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a b s t r a c t

Predictive Molecular Dynamics simulations of thermal transport require forcefields that can simultane-
ously reproduce several structural, thermodynamic and vibrational properties of materials like lattice
constants, phonon density of states, and specific heat. This requires a multi-objective optimization
approach for forcefield parameterization. Existing methodologies for forcefield parameterization use
ad-hoc and empirical weighting schemes to convert this into a single-objective optimization problem.
Here, we provide and describe software to perform multi-objective optimization of Stillinger–Weber
forcefields (SWFF) for two-dimensional layered materials using the recently developed 3rd genera-
tion non-dominated sorting genetic algorithm (NSGA-III). NSGA-III converges to the set of optimal
forcefields lying on the Pareto front in the multi-dimensional objective space. This set of forcefields
is used for uncertainty quantification of computed thermal conductivity due to variability in the
forcefield parameters. We demonstrate this new optimization scheme by constructing a SWFF for a
representative two-dimensional material, 2H-MoSe2 and quantifying the uncertainty in their computed
thermal conductivity.
Program summary
Program Title: MOGA-NSGA3
Program Files doi: http://dx.doi.org/10.17632/pbc6nb7hp9.1
Licensing Provisions: GNU General Public License 3
Programming Language: C++
Nature of problem: Interatomic forcefields used for molecular dynamics simulations of thermal con-
ductivity must be parameterized to accurately capture structural and vibrational properties of the
material system being modeled. Therefore, these forcefields must be simultaneously optimized against
several (n ≥ 5) material properties. However, such parameterization is difficult using existing forcefield
parameterization schemes, which are limited to optimization of a single or few (n < 3) objectives.
Solution method: We present software to perform evolutionary optimization of forcefields for thermal
conductivity simulations using the recently developed 3rd generation non-dominated sorting genetic
algorithm (NSGA-III). The algorithm’s unique reference-point-based niching and non-dominated sorting
schemes enable efficient exploration of higher-dimensional objective spaces while preserving diversity
among forcefield populations. The best set of forcefields on the Pareto front are used for estimating
uncertainty in computed thermal conductivity due to forcefield parameterization.
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1. Introduction

Molecular Dynamics (MD) simulations can be used to model
and quantify dynamic processes in nanomaterial systems such
as suspended monolayer materials that are difficult to measure
experimentally [1]. Interactions between atoms in these simula-
tions are described by forcefields, which are empirical physically-
motivated mathematical functions along with an associated set
of parameters. Optimization of forcefields for thermal transport
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involves identifying a set of forcefield parameters that will most
accurately reproduce physical properties like lattice constants,
elastic constants, and phonon frequencies that govern thermal
transport. While this parameterization requires simultaneous op-
timization of multiple properties with different physical units,
most existing parameterization schemes simplify this into a sin-
gle objective optimization problem by using an ad-hoc empirical
weighting schemes to construct a weighted sum of objectives.
Forcefields constructed using such single objective schemes are
highly dependent on the choice of objective weights, making it
difficult to quantify the uncertainty associated with variability in
forcefield parameters.

There have been limited attempts at multi-objective force-
field parameterization for complex forcefields like ReaxFF and
COMB [2] using evolutionary approaches [3–5]. These methods
have relied on algorithms such as NSGA-II, which are suitable
only for optimization of 3 or fewer objectives, thus greatly lim-
iting the applications for which forcefields can be optimized [3].
In this paper, we present a multi-objective optimization scheme
based on the recent the 3rd generation non-dominated sort-
ing genetic algorithm (NSGA-III) [6] for the parameterization of
empirical forcefields of the Stillinger–Weber functional form [7]
for modeling thermal transport in layered and two-dimensional
materials. The NSGA-III algorithm represents a generational im-
provement over existing schemes [8–12] by enabling optimiza-
tion of forcefields against significantly larger number of objectives
(up to 11) and also includes a unique reference-point-based nich-
ing scheme for the preservation of diversity among forcefields
and thus a more thorough sampling of the Pareto front necessary
for accurate uncertainty quantification. NSGA-III also includes a
normalization scheme to accommodate objectives which differ ei-
ther in order of magnitude or physical units (e.g. lattice constants
in nm vs. phonon frequencies in cm−1).

Stillinger–Weber forcefields (SWFFs) are a family of short-
ranged interatomic forcefields with simple functional forms suit-
able for simulating large systems (>>106 atoms) for long times
(> several ns). They also contain a moderately large set of empir-
ical parameters that can be tuned to accurately capture second-
order and higher-order interatomic force constants, which govern
lattice thermal conductivity [13]. Due to this combination of
properties, SWFFs have been widely used to compute the thermal
conductivity of several two-dimensional and layered materials.
While more complex forcefields with larger sets of tunable pa-
rameters may be used for thermal transport calculations, their
flexibility in accurately describing a very diverse phase space
of atomic configurations is not required for low-temperature
non-equilibrium MD simulations, where atoms merely vibrate
about their equilibrium positions [14]. Therefore, we choose to
optimize Stillinger–Weber forcefields using our NSGA-III-based
scheme. There is a large scatter in the computed values of thermal
conductivity for the same two-dimensional material, MoS2 [15].
While this scatter is partially attributable to variations in the MD
simulation parameters (system size, choice of equilibrium or non-
equilibrium simulations etc.), the majority of the variation arises
from differences in the forcefields parameters, which differ based
on choices made during the single-objective parameterization
process.

2. Results

The SWFF for the 2H-MoSe2 crystal models interactions be-
tween atoms using 2-body bonding terms and 3-body angle
terms [7]. The total potential energy of the given system of N
atoms located at [r1, r2, . . . , rN ] in the SWFF can be written as

E (r1, r2, . . . rN) =

∑
i<j

V2
(
rij
)
+

∑
i<j<k

V3
(
rij, rjk, θijk

)

where rij = rj − ri. The 2-body term, V2, is defined as

V2
(
rij
)

= A

(
B
r4ij

− 1

)
exp

(
γ

rij − rcut

)
The two-body term is defined by 3 optimizable parameters, A, B
and γ .

The 3-body term, V3 around a central atom i is given by
three optimizable parameters, λ, γ1 and γ2 and has the following
functional form. Geometric parameters, including interaction cut-
off distances, rcut , rcut1 and rcut2 and equilibrium angles, θ0 are
held fixed during parameterization.

V3
(
rij, rik, θijk

)
= λexp

(
γ1

rij − rcut1
−

γ2

rik − rcut2

)
(cosθ − cosθ0)2

The forcefield is parameterized against the lattice-constant,
elastic constants, and full phonon dispersion curves at three
values of lattice strain. Ground-truth values of the lattice and
elastic constants are taken from quantum-mechanical density
functional theory (DFT) calculations of the 2H and 1T’ monolayer
crystal. Mode Grüneisen parameters are calculated by compar-
ing the phonon dispersion curve of the relaxed (i.e. strain-free)
monolayer with monolayers under 5% compressive and tensile
biaxial strains. The SWFF is parameterized to minimize 5 ob-
jectives — the root-mean-square (RMS) distance between the
DFT value and forcefield-computed values of lattice constant,
elastic constant and three phonon dispersion curves (one for each
strain state). The error associated with phonon dispersions is
calculated as the RMS difference in the predicted and ground-
truth phonon frequencies for each band at each q-point along
selected high-symmetry directions (Fig. 1d). The error is equal
to a weighted sum of RMS frequency difference values for each
band. The weights are chosen to give a greater priority to acoustic
vibrational modes. Specifically, in our optimization, the relative
weights assigned to the three lowest-energy bands are 30 times
the values assigned to the remaining (higher-frequency opti-
cal) bands. This choice ensures a more accurate reproduction
of acoustic bands by the optimized forcefields and is motivated
by previous observations that acoustic phonons are responsible
for the majority of lattice thermal transport in semiconducting
and insulating systems [16]. Details about the DFT calculations
for computing ground-truth values are given in the Methods
section.

2.1. Parameterization of 2H MoSe2

The monolayer 2H phase of MoSe2 has a honeycomb crystal
structure with hexagonal unit cell composed of a layer of 6-fold
coordinated Mo atoms sandwiched between two planes of 3-fold
coordinated Se atoms in an ABA stacking sequence (Fig. 1). The
crystal structure consists of two atom types — Mo and Se, and
can be effectively described by three two-body interactions —
Mo-Mo, Se-Se and Mo-Se along with two three-body interaction
— Mo-Se-Mo and Se-Mo-Se. Excluding the interaction cutoff
distances, rcut , rcut1 and rcut2, the SWFF for the MoSe2 system can
be characterized by 13 design variables, which must be parame-
terized to minimize 5 objectives (lattice constant, elastic constant,
phonon dispersion curves at three values of lattice strain).

Fig. 2 shows the reduction in the computed errors of all five
objectives during forcefield optimization. The dark band indicates
the variance in the measured objective between the different
forcefields on the Pareto front at each generation. It is notice-
able that the lattice constant and elastic moduli are sensitive
to the variation of forcefield parameters, as indicated by the
relatively large variance in computed errors. In contrast, the
computed errors in phonon frequencies at all strain levels falls
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Fig. 1. (a, b) Crystal structure of MoSe2 showing two distinct atom types and (c) Phonon dispersion of the unstrained monolayer along high-symmetry directions
(d) in the Brillouin zone.

Fig. 2. Computed error in lattice constant (a), elastic modulus (b) and three phonon dispersion curves (c). The dark line represents median of the Pareto front for
each epoch, while the band quantifies the variance among forcefields on the front.

Table 1
Two-body terms of the Stillinger–Weber forcefield.
Interacting atoms A γ B rmin rmax

Se-Se 2.738 1.564 40.208 0.00 4.493
Mo-Se 5.459 0.497 13.307 0.00 3.345
Mo-Mo 2.899 0.406 38.732 0.00 4.493

The two-body interaction term has the form V2 = A
(

B
rpij

− 1
)
exp

(
γ

rij−rcut

)
.

within a narrow band, indicating that all the forcefields on the
front accurately reproduce the phonon dispersion curves.

The outcome of the genetic algorithm optimization is highly
dependent on the choice of optimization metaparameters: pop-
ulation size, crossover and mutation ratios, etc. The forcefields
in Fig. 2 were generated by the NSGA-III with a population size
of 300 examples. At every epoch, crossover was performed on
80% of the population using a simulated binary crossover oper-
ator. Mutation was simulated by choosing forcefield parameters
from a uniform distribution between pre-specified lower- and
upper-bounds for each decision variable. Tables 1 and 2 show a
representative forcefield for 2H MoSe2 on the Pareto front of the
final epoch. Nine other representative forcefields from the same
front are provided in the SI.

Table 2
Three-body angle bending terms in the Stillinger–Weber forcefield.
Triplet λ θ0 γ1 = γ2 r12max r13max r23max

Me-Mo-Se 53.107 80.154 2.036 3.345 3.345 4.493
Mo-Se-Mo 19.010 80.154 5.921 3.345 3.345 4.493

The three-body interaction term has the form V3 =

λexp
(

γ1
rij−r1

−
γ2

rik−r2

)
(cosθ − cosθ0)2 .

3. Computational implementation

In addition to lower and upper bounds on each decision vari-
able, forcefield optimization using NSGA-III algorithm also re-
quires specification of a number of meta-parameters. Some of
these hyper-parameters such as population sizes, crossover and
mutation rates and magnitude of mutation are generic to evolu-
tionary algorithms and other parameters like number of hyper-
plane reference points are specific to the NSGA-III method. The
NSGA-III module (nsga3.c) completes a single iteration of Pareto
optimization based on the input population(s). This single itera-
tion approach allows for generality and optimization of objective
functions without explicit functional forms. The output is two
files: a new child population of variables and a copy of the
previous population. This second population will be used in the
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Fig. 3. Flow chart showing the various components of the workflow used for
implementation of parallel genetic algorithms.

next iteration as well as the new population to improve retention
of successful forcefields between generations.

Implementation of successive iterations for forcefield opti-
mization is accomplished via a wrapper workflow script (moga.c).
Fig. 3 shows the flow of control in the NSGA-III-MOGA workflow.
The implementation of the workflow is parallel, employing the
Message Passing Interface (MPI) library [17,18]. Each process
evaluates the four objectives functions for a single forcefield in
the current population. This is accomplished via the task runner
software GULP [19]. Processes are assigned a line in the popula-
tion file. The data is then parsed into the input format required
for GULP. The resulting evaluations are collected serially into a
single file and an iteration of Pareto optimization is performed.

NSGA-III implements a unique reference-point based frame-
work that emphasizes population members that are non-
dominated, yet close to a set of supplied reference points. The
essential components of the previous iterations of the NSGA
algorithm [20] were classification of the population into non-
dominated levels (non-dominated sorting), selection of the ‘mat-
ing’ population according to rank and identification of the Pareto
front (selection), and generation of the next population via ge-
netic operations (crossover and mutation). NSGA-III includes these
steps as well as the following: normalization of the values of the
objective functions (normalization), association of members of
the normalized population to the nearest reference point on the
hyperplane (association), and selection of members among the
Pareto front to maximize the diversity of the population relative
to the reference points (niching).

The numerical complexity of the NSGA-III algorithm is O(MN2)
where M is the number of objective and N is the number of
populations, hence the algorithm scales as N2 based on the pop-
ulation size. The implementation of the workflow as well as the
genetic algorithm code is done in C++ to ensure the modularity
and extending its plug-in capability of variety of MD simulation
engines such as LAMMPS, GULP etc.

3.1. Implementation of NSGA-III

The current implementation of NSGA-III is an adaptation of the
MATLAB code from the reference paper of Deb et al. [6]. Briefly,
the unique aspects of the algorithm consist of three operations

— normalization, association, and niching, which are described
below, along with the algorithm in its entirety, in pseudocode.

4. Discussion

In contrast to single-objective schemes, which produce a sin-
gle optimized forcefield that minimizes the given objective, multi-
objective schemes converge to a set of optimal forcefields that
simultaneously minimize errors associated with all objectives. In
the presented NSGA-III-based scheme, this is represented by the
Pareto front of mutually non-dominated, reference-point based
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forcefields. This Pareto-frontal breakdown of different forcefields
for each generation provides a natural way to establish one
of the primary sources of uncertainty in molecular dynamics
simulations — namely the uncertainty in forcefield parame-
ters. Variability in the computed thermal conductivity between
these forcefields gives us the effective epistemic error due to
forcefields parameters. The diversity preservation properties of
NSGA-III, including niching and association to reference points
on the hyperplane in the objective space, provide a more ac-
curate estimate of the uncertainty in thermal conductivity due
to errors in forcefield parameters. This Pareto-frontal uncer-
tainty quantification approach offers an alternative method to
estimate the errors in forcefield parameters [3,21–24], to comple-
ment the predominantly Bayesian approaches employed in prior
studies [25].

Fig. 4 shows the computed thermal conductivity of 10 repre-
sentative forcefields on the Pareto front of the final generation
(Table 1 and SI). The computed κ shows a relatively tight distri-
bution around 31.2 W/mK for a system of size 3200 × 100 Å in
spite of a relatively large variation in the forcefield parameters.
This error (σ = 3.07 W/mK) is indicative of the epistemic
error in the forcefield parameters among a set of forcefields that
are optimized to reproduce the physical properties relevant for
thermal transport. System level quantum corrections and isotopic
scattering corrections will affect the computed thermal conduc-
tivity values from each forcefield identically and would thus

have no significant effect on the calculated variance of thermal
conductivity.

5. Conclusion

In summary, we describe software to perform multi-objective
optimization of atomistic forcefields for molecular dynamics sim-
ulations using the 3rd generation non-dominated-searching-based
genetic algorithm (NSGA-III), which allows for the optimization of
forcefields to reproduce up to 11 physical properties. We demon-
strate this multi-objective evolutionary optimization workflow
to construct empirical Stillinger–Weber forcefields to reproduce
the lattice constant, elastic moduli and phonon dispersion curves
at different values of lattice strain for a representative two-
dimensional material — 2H-MoSe2. The epistemic uncertainty
in computed thermal conductivity is computed as the standard
deviation of thermal conductivity computed from all forcefields
on the Pareto front. Our NSGA-III-based workflow provides a
better estimate of this uncertainty than previous work due to
a better sampling of the Pareto front from the reference-point
based preservation of forcefield diversity. This relatively large pa-
rameter and objective space accessible by the NSGA-III algorithm
suggests that this method can be extended to more complex
forcefields such as ReaxFF and COMB with significantly larger
parameter sets.
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Fig. 4. Computed thermal conductivity values using 10 representative forcefields
from the final Pareto front after 500 epochs for 2H MoSe2 crystals. Error-bars
on individual points represent uncertainty in computed thermal conductivity for
each forcefield due to variations in the slope of the temperature profile.

6. Methods

6.1. NSGA-III forcefield parameterization

Parameterization was performed with population size of 300–
500 for 500 generations to achieve convergence. Parameteriza-
tion is performed in two stages. We initiate the first stage with
randomly-generated values for each of the 13 decision variables
with magnitudes similar to previously published values for the
isomorphous MoS2 crystal [15]. In this stage, we allow a pertur-
bation of 50% for each parameter around the initial value. The
mutation and crossover rate are also kept high initially at 60%
and 40% respectively to ensure that the parameter space is well-
sampled resulting in high diversity in the forcefield population.
The forcefields on the Pareto front in this stage are chosen as the

initial population for the second stage of the parameterization,
where we impose a smaller perturbation of 20% with mutation
and crossover rate of 80% and 20% respectively. This two-stage
strategy ensures both a broader search of the parameter space
as well as convergence to the global optimum set of forcefields.
The MOGA scripts, moga.c and ga.c, can be compiled with GNU
or Intel C++ compilers. The workflow and NSGA-III code are
completely standalone in nature and do not require any external
libraries or module to be downloaded for execution of force field
optimization. The method uses GULP [19] for computing the 5
objectives from the forcefield.

6.2. Density functional theory simulations

Optimization of 2H MoSe2 crystal structures were done quan-
tum mechanically using density functional theory (DFT) with the
projector augmented wave (PAW) [26] method implemented in
the Vienna Ab initio Simulation Package (VASP) [27,28]. Exchange
and correlation effects are calculated using the Perdew–Burke–
Ernzerhof form of the generalized gradient approximation to
the exchange–correlation functional [29]. Valence electron wave
functions are constructed using a plane wave basis set containing
components up to a kinetic energy of 450 eV and the recip-
rocal space is sampled at the Γ point with a 0.1 eV Gaussian
smearing of orbital occupancies. DFT simulations were performed
on systems containing 108 atoms, corresponding to 36 formula
units of MoSe2, in a simulation cell measuring 19.73 Å × 19.73
Å along the crystalline a- and b-directions. A vacuum of 15 Å is
added along the c-axis of all simulation cells to remove spurious
image interactions. Calculations were performed till each self-
consistency cycle is converged in energy to within 1 × 10−5

eV/atom and forces on ions are under 1 × 10−2 eV/Å.
Dynamical stability was inferred from the frequency of nor-

mal vibration modes of the 2H crystal structure. The Hessian
matrix was generated within the formalism of density func-
tional perturbation theory and dispersion relations for normal
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Fig. 5. Schematic of the NEMD simulations for measuring Thermal Conductivity of 2D Materials.

vibration modes were calculated using the open-source phonopy
package [30].

6.3. Non-equilibrium molecular dynamics (NEMD) simulations for
thermal conductivity calculations

Thermal conductivity is calculated by the so-called ‘direct’
method using non-equilibrium molecular dynamics simulations.
In this method, a fixed and predefined heat flux, Ê0, is added
to the kinetic energy of atoms at x = L/4, where L is the
dimension of the system along the heat-transfer direction, and
an identical heat flux is removed from the atoms at x = 3L/4.
At steady state, these thermal fluxes will establish a temperature
gradient between L/4 and 3L/4, which is related to the thermal
conductivity of the materials (as determined by the forcefield)
through the Fourier law of heat conduction. This method [31,32]
provides us with linear temperature profiles as opposed to the
Muller Plathe method [33]. See reference [15] for more details.

Specifically, κ =
1
2A · Ê0 ·

( dT
dx

)−1
, where A is the cross-sectional

area of heat transfer, taken to be equal to 6.5 Å, one-half of
the out-of-plane lattice constant in bulk 2H-MoSe2 crystals (see
Fig. 5).

In the systems that we used for testing the forcefields, we
use a system of size 3200 × 100 Å on the x and y directions.
All the simulations are carried out using LAMMPS (Large Scale
Atomic/Molecular Massively Parallel Simulator) [34]. In these
simulations periodic boundary conditions are applied in all three
directions with a vacuum of about 100 Å in the z direction to
simulate a thin film. The MD simulations use a timestep of 2
femtoseconds. Conjugate Gradient relaxation is done initially to
obtain the correct box size. Following which the atoms are given
a gaussian distribution of velocities equivalent to 300 K and
the system is thermalized as a constant energy ensemble for 20
picoseconds (ps). This process is repeated 5 times. The system is
then thermalized at 300 K as a constant temperature ensemble for
200 ps after which the system is ready for carrying out thermal
conductivity calculations. NEMD simulations are performed for
12 nanoseconds (ns) with a timestep of 2 femtoseconds (fs) and
an imposed heat flux of 0.2 eV/ps. The temperature gradient is
computed over the last 6 ns of the NEMD simulation, to ensure
that a steady state is established.

Software distribution

The source code and documentation for the NSGA-III-MOGA
code is available on GitHub at https://github.com/USCCACS/MOG
A-NSGA3.The software is free for use and distributed under the
GNU General Public License v3.0.
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