (editor). High-Performance Cluster
Computing, Volumes 1 and 2. Prentice Hall, Upper
Saddle River, NJ, 1999.

[3] http://www.phys.lsu.edu/faculty/tohline/capital/
beowulf.html.

[4] A. Petitet, R. C. Whaley, J. Dongarra, and A.
Cleary. HPL - a portable implementation of the
high-performance Linpack benchmark for
distributed-m e m o r y c o m p u t e r s,
http://www.netlib.org/benchmark/hpl.

[5] J. J. Dongarra. Performance of various computers
using standard linear equations software. Tech.
Report, Univ. of Tennessee, August 2002;
http://www.netlib.org/benchmark/performance.ps.

[6] A. Nakano, R. K. Kalia, P. Vashishta, T. J.
Campbell, S. Ogata, F. Shimojo, and S. Saini.
Scalable atomistic simulation algorithms for
materials research. In Proceedings of
Supercomputing 2001, ACM, New York, 2001.

[7] S. J. Plimpton. Fast parallel algorithms for short-
range molecular dynamics. Journal of
Computational Physics, 117:1-19 (1995).

[8] J. C. Phillips, G. Zheng, S. Kumar, and L. V. Kalé.
NAMD: Biomolecular simulations on thousands of
processors. In Proceedings of Supercomputing

2002, IEEE Computer Society, Los Alamitos, CA,
2002.

[9] P. Vashishta, R. K. Kalia, and A. Nakano. Large-
scale atomistic simulation of dynamic fracture.
Computing in Science & Engineering, 1(5):56-65
(1999).

[10] A. Nakano, R. K. Kalia, and P. Vashishta.
Multiresolution molecular dynamics algorithm for
realistic materials modeling on parallel computers.
Computer Physics Communications, 83:197-214
(1994).

[11] L. Greengard and V. Rokhlin. A fast algorithm for
particle simulations. Journal of Computational
Physics, 73:325-348 (1987).

[12] A. Nakano. Fuzzy clustering approach to
hierarchical molecular dynamics simulation of
multiscale materials phenomena. Computer
Physics Communications, 105:139-150 (1997).

[13] A. Nakano. A rigid-body based multiple time-
scale molecular dynamics simulation of nanophase
materials. The International Journal of High
Performance Computing Applications, 13:154-162
(1999).

[14] M. E. Tuckerman, D. A. Yarne, S. O. Samuelson,
A. L. Hughes, and G. J. Martyna. Exploiting
multiple levels of parallelism in molecular
dynamics based calculations via modern techniques
and software paradigms on distributed memory
computers. Computer Physics Communications,
128:333-376 (2000).

[15] P. Hohenberg and W. Kohn. Inhomogeneous
electron gas. Physical Review, 136:B864-B871
(1964).

[16] W. Kohn and P. Vashishta. General density
functional theory. In Inhomogeneous Electron
Gas, eds. N. H. March and S. Lundqvist, pages 79-
184. Plenum, New York, 1983.

[17] J. R. Chelikowsky, Y. Saad, S. Ögüt, I. Vasiliev,
and A. Stathopoulos. Electronic structure methods
for predicting the properties of materials: Grids in
space. Phyica Status Solidi (b), 217:173-195
(2000).

[18] J.-L. Fattebert and J. Bernholc. Towards grid-
based O (N) density-functional theory methods:
Optimized nonorthogonal orbitals and multigrid
acceleration. Physical Review B, 62:1713-1722
(2000).

[19] T. L. Beck. Real-space mesh techniques in
density-functional theory. Reviews of Modern
Physics, 72:1041-1080 (2000).

[20] N. Troullier and J. L. Martins. Efficient
pseudopotentials for plane-wave calculations.
Physical Review B, 43:1993-2006 (1991).

[21] J. P. Perdew, K. Burke, and M. Ernzerhof.
Generalized gradient approximation made simple.
Physical Review Letters, 77:3865-3868 (1996).

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

[22] S. Goedecker. Linear scaling electronic structure
methods. Reviews of Modern Physics, 71:1085-
1123 (1999).

[23] F. Shimojo, T. J. Campbell, R. K. Kalia, A.
Nakano, P. Vashishta, S. Ogata, and K. Tsuruta. A
scalable molecular-dynamics-algorithm suite for
materials simulations: Design-space diagram on
1,024 Cray T3E processors. Future Generation
Computer Systems, 17:279-291 (2000).

[24] F. Shimojo, R. K. Kalia, A. Nakano, and P.
Vashishta. Linear-scaling density-functional-
theory calculations of electronic structure based on
real-space grids: Design, analysis, and scalability
test of parallel algorithms. Computer Physics
Communications, 140:303-314 (2001).

[25] F. Mauri and G. Galli. Electronic-structure
calculations and molecular-dynamics simulations
with linear system-size scaling. Physical Review
B, 50:4316-4326 (1994).

[26] A. Nakano and T. J. Campbell. An adaptive
curvilinear-coordinate approach to dynamic load
balancing of parallel multi-resolution molecular
dynamics, Parallel Computing, 23:1461-1478
(1997).

[27] A. Nakano. Multiresolution load balancing in
curved space: The wavelet representation.
Concurrency: Practice and Experience, 11:343-
353 (1999).

[28] A. Omeltchenko, T. J. Campbell, R. K. Kalia, X.
Liu, A. Nakano, and P. Vashishta. Scalable I/O of
large-scale molecular-dynamics simulations: A
data-compression algorithm. Computer Physics
Communications, 131:78-85 (2000).

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

	IPDPS 2003
	Return to Main Menu

