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ABSTRACT 
Recent advancements in reactive molecular dynamics (MD) 
simulations based on many-body interatomic potentials 
necessitate efficient dynamic n-tuple computation, where a set of 
atomic n-tuples within a given spatial range is constructed at 
every time step. Here, we develop a computation-pattern algebraic 
framework to mathematically formulate general n-tuple 
computation. Based on translation/reflection-invariant properties 
of computation patterns within this framework, we design a shift-
collapse (SC) algorithm for cell-based parallel MD. Theoretical 
analysis quantifies the compact n-tuple search space and small 
communication cost of SC-MD for arbitrary n, which are reduced 
to those in best pair-computation approaches (e.g. eighth-shell 
method) for n = 2. Benchmark tests show that SC-MD 
outperforms our production MD code at the finest grain, with 9.7- 
and 5.1-fold speedups on Intel-Xeon and BlueGene/Q clusters. 
SC-MD also exhibits excellent strong scalability. 

Categories and Subject Descriptors 
J.2 [Computer Applications]: Physical Sciences and Engineering 
– physics, chemistry.  

General Terms 
Algorithms, Performance, Theory. 

Keywords 
Dynamic range-limited n-tuple computation, Molecular dynamics, 
Parallel computing 

1. INTRODUCTION 
Molecular dynamics (MD) is a simulation method to study the 
dynamics of particles (e.g. atoms). It has broad applications in 
diverse fields such as physics, chemistry, biology, and materials 
science. MD simulation using a differentiable interatomic 
potential-energy function Φ was started by Rahman in 1964 [1] 
using a pair-wise potential energy, in which Φ is a sum of atomic-
pair energies. Since then, scientists started performing many-body 
MD simulations that use n-tuple (n ≥ 3) energy functions for 
accurate description of a wider range of materials. In one type of 
n-tuple computation (i.e. static n-tuple computation) used 
typically in biomolecular simulations [2], the list of atomic n-
tuples is fixed throughout the simulation. In another (i.e. dynamic 
n-tuple computation), n-tuple lists within given interaction ranges 
are constructed at every simulation time step [3, 4]. Recent 
advancements in chemically reactive MD simulations [5] have 
renewed interests in efficient implementation of dynamic n-tuple 
computation [6]. Reactive MD describes the formation and 
breakage of chemical bonds based on a reactive bond-order 
concept [5]. In the ReaxFF approach, for example, n is 4 
explicitly, and force computation involves up to n = 6 due to 
chain-rule differentiations through bond-order terms [7-9]. 

Scalable implementation of MD on massively parallel computers 
has been one of the major driving forces of supercomputing 
technologies [10-16]. Earlier parallel implementations of MD 
were based on spatial decomposition, in which the simulated 
physical volume is subdivided into spatially localized sub-
volumes that are assigned to different processors [17]. For long-
range pair (n = 2) computation, octree-based O(N) algorithms (N 
is the number of atoms) [18] have highly scalable parallel 
implementations [19, 20]. For short-ranged (or range-limited) pair 
computation, Plimpton relaxed the conventional “owner-compute” 
rule (i.e., computation is performed by a processor that has data) 
to design a force-decomposition algorithm to increase the 
concurrency [21]. Since then, various hybrid spatial-force 
decomposition algorithms have been designed [22]. On 
distributed-memory parallel computers, atomic data needed for 
range-limited pair computations are copied from neighbor 
processors. The most primitive scheme for these atom-caching 
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operations is full shell (FS), in which data from 26 (face-, edge-, 
and corner-sharing) neighbor sub-volumes are imported from 
other processors. In the half-shell (HS) scheme, Newton’s third 
law is utilized to halve the number of imported sub-volumes to 13 
[17]. Relaxation of the owner-compute rule further reduces this 
number to 7 in the eighth-shell (ES) scheme [23]. In the case of 
special-purpose computers with low network latency, neutral-
territory (NT) [24] and related [25] schemes achieve 
asymptotically smaller import volumes for fine granularities, N/P 
(P is the number of processors). In addition to these parallel 
algorithms for dynamic pair computations, numerous schemes 
have been employed in biological MD codes to efficiently 
compute static n-tuple computations [22, 26]. 

In contrast to these remarkable progresses in parallel algorithms 
for dynamic pair (n = 2) and static n-tuple computations, parallel 
dynamic n-tuple computation is still in its infancy. Fundamental 
questions include: How can we generalize the computation-
redundancy removal in the HS scheme and the import-volume 
reduction in the ES scheme developed for pair computation into 
arbitrary dynamic n-tuple computations? To answer these 
questions in a mathematically rigorous and systematic manner, we 
here develop a novel computation-pattern algebraic framework. 
Based on this framework and translation- and reflection-invariant 
properties of n-tuple computations, we then design a shift-collapse 
(SC) algorithm. Our algebraic framework allows not only a formal 
proof of force-computation completeness but also a quantitative 
analysis of n-tuple search cost and import volume. We will show, 
for general dynamic n-tuple computations, that: (1) the pair HS 
scheme can be generalized to a reflective-collapse (RC) scheme to 
tighten the n-tuple search space; and (2) the pair ES scheme can 
be generalized to an octant-compression (OC) shift scheme to 
minimize the import volume. 

This paper is organized as follows. Section 2 provides background 
information on n-tuple MD. Section 3 presents the computation-
pattern algebraic framework for n-tuple computation and the SC 
algorithm along with a proof of its correctness. Section 4 analyzes 
the search-space size and communication cost of the SC 
algorithm. Section 5 presents performance benchmark results on 
BlueGene/Q and Intel Xeon clusters. Conclusions are drawn in 
section 6. 

2. BACKGROUND 
In this section, we describe many-body MD, followed by the 
introduction of dynamic range-limited n-tuple computation in it. 

2.1 Many-Body Molecular Dynamics 
MD simulation follows the time evolution of an N-atom system by 
numerically integrating Newton’s equations of motion: 
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where X = {x0,…,xN-1} denotes a set of atomic positions, mi and fi 
are the mass of and force acting on atom i, and t is time. 
In Eq. (1), the many-body interatomic potential-energy function 
Φ(X) is a sum of n-body potential terms Φn: 
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where nmax is the maximum n and Φn is a function of n-tuples of 
atomic positions (x0,...,xn−1). 

Force computation is the most time-consuming step in MD 
simulation. For each simulation time step, we need to map the 
current set of atomic positions, R = {r0, …, rN-1}, to n-body force 
terms for all n ∈ [2, nmax] and all atoms i ∈ [0, N−1] as 

 fi
(n) = −

∂
∂xi

Φn (x0,...,xn−1)
∀(r0 ,...,rn−1 )∈Γ

(n )
∑

(x0 ,...,xn−1 )=(r0 ,...,rn−1 )

, (3) 

where Γ(n) denotes the set of all n-tuples of atom positions in R. 
For a given n-tuple, χ = (r0,r1,...,rn-1) (see Figures 1 (a)-(c) for n = 
2-4), forces exerted on all atoms in χ can be calculated 
simultaneously in one computational step: 

 ∀ri ∈ χ : fi
(n)← fi

(n) −
∂
∂xi

Φn (x0,...,xn−1)
(x0 ,...,xn−1 )=χ

. (4) 

Namely, the set of n-body forces on all atoms can be decomposed 
into partial contributions from different n-tuples χ: 

 fi
(n) i ∈ [0,N −1]{ }= F(n) = Fχ

(n)

∀χ∈Γ(n )
 . (5) 

In all problems we consider, χ in Eq. (5) is undirectional, 
reflecting the Newton’s 3rd law [9, 12]. Namely, (r0,r1,...,rn-1) 
produces the same forces as (rn-1,rn-2,...,r0), thus they are not 
counted as separate entities. We call this reflective equivalence. 

Assume that force calculation for each Fχ

(n) can be executed in 
constant time. The computational complexity of n-body force 
computation is then proportional to the size of Γ(n), i.e., N!/[2(N-
n)!] = O(Nn) for a system with N >> n (which is the case in most 
MD simulations). Thus, the computational complexity is dictated 
by that of the largest n-body term, O(Nnmax ) . 

2.2 Dynamic Range-Limited n-Tuple 
Computation 
Atomic interaction is often range-limited, i.e., only atoms within 
short distances contribute to forces. Force computation for a 
range-limited n-body interatomic potential is defined as Eq. (3), 
where Γ(n) is replaced by its subset Γ*(n) ⊆ Γ(n) : 

 Γ*(n) = (r0,...,rn−1)  rk,k+1 < rcut−n  for all k ∈ {0,...,n− 2}{ } , (6) 

where rk,k+1  is the interatomic distance between rk and rk+1 and 
rcut-n is the cutoff distance for n-body interaction, see Figures 1(a)-
(c). 

Formal complexity of pruning Γ(n)  to obtain Γ*(n)  is exponential 
in n, which is not practical. However, it is possible to efficiently 
find a set of n-tuples S(n) ⊆ Γ(n) such that |S(n)| << |Γ(n)| and 
Γ*(n) ⊆ S(n)  (Figure 2). After finding S(n), elements in Γ*(n) can be 
obtained simply by exhaustive “filtering” from S(n). Since S(n) is 
used to compute forces, hereafter we denote S(n) as a force set, and 

 
Figure 1. Schematic of range-limited n-tuples: (a) pair (n = 2), 

(b) triplet (n = 3), and (c) quadruplet (n = 4). 
 



S(n) that satisfies Γ*(n) ⊆ S(n)  as a bounding force set. Thus, MD 
force computation can be restated as a problem to find a bounding 
force set S(n) for all n ∈ {2,…,nmax}. To solve this problem, an 
efficient pruning algorithm A:R⇒S(n) is required. A widely used 
approach to achieve this is a cell method. It employs a cell data 
structure to prune Γ(n) in O(N) time to obtain S(n) that tightly 
bounds Γ*(n) . 

Cell-based methods are powerful yet simple. Its procedure is 
straightforward to implement for the case of pair computation. 
However, cell methods for general n-tuple computation have not 
been formalized mathematically. To address this problem 
systematically, we formulate a cell-based n-tuple MD problem 
using an algebraic framework in the next section. 

3. COMPUTATION-PATTERN 
ALGEBRAIC FRAMEWORK 
In this section, dynamic range-limited n-tuple MD is formalized 
using a computation-pattern algebraic framework. Subsection 3.1 
introduces a uniform-cell pattern (UCP) formalism, which is an 
algebraic generalization of conventional cell methods to solve n-
tuple MD problems for arbitrary n. In subsection 3.2, we propose 
a shift-collapse (SC) algorithm to efficiently solve n-tuple MD on 
the basis of UCP. Correctness of the SC algorithm is proved in 
subsection 3.3. 

3.1 Algebraic Formulation of Cell-Based MD 
3.1.1 Cell data-structure 
Cell-based MD divides a simulation volume into a non-
overlapping set of small cells with side lengths equal or slightly 
larger than rcut-n. Each cell volume  ζ  contains a subset of atoms 
in R that fall within its volume: 

 c = {ri | ∀ri ∈ R and in volume ζ}, (7) 

see Figure 3(a). For simplicity, we consider a simple lattice of 
cubic cells. Then, each cell c(q) can be indexed using a 3-element 
vector q = (qx, qy, qz), which specifies the Cartesian coordinate of 
the cell position in the lattice. Let Lx, Ly, and Lz be the number of 
cells in the x, y, and z directions, respectively. Then, the set of all 
cell indices constitutes a vector space L: 

 L = q = (qx,qy,qz )
∀qx ∈ {0,...,Lx −1}
∀qy ∈ {0,...,Ly −1}

∀qz ∈ {0,...,Lz −1}

$
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An essential ingredient of our algebraic formulation is a cell 
domain Ω, which is defined as a set of all cells: 

 Ω = {c(q) |∀q ∈ L} . (8) 

In this paper, we assume periodic boundary conditions in all 
Cartesian directions. Then, for cell c(q), we define a cell-offset 
operation  c(q+Δ)→ c( #q )  (Δ ∈ ℤ3) as 

 ′qα = (qα +Δα )%Lα (α ∈ {x, y, z}) ,  

where % is a modulo operation. Note that Ω needs to be 
dynamically constructed every MD step because the positions of 
atoms are changing as the computation proceeds. 

3.1.2  Uniform-cell pattern MD 
UCP formalism is a generalization of a cell-based MD method 
using an algebraic approach (Figure 3(b)). To compute forces for 
each n-body potential term, UCP generates a force set S(n) using 
information from cell domain Ω along with a computation pattern 
Ψ(n), which is a set of pre-define rules regarding interaction 
among cells. UCP applies Ψ(n) to each cell c and generates a cell 
search-space Scell, a set of n-tuples that forms a force subset 
Scell(c, Ψ(n)) ⊆ S(n). By looping over all cells, it generates the entire 
S(n). This is analogous to stencil computation for solving partial 
differential equations, in which a stencil (equivalent to 
computation pattern in our framework) defines local computation 
rules for each grid point and its neighbor grid points and the 
stencil is applied to all grid points in a lattice to solve the problem 
[27, 28]. 

To describe UCP, we first define a computation path p(n) for n-
tuple computation as a list of n vectors in L (see each arrow in 
Figure 3(b) as an example of pair-computation path): 

 p(n) = (v0,...,vn−1)∈ L
n .  

The inverse of p is defined as p-1 = (vn-1,…,v0). In addition, we 
define a differential representation, σ(p) ∈ Ln-1, of each path p as 

 σ (p) = (v1 − v0,...,vn−1 − vn−2 ) .  

Then, a computation pattern is defined as a set of computation 
paths Ψ(n) = {p(n)} (i.e. set of all arrows in Figure 3(b)). Given a 
cell domain Ω and a computation pattern Ψ(n), a force set S(n) is 
obtained as a union of cell search-spaces Scell: 

 S(n) =UCP(Ω,Ψ (n) ) = Scell (c(q),Ψ
(n) )

∀c(q)∈Ω
 , (9) 

where cell search-space Scell for each cell c(q) is defined as 

 
Figure 2. Set diagram showing the relationship of a bounding 

force set S(n) with Γ (n) and Γ*(n).  
Figure 3. (a) Cell data-structure, where circles are atoms and 

small squares are cells. Dashed circle denotes the cutoff 
radius centered at atom i. (b) Uniform-cell pattern for pair 

computation, which generates all pairs between each cell and 
its neighbor cells.  
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Namely, Scell is a set of n-tuples contained in all paths p ∈  Ψ(n), 
which is associated with cell c(q), see Figure 4. An algorithm that 
performs operations in Eqs. (9) and (10) is given in Table 1. S(n) in 
Eq. (9) is obtained by looping over all c ∈  Ω (line 2), where each 
iteration adds Scell(c) to S(n) (line 9). In order for UCP to be a valid 
MD computation, its computation pattern Ψ(n) must satisfy the n-
body completeness condition by generating a bounding force set: 

 Γ*(n) ⊆ UCP(Ω,Ψ (n) ) . (11) 

In this way, MD problem amounts to finding a computation 
pattern that satisfies Eq. (11). Such a computation pattern is 
regarded as n-complete. Existing cell-based methods can be 
expressed as particular computation patterns, and our algebraic 
formalism can be used to prove their completeness (e.g. HS and 
ES for pair-completeness). This will be discussed in section 4.3. 

Satisfying Eq. (11) only guarantees that Ψ(n) is sufficient to 
generate a bounding force set using the UCP algorithm in Table 1. 
The generated force set could still contain duplicated or 
reflectively equivalent tuples as mentioned in section 2.1. In a 
practical implementation, these redundant tuples must be 
removed. Hence, the cost of the UCP algorithm, TUCP, is a cost for 
filtering out the unnecessary tuples from cell search-space Scell of 
every cell. This is proportional to a sum of all search-space sizes 
|Scell|: 

 TUCP  ∝ Scell (c,Ψ
(n) )

∀c∈Ω
∑ . (12) 

3.1.3 Parallel UCP 
In this paper, we consider parallel MD algorithms, where different 
sets of atoms c along with associated computation Scell(c, Ψ(n)) are 
assigned to different processors. Since Scell(c, Ψ(n)) requires data 
from other cells, these data must be imported if they reside in 
other processors. Depending on computation paths in Ψ(n), 
different cells need be imported. This leads to different import 

volumes (i.e. the number of imported cells), and hence different 
communication costs. 

To quantify the import volume, we define the cell coverage Π of a 
computation pattern Ψ(n) as a set of cells that are needed in order 
to compute Scell(c(q), Ψ(n)): 

 Π(c(q),Ψ (n) ) = c(q+ vk )
∀p = (v0,...,vn−1)∈ Ψ (n)

∀k : vk ∈ p
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for an arbitrary cell c(q) = c. We also define the cell footprint of a 
computation pattern to be the cardinality of Π(c,Ψ(n)). The cell 
footprint is independent of cell, thus we denote it as |Π(Ψ(n))|. 
Also, we define the cell-domain coverage as a union of the cell 
coverage of all cells in the domain: 

 Π(Ω,Ψ (n) ) = Π(c,Ψ (n) )
∀c∈Ω
 , (13)  

which is the set of cells that are needed to do computation of all 
cells in Ω. Here and in subsequent discussions of parallel MD, Ω 
denotes a cell domain for each processor. Then, the set of cells ω 
that needs to be imported from other processors are the cells that 
are in the cell-domain coverage but not in the cell domain: 

 ω(Ω,Ψ (n)
) =Π(Ω,Ψ

(n)
)−Ω .   

The import volume of n-tuple computation is defined as the size 
of all cells that need to be imported (i.e. the cardinality of ω): 

 Vω (Ω,Ψ
(n)
) = ω(Ω,Ψ (n)

) . (14)  

The overall import volume Vimport is determined by the largest 
import volume among all n: 

 Vimport =maxn (Vω (Ω,Ψ
(n) )) .   

3.1.4 Optimal UCP-MD problem 
Based on the computational and communication cost functions of 
UCP in Eqs. (12) and (14), the parallel MD problem is reduced to 
the following optimization problem: 

PROBLEM (OPTIMAL UCP-MD). Given a cell domain Ω, 
find a set of n-complete computation patterns {Ψ*(n)} for all n ∈ 
{2,…,nmax} such that each Ψ*(n) satisfies the following: 

1. Ψ*(n) = argmin
Ψ(n )

Scell (c,Ψ
(n) )

∀c∈Ω
∑

&

'
(

)

*
+  

Table 1. Uniform-cell pattern algorithm 

Algorithm UCP  
Input: 
 Ω : a cell domain 
 Ψ(n) ⊆ Ln: a computation pattern 
Output: 
 S(n) ⊆ Rn: a force set 
Steps: 
1. S(n)

 = ∅  
2. for  
3.  Scell(c(q)) = ∅  
4.  for  
5.   for  

6.     
7.     for 

 
8.      
9.   
 

 
Figure 4. n-tuple (n = 3) generation for cell search-space Scell 

of cell c(q) (colored in magenta) and computation path 
(v0,v1,v2). Scell generates all triplets where the 1st, 2nd, and 3rd 
atoms in the triplet are in cells c(q+v0), c(q+v1), and c(q+v2), 
respectively. Dashed line shows one of the triplets (ri,rj,rk). 



2. Ψ*(n) = argmin
Ψ(n )

Π(c,Ψ (n) )
∀c∈Ω
 −Ω

'
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The first condition minimizes the search cost (i.e. filtering out the 
unnecessary tuples), while the second condition minimizes the 
import volume in parallel MD. In the next subsection, we present 
an SC algorithm to solve the optimal UCP-MD problem. We will 
show in section 4 that the SC algorithm in the case of pair 
computation is reduced to the best cell methods. 

3.2 Shift-Collapse Algorithm 
We propose an SC algorithm, which makes a complete 
computation-pattern while addressing the two optimality 
conditions presented in subsection 3.1.4. The SC algorithm 
consists of three main phases (see Table 2). The first phase, full-
shell generation subroutine (GENERATE-FS in Table 3) performs 
(n-1)-fold nested loops (lines 2-5) to enumerate all possible paths 
to generate an n-complete pattern (e.g. for n = 3 in Figure 5(a)). 
This creates a computation pattern centered at the original cell 
(i.e. c(q) in Eq. (9)) surrounded by (n-1)-layers of nearest-
neighbor cells (yellow region in Figure 5(a)). In the following, we 
refer to this computation pattern as full shell (FS). 

In the second phase, octant-compression shift subroutine (OC-
SHIFT) shifts all paths in the FS pattern to the first octant in order 
to compact the cell footprint |Π(Ψ(n))|. To achieve this, all of the 
paths in FS are shifted toward the upper corner (the highest 
Cartesian coordinates in all 3 directions, see Figure 5(b)) of the FS 
cell coverage (see lines 3-4 in Table 4).  

In the last phase, reflective collapse subroutine (R-COLLAPSE) 
finds and removes redundant paths that generate the same force 
set (Table 5). This is achieved by doubly nested loops (lines 2-3) 
over all pairs of paths to compare their equivalence (line 4). If a 
path-pair is found to be equivalent, one of the paths is removed 
from the pattern (line 5). The equivalence between two arbitrary 
paths p and pʹ′ is tested as σ(pʹ′) = σ(p-1), which will be proven in 
Lemma 3 in section 3.3. 

The most important property for the SC algorithm is that a path-
shift operation does not alter the resulting force set, i.e., 
translational invariance. Let p = (v0,…,vn-1) be an n-tuple 
computation path, then path shifting is defined as a translation of 
the origin of the computation path: 

 p+Δ = (v0 +Δ,...,vn−1 +Δ) ,  

where Δ ∈ ℤn denotes a shifting vector. The following theorem 
proves the path-shift invariance of force computation. 

THEOREM 1 (PATH-SHIFT INVARIANCE). Let Ω be a cell 
domain and p be an n-tuple computation path. For an arbitrary 
shift vector Δ ∈ ℤn, UCP(Ω,{p}) = UCP(Ω,{p+Δ}). 

PROOF. For a particular cell c(q)∈Ω  and p = {v0,…,vn-1}, 
Scell(c(q),{p+Δ}) reads 

   

Scell (c(q),{p+Δ}) = {(r0,...,rn−1) |∀rk ∈ c(q+ vk +Δ)}
= {(r0,...,rn−1) |∀rk ∈ c((q+Δ)+ vk )}
= Scell (c(q+Δ),{p})

. (15) 

The union of Eq. (15) over all cells in the domain yields 

Table 2. Shift-collapse algorithm 

Algorithm SC  
Input: 
 n ∈ {2,3,…}, the length of a tuple 
Output: 
 Ψ(n)

SC ⊆ Ln: Shift-collapse pattern 
Steps: 
1. ΨFS ← GENERATE-FS(n) 
2. ΨOC ← OC-SHIFT(ΨFS) 
3. ΨSC ← COLLAPSE(ΨOC) 
 

 Table 3. Full-shell generation subroutine 

Subroutine GENERATE-FS(n) 
Input: 
 n ∈ {2,3,…}, the length of a tuple 
Output: 
 Ψ(n)

FS ⊆ Ln: Full-shell computation pattern  
Steps: 
1. Ψ(n)

FS = ∅ , v0 = (0,0,0) 
2. for  

3.  for  

4.   
5.   for 

 
6.    

 
 Table 4. Octant-compression shift subroutine 

Subroutine OC-SHIFT(Ψ(n)) 
Input: 
 Ψ(n) ⊆ Ln: computation pattern 
Output 
 Ψ(n)

OC ⊆ Ln: OC computation pattern  
Steps: 
1. Ψ(n)

OC = ∅  
2. for  

3.   

4.    
5.  

 
 

Table 5. Reflective-collapse subroutine 

Subroutine R-COLLAPSE(Ψ(n)) 
Input: 
 Ψ(n) ⊆ Ln: computation pattern 
Output: 
 Ψ(n)

RC ⊆ Ln: non-redundant computation pattern 
Steps: 
1. Ψ(n)

RC = Ψ(n) 
2. for  
3.  for  

4.   if 
 

5.    
 

 
 

 



 
Scell (c(q+Δ),{p})

∀c(q+Δ)∈Ω
 = Scell (c( %q ),{p})

∀c( %q )∈Ω


=UCP(Ω,{p})
.  

The last equality comes from the definition of UCP in Eq. (9). 
Therefore, UCP(Ω,{p+Δ}) = UCP(Ω,{p}). □ 

3.3 Correctness of SC Algorithm 
To prove the correctness of the SC algorithm, we will show that 
the computation pattern generated by it is complete as defined in 
Eq. (11). The SC algorithm consists of three phases. We will show 
that the first phase generates a complete pattern, while the second 
and third phases do not alter the resulting force set. 

First, we prove that the GENERATE-FS routine generates a 
pattern that constitutes a bounding force set. 

LEMMA 1. Given a computation pattern Ψ(n)
FS = 

GENERATE-FS(n), the force set S(n) = UCP(Ω,Ψ(n)
FS) is a 

bounding force set for an arbitrary cell domain Ω. 

PROOF. GENERATE-FS(n) in Table 3 constructs Ψ(n)
FS as a 

union of (v0,…,vn-1) such that vk+1 = (vk
x ±1,vk

y ±1,vk
z ±1)  for all 0 ≤ 

k  < n-1. Thus c(q+ vk )  is a nearest neighbor cell of c(q+ vk+1)  
for an arbitrary q ∈ L. Consider an arbitrary n-tuple 
χ = (r0,...,rn−1)∈ Γ*(n) , where rk,k+1 < rcut−n   for all 0 ≤ k  < n-1. 

We will prove that χ is included in a cell set 
(c(q+ v0 ),c(q+ v1),...,c(q+ vn−1))  using mathematical induction: 

Base: r0 ∈ c(q+ v0 ) , 
Induction: if rk ∈ c(q+ vk ) , then ∃vk+1 : rk+1 ∈ c(q+ vk+1) . 

Base step is trivial because we choose q such that r0 ∈ c(q+v0). 
For the induction step, atomic pair ( rk , rk+1 ) with distance 
rk,k+1 < rcut−n   is guaranteed to reside in cell c(q+vk) and c(q+vk+1) 
because the cell size is larger than the cutoff rcut-n. This proves the 
induction step. Hence, ∃vk : rk ∈ c(q+ vk )  for all 0 ≤ k  < n-1 and 
thus, the entire n-tuple χ is contained in a cell set 
(c(q+ v0 ),c(q+ v1),...,c(q+ vn−1)) . From the definition of Scell in 

Eq. (10), for an arbitrary n-tuple in Γ*(n)  there exists 
Scell(c(q),Ψ(n)

FS). Therefore from the definition of UCP in Eq. (9), 
Γ*(n) ⊆ UCP(Ω,Ψ (n) )  is satisfied and UCP(Ω,Ψ(n)) is complete. □ 

Next, we prove that OC-SHIFT operation does not alter the 
resulting force set. 

LEMMA 2. Consider an arbitrary computation pattern Ψ(n) 
and a cell domain Ω. For Ψ(n)

OC = OC-SHIFT(Ψ(n)), 
UCP(Ω,Ψ(n)

OC) = UCP(Ω,Ψ(n)). 

PROOF. The OC-SHIFT subroutine performs a series of 
shifting operations to all paths in Ψ(n). From Theorem 1, each 
shifting operation keeps the force set unchanged. Therefore, 
UCP(Ω,Ψ(n)

OC) = UCP(Ω,Ψ(n)) □ 

To prove that R-COLLAPSE keeps the force set unchanged, we 
first prove the equivalence between paths (i.e. line 4 in Table 5) 
used in R-COLLAPSE. 

LEMMA 3 (REFLECTIVE INVARIANCE). Consider a cell domain 
Ω and paths p, pʹ′ of size n. If σ(p-1) = σ(pʹ′), then UCP(Ω,{p}) = 
UCP((Ω,{pʹ′}). 

PROOF. Let p = (v0,...,vn−1),  "p = (u0,...,un−1)  and the inverse 

path of p be p-1 = (vn−1,...,v0 ) . From the assumption 

σ (p-1) =σ ( !p ) , we have 

 uk+1 −uk = vn−2−k − vn−1−k , (16) 

for all k ∈ {0,…,n-2}. From the shift-invariant property in 
Theorem 1, 
 Scell (c(q),{ !p })

∀c(q)∈Ω
 = Scell (c(q),{ !p +Δ})

∀c(q)∈Ω
 .   

Let Δ = vn-1-u0, then Scell (c(q),{ !p +Δ})  reads 

   
Scell (c(q),{ !p }) = {(r0,...,rn−1) |∀rk ∈ c(q+uk +Δ)}

= {(r0,...,rn−1) |∀rk ∈ c(q+ vn−1 −u0 +uk )}
, (17) 

Using telescoping, q+ vn−1 −u0 +uk  in Eq. (17) can be rewritten 
as 

 q+ vn−1 −u0 +uk = q+ vn−1 + (ui+1 −ui )
i=0

k−1

∑ . (18) 

ui+1-ui in the R.H.S. of Eq. (18) can be replaced by vn-2-i-vn-1-i 
according to Eq. (16), which yields 

 
q+ vn−1 + (ui+1 −ui )

i=0

k−1

∑ = q+ vn−1 + (vn−2−i − vn−1−i )
i=0

k−1

∑

= q+ vn−1−k

.  

Therefore, 

 q+ vn−1 −u0 +uk = q+ vn−1−k . (19) 

Substituting Eq. (19) back into Eq. (17) yields, 

 

Scell (c(q),{ !p }) = {(r0,...,rn−1) |∀rk ∈ c(q+ vn−1−k )}
= {(r0,...,rn−1) |∀rn−1−k ∈ c(q+ vk )}
= {(rn−1,...,r0 ) |∀rk ∈ c(q+ vk )}

. (20)  

Based on the undirectionality of tuples described in section 2.1, 
(r0,...,rn−1) = (rn−1,...,r0 ) . Therefore Eq. (20) reads 

 
Scell (c(q),{ !p }) = {(r0,...,rn−1) |∀rk ∈ c(q+ vk )}

= Scell (c(q),{p})
.   

Based on the definition of UCP in Eq. (9), this proves 
UCP(Ω,{p}) =UCP(Ω,{ "p }) . □ 

 
Figure 5. 2D schematic of a shift-collapse (SC) computation 
pattern. (a) FS computation pattern for n = 3, containing all 

possible paths of length 3 originated from the center cell 
(magenta). (b) SC computation pattern after OC-shift and R-
collapse subroutines. Yellow cells denote the cell coverage of 

the center cell, which for SC is much smaller than that for FS. 
 



Using Lemma 3, we can now prove that the R-COLLAPSE 
subroutine preserves the completeness of a pattern. 

LEMMA 4. Let Ω be an arbitrary cell domain and Ψ(n) be a 
computation pattern. For Ψ(n)

RC = R-COLLAPSE(Ψ(n)), 
UCP(Ω,Ψ(n)

RC) = UCP(Ω,Ψ(n)). 

PROOF. In R-COLLAPSE subroutine (Table 5), lines 2-3 
loop over all pairs of computation paths {p, !p }  in Ψ(n). For each 
pair of paths, we remove one of them (i.e. collapsing) only when 
σ ( !p ) =σ (p-1)  (lines 4-5). In such a case, ΨRC

(n) =Ψ (n) −{ #p }
. Based on Lemma 3, p and pʹ′ produce the same force set, and 
thus 

 UCP(Ω,Ψ (n) ) =UCP(Ω,Ψ (n) −{ $p }) . (21) 

Substituting ΨRC
(n) =Ψ (n) −{ #p }  into Eq. (21) yields 

UCP(Ω,Ψ (n) ) =UCP(Ω,ΨRC
(n) ) , which proves the Lemma.  □ 

Using Lemmas 1, 2, and 4, we can now prove the correctness of 
the SC algorithm by proving the completeness of SC pattern. 

THEOREM 2. Given an arbitrary cell domain Ω, a 
computation pattern Ψ(n)

SC generated from the shift-collapse 
algorithm is n-complete. 

PROOF. Lemma 1 states that GENERATE-FS produces 
Ψ(n)

FS, which is an n-complete pattern. Lemma 2 guarantees that 
for Ψ(n)

OC = OC-SHIFT(Ψ(n)
FS), UCP(Ω,Ψ(n)

OC) = UCP(Ω,Ψ(n)
FS) 

and thus Ψ(n)
OC is also complete. According to Lemma 4, for 

Ψ(n)
SC = R-COLLAPSE(Ψ(n)

OC), UCP(Ω,Ψ(n)
SC) = UCP(Ω,Ψ(n)

OC). 
Therefore Ψ(n)

SC is complete. □ 

4. THEORETICAL ANALYSIS 
In this section, we perform theoretical analysis of the SC 
algorithm. First, we quantify the cost of n-tuple searches of the SC 
pattern. We then analyze and estimate the import volume of the 
SC the pattern. Finally, we discuss the relation of SC to previous 
works in the case of pair computation. 

4.1 Search-Cost Analysis of SC Pattern 
In this subsection, we show that the search cost for the SC pattern 
is approximately half that of FS. This size reduction arises from 
R-COLLAPSE, which removes all redundant computation paths 
using their reflective-invariant property in Lemma 3. First, we 
show that the size of a search space can be estimated by the 
cardinality of a computation pattern. 

LEMMA 5. Assume that the atom distribution is uniform. For 
an arbitrary cell domain Ω and a computation pattern Ψ(n), the 
search cost TUCP is proportional to |Ψ(n)|. 

PROOF. Let 〈ρcell〉 be the average number of atoms per cell. 
For all paths p = (v0,…,vn-1) in Ψ(n) and an arbitrary cell c(q) ∈ Ω, 
the average number of atomic pairs in a cell-pair c(q+vk) and 
c(q+vk+1) is 〈ρcell〉

2. Thus, for an n-1 consecutive cell-pairs, the 
number of tuples in a cell search-space Scell centered at an 
arbitrary cell c(q) is 

 Scell (c(q),{p}) = ρcell
n−1

. (22) 

By summing Eq. (22) over all paths in Ψ(n), we obtain the average 
number of n-tuples associated with cell c(q) as 

 Scell (c(q),Ψ
(n) ) = ρcell

n−1
Ψ (n) . (23) 

Summation of Eq. (23) over all cells in Ω yields the search cost in 
Eq. (12): 

 Scell (c,Ψ
(n) )

∀c∈Ω
∑ = TUCP = L ρcell

n−1
Ψ (n) . (24) 

Hence, TUCP ∝ |Ψ(n)|. □ 

Based on Lemma 5, we can estimate the costs of UCP(Ω,Ψ(n)
FS) 

and UCP(Ω,Ψ(n)
SC) in terms of |Ψ(n)

FS| as follows.  

For each path p in Ψ(n)
FS, there are n-1 consecutive cell-vector 

pairs (vk, vk+1) for 0 ≤ k < n-1. For a particular cell q+vk, there are 
27 nearest-neighbor cells q+vk+1. Thus for n-1 neighbor-search 
steps, we have the number of paths as 

 ΨFS
(n) = 27n−1 . (25) 

Substituting Eq. (25) in Eq. (24), the search cost for 
UCP(Ω,Ψ(n)

FS) is obtained as 

  TUCP = L 27 ρcell( )
n−1

.  

Next, we analyze the search cost of UCP(Ω,Ψ(n)
SC). Paths in 

Ψ(n)
SC

 are only removed in the R-COLLAPSE routine, where 
redundant paths are collapsed. To estimate |Ψ(n)

SC|, we need to 
find how many path are collapsed. Thus, we first categorize paths 
in Ψ(n)

FS into collapsible and non-collapsible paths as 

 ΨFS
(n) =ψcollapsible

FS ∪ψnon-collapsible
FS , (26) 

where ψcollapsible and ψnon-collapsible are disjoint sets of collapsible 
and non-collapsible paths, respectively. In the following, we 
prove that for each path in Ψ(n)

FS, there exists a unique path in 
Ψ(n)

FS that produces the same force set. 

LEMMA 6 (REFLECTIVE PATH-TWIN (RPT)). For an arbitrary 
cell domain Ω and a path p = (v0,…,vn-1) ∈ Ψ(n)

FS, there exists a 
unique reflective path-twin RPT(p) = p-1-vn-1 ∈ Ψ(n)

FS, such that 
σ(p-1) = σ(RPT(p)). 

PROOF. For p = (v0...,vn−1) , we have p−1 = (vn−1,...,v0 ) . 
From the definition of UCP (Eq. (9)) for the case of a single-path 
pattern {p} and the undirectionality of n-tuple, it is 
straightforward to prove that 

 UCP(Ω,{p}) =UCP(Ω,{p−1}) .  

For a particular path !p = p−1 − vn−1 , we have 

 
!p = p−1 − vn−1
= (vn−1 − vn−1,vn−2 − vn−1,...,v0 − vn−1)
= (0,vn−2 − vn−1,...,v0 − vn−1)

.  

Since the first cell offset of p is (0,0,0), we have pʹ′ ∈ Ψ(n)
FS from 

the generation of Ψ(n)
FS (line 1 in Table 3). Thus, for every path p 

∈ Ψ(n)
FS, there exists a path-twin RPT(p) = !p = p−1 − vn−1  ∈ 

Ψ(n)
FS.  

The a differential representation of pʹ′ is 



 
σ ( !p ) = (vn−2 − vn−1 − 0,..., (v0 − vn−1)− (v1 − vn−1))

= (vn−2 − vn−1,...,v0 − v1)
,  

while that of p-1 is 

 σ (p−1) = (vn−2 − vn−1,...,v0 − v1) .  

Hence σ(pʹ′) = σ(p-1). From Lemma 3, this proves the equivalence 
of p and its twin RPT(p). Next we consider the uniqueness of 
RPT(p). Since all paths in a computation pattern begin with the 
same cell, they are all inequivalent if the path is directional. The 
only source of equivalence therefore arises from the 
undirectionality of paths, which is a direct consequence of the 
undirectionality of n-tuples stated in section 2.1. The reflective 
equivalence is two-fold by definition, and it can produce at most 
one redundant path. □ 

From Lemmas 3 and 6, there exists a unique path twin that 
produces the identical force set for every path p. However, if p = 
p-1, then RPT(p) is p itself. Thus, it is not collapsible. 

COROLLARY 1 (SELF-REFLECTION). For an arbitrary cell 
domain Ω and a path p ∈ Ψ 

(n)
FS. If p = p-1, RPT(p) = p. 

PROOF. Let p be (v0,…,vn-1). From Lemma 6, RPT(p) = p-1 – 
vn-1. From the assumption, p = p-1, thus RPT(p) = p – vn-1. Also, p 
= p-1 implies v0 = vn-1. Since p ∈ Ψ(n)

FS, v0 = 0. Hence, RPT(p) = 
p – vn-1 = p – v0 = p. □ 

According to the self-reflection in Corollary 1, ψnon-collapsible = {p | 
∀p ∈ Ψ(n)

FS: p = p-1}. To estimate |ψnon-collapsible|, we need to count 
the number of paths that are self-reflective. Note that 

 

p = p
−1
=

(v
0
,...,v

(n−1)/2−1
,v

(n−1)/2
,v

(n−1)/2−1
,...,v

0
) ; n is odd

(v
0
,...,v

n/2−1
,v

n/2−1
,...,v

0
) ; n is even





,  

thus, the number of self-reflective (i.e. non-collapsible) paths is 

 ψnon-collapsible = 27
n+1
2

!
"!

#
$#
−1

. (27) 

Substituting Eq. (27) in Eq. (26) yields 

 
ψcollapsible
FS = ΨFS

(n) − ψnon-collapsible
FS

= 27n−1 − 27
n+1
2

#
$#

%
&%
−1

. (28) 

Lemma 6 states that there is a unique reflective path-twin of p for 
each collapsible path p such that one of them can be removed. 
Thus, the number of collapsed paths in SC pattern is half of the 
collapsible paths in Eq. (28): 

 

ΨSC
(n) =

1
2
ψcollapsible
FS + ψnon-collapsible

FS

=
1
2
(27n−1 − 27

n+1
2

#
$#

%
&%
−1
)+ 27

n+1
2

#
$#

%
&%
−1

=
1
2
27n−1 +O(27n/2 )

. (29) 

Hence, the search cost of SC is roughly half that of FS for large n. 

4.2 Communication Analysis of SC Pattern 
In this subsection, we analyze the communication cost of the 
parallel SC-MD. The communication cost is defined as 

 Tcomm = Tbandwidth +Tlatency . (30) 

Here, we assume that the bandwidth cost Tbandwidth is proportional 
to the amount of imported data. The imported data in parallel MD 
is proportional to the imported volume Vimport in subsection 3.1.3 
in the average case. On the other hand, the latency cost Tlatency is 
proportional to the number of nodes ncomm_node from which data 
needs to be imported. Hence, Eq. (30) can be rewritten as 

 Tcomm = cbandwidthVimport + clatencyncomm_nodes , (31) 

where cbandwidth and clatency are prefactors. To quantify Tcomm for 
SC-MD, we first determine the import volume of the SC pattern. 
For simplicity, we assume that the given cell domain has a cubic 
shape such that Lx = Ly = Lz = l. 

From the definition of import volume in Eq. (14), we need to find 
the union of cell coverage of all cells in the domain. To analyze 
the cell coverage, we define a layered cell coverage in the range 
[a, b] (where a and b are nonnegative integers such that a ≤ b) as 

 c[a,b]q = c(q+

δ ) ∀δβ ∈ {a,a+1,...,b}  for all β ∈ {x,y,z}{ } .  

In the SC algorithm, the key step that affects cell coverage is the 
OC-SHIFT subroutine. OC-SHIFT performs 1st-octant 
compression, in which all computation paths in the pattern are 
shifted to the first octant of cell coverage (i.e. non-negative cell 
indices along x, y, and z directions relative to the center cell). 
Thus, the cell coverage Π(c(q),Ψ(n)

SC) for an arbitrary cell c(q) is 

 Π(c(q),ΨSC
(n) ) = c[0,n−1]q .  

From Eq. (13), the cell-domain coverage of the SC pattern is 

  Π(Ω,ΨSC
(n) ) = c[0,n−1]q

∀c(q)∈Ω
 .  

Hence, the import volume of the SC pattern reads 

 Vω (Ω,ΨSC
(n) ) = c[0,n−1]q

∀c(q)∈Ω
 −Ω . (32) 

Since Ω⊆Π(Ω,ΨSC
(n) ) , the cardinality in the R.H.S. of Eq. (32) 

can be taken individually. Hence the import volume of Ψ(n)
SC is 

 
Vω (Ω,ΨSC

(n) ) = c[0,n−1]q
∀c(q)∈Ω
 − Ω

= (l + n−1)3 − l3
. (33) 

Regarding the latency cost, unlike some methods such as NT [24] 
that minimize the bandwidth cost at the expense of latency cost, 
all cell-based methods have small constant latency. In SC-MD, we 
only need to import atom data from 7 nearest processors using 
only 3 communication steps via forwarded atom-data routing. 

 
Figure 6. Schematic of shell methods for pair computation: 

(a) full-shell, (b) half-shell, and (c) eighth-shell patterns. 
 



4.3  Relation to Previous Works 
Numerous algorithms have been designed to utilize the cell data 
structure for efficient range-limited n-tuple search. For the case of 
pair computation (n = 2), in particular, shell-based methods—such 
as full-shell (FS), half-shell (HS), and eighth-shell (ES)—are used 
extensively for efficient search of pairs in Γ*(2). These methods 
can be described systematically in terms of UCP. In the following 
subsections, we provide their unified descriptions and compare 
them with SC. 

4.3.1 Full-shell method 
FS is the simplest among shell methods and it produces a 
bounding force set. FS searches all atoms within the nearest-
neighbor cells (i.e. cells of indices within ±1 in the x, y, z 
directions) surrounding the center cell [17]. In our algebraic 
notation, FS is equivalent to Ψ(2)

FS, and thus is 2-complete 
according to Lemma 1. However, FS is not optimal in the light of 
the search cost: |Ψ(2)

FS| = 27 (see Figure 6(a)). Since FS has 
reflective redundancy, the extra computational cost is involved for 
filtering the collapsible pairs. 

4.3.2 Half-shell method 
HS reduces the search cost of FS using the symmetric property of 
reflected pairs to eliminate redundant search (see Figure 6(b)) 
[17]. This amounts to ΨHS = R-COLLAPSE(Ψ(2)

FS). Thus, the 
search cost and import volume are reduced by nearly half 
compared to that of FS, i.e., |ΨHS| = 14. 

4.3.3 Eighth-shell method 
ES improves over HS by relaxing the owner-compute rule, 
thereby interacting only with the neighbor cells in the upper-
corner octant [23]. This amounts to ΨES = OC-SHIFT(ΨHS) = 
Ψ(2)

SC. Hence, ES is a special case of the SC algorithm for n = 2. 
OC-shift reduces the cell footprint of ES to |Π(ΨES)| = 7, see 
Figure 6(c). This in turn reduces the import volume for parallel 
computation, which is Eq. (33) for n = 2. 

5.  PERFORMANCE BENCHMARKS 
In this section, we benchmark the performance of SC-MD and 
two existing n-tuple computation codes—FS-MD and Hybrid-
MD—for a real many-body MD application. Specifically, we 
consider MD simulation of silica (SiO2), which involves dynamic 
pair and triplet (n = 2 and 3) computations [4]. In this application, 
rcut-3 is smaller than rcut-2, i.e., rcut-3/rcut-2 ~ 0.47. FS-MD uses a 
computation pattern generated from GENERATE-FS in Table 3 
without further performing OC-shift and R-collapse. Hybrid-MD 
is a production code presented in Ref. [12]. In this code, the pair 
computation is done by constructing a dynamic pair list (called 
Verlet neighbor list) within UCP for  Ψ(2)

FS. Then, Hybrid-MD 
exploits the shorter cutoff of the triplet computation by pruning 
the triplet search directly from the pair list without using the cell 
data structure with rcut-3. Although this hybrid cell/Verlet-
neighbor-list approach reduces the triplet search cost in this 
particular situation, the import volume is not reduced from that of 
FS-MD. 

Performance evaluations in this section are performed on two 
platforms: BlueGene/Q at Argonne National Laboratory and an 
Intel-Xeon cluster at the Center for High Performance Computing 
and Communication of the University of Southern California 
(USC-HPCC). The BlueGene/Q consists of 49,152 compute 
nodes, where each node has 16 PowerPC A2 cores. Each core 
supports 4 hardware threads, which is clocked at 1.6 GHz. The 
network topology of BlueGene/Q is a 5D torus. Four MPI tasks 

are spawn on each core of BlueGene/Q to fully take advantage of 
integer pipeline and cache-latency hiding in the BlueGene/Q 
architecture. Details of the BlueGene/Q architecture can be found 
in Ref. [29]. Tests on the USC-HPCC cluster are performed on 
dual 6-core processor nodes with 2.33 GHz Intel Xeon X5650 
processors and 48 GB memory per node. 

5.1 Search Cost of SC and FS Algorithms 
According to the analysis in section 4.1, the search cost of SC is 
much smaller than that of FS (asymptotically half for large n). To 
confirm this assertion, we measure the actual number of n-tuples 
in the force set for SC-MD and FS-MD. Figure 7 shows the 
measured number of triplets per MD step (averaged over 10,000 
time steps) as a function of the number of cells, where the average 
cell density 〈ρcell〉 is fixed for each measurement. The plot shows 
that the triplet count of FS-MD is ~2.13 times of that of SC-MD. 

5.2 Fine-Grain Parallelism 
We compare the runtime of SC-MD with those of FS-MD and 
Hybrid-MD to characterize the performance as a function of 
granularity (i.e. the number atoms per core, N/P) on 48-64 nodes 
for small grains (N/P = 24 – 3,000).  

Figure 8(a) shows an average runtime over 10,000 MD steps of 
the three codes on 48 nodes of the Intel-Xeon cluster. The average 
grain size is varied from 24 to 3,000 atoms per core. At the 
smallest grain (N/P = 24), the runtime per MD step of SC-MD is 
much shorter than those of FS-MD and Hybrid-MD—by factors 
of 10.5 and 9.7, respectively. This is mainly due to the small 
import volume of SC-MD. Accordingly, SC-MD is faster than FS-
MD for all granularities. However, the Hybrid-MD performance 
relative to that of SC-MD improves gradually as the granularity 
increases. This can be understood as follow. While SC-MD 
reduces the import volume as compared to Hybrid MD, Hybrid-
MD reduces the triplet search cost by taking advantage of the 
special cutoff condition. For larger granularities (or larger 
computation/communication ratios), the advantage of smaller 
import-volume for SC-MD becomes overshadowed by its larger 
triplet search cost, and hence Hybrid MD becomes more 
advantageous. The crossover of performance advantage from SC-
MD to Hybrid-MD occurs at the granularity of 2,095 atoms per 
core. 

Figure 8(b) shows an average runtime over 10,000 MD steps of 
the three codes on 64 nodes of BlueGene/Q. In accordance with 
the result on the Intel Xeon platform, the finest-grain result of SC-
MD shows 5.7- and 5.1-fold speedups over FS-MD and Hybrid-
MD, respectively. In this test, the crossover of performance 

 
Figure 7. Average number of triplets as a function of domain 

size. Error bars are too small to be visible in the plot. 
 



advantage from SC-MD to Hybrid MD on BlueGene/Q is found to 
be at N/P = 425, which is considerably smaller than that on Intel 
Xeon. This is likely due to the lower computational power per 
core of BlueGene/Q compared with that of Intel Xeon. 
Consequently, the benefit of smaller triplet search space for 
Hybrid-MD is emphasized to shift down the trade-off point 
between the search cost and import-volume size. 

5.3 Strong-Scaling Benchmark 
In this subsection, we perform a strong-scaling benchmark of SC-
MD, FS-MD, and Hybrid-MD on 1−512 BlueGene/Q nodes (i.e. 
16−8,192 cores) and on 1−64 Intel Xeon nodes (i.e. 12−768 
cores). Strong-scaling speedup is defined as 

 Sstrong =
Treference
Tparallel

, (34) 

where Treference denotes the time spent on a reference test (i.e. the 
timing result on a single node) and Tparallel is the time spent on a 
larger parallel run to solve the same problem. The corresponding 
parallel efficiency is ηstrong = Sstrong/(Pparallel/Preference), where Pparallel 
and Preference are the numbers of cores used in the parallel and 
reference runs, respectively. The total number of atoms used in 
the benchmark is fixed at 0.88 and 0.79 millions atoms on Intel-
Xeon and BlueGene/Q platforms, respectively. Atoms in both 
systems are uniformly distributed.  

Figure 9(a) shows the strong-scaling speedup of SC-MD, FS-MD, 
and Hybrid-MD as a function of the number of cores on the Intel-
Xeon cluster. The plot shows that SC-MD achieves excellent 

scalability from 1−64 nodes with a 59.3-fold speedup (or 92.6% 
parallel efficiency) on 768 Intel Xeon cores. On the other hand, 
the scalability of FS-MD and Hybrid-MD decline after the 
number of cores exceeds 96, so that Sstrong becomes 24.5 and 17.1 
on 768 cores, respectively. The corresponding parallel efficiencies 
are 38.3% and 26.8%. The number of cores and system size used 
in this benchmark are in an affordable range for general scientists 
using commodity clusters. 

The second benchmark measures strong scalabilities of the three 
codes on BlueGene/Q. Similarly to the previous benchmark, the 
results in Figure 9(b) indicate that SC-MD maintains excellent 
strong scalability with Sstrong = 465.6 (or ηstrong = 90.9%) on 8,192 
cores. This demonstrates an excellent strong scalability of SC-MD 
on larger platforms. On the other hand, FS-MD and Hybrid-MD 
maintain decent parallel efficiency only on small numbers of 
nodes, where 7.1- and 7.0-fold speedup is observed on 8 nodes. 
After that, their scalabilities decrease gradually, and only 55.1- 
and 95.2-fold speedups (10.8% and 18.6% efficiencies) are 
observed on 8,192 cores (N/P ~100 or ~26 atoms per MPI task). 

To confirm that SC-MD scales on extreme-scale clusters, we 
perform a larger strong-scaling benchmark for a 50.3 million-
atom system involving up to 32,768 BlueGene/Q nodes (or 
2,097,152 MPI tasks on 524,288 cores for the largest 
measurement). The result shows an excellent speedup Sstrong = 
3,764.6 (or 91.9% parallel efficiency) on 524,288 cores compared 
to the reference timing of 128-core run on 8 BlueGene/Q nodes. 

6. CONCLUSION 
We have developed a computation-pattern algebraic framework to 
formalize dynamic n-tuple computation in many-body MD. This 
new formalism allows us to perform systematically and 

 

 
Figure 9. Strong scaling speedup of SC-MD, Hybrid-MD, and 

FS-MD on (a) Intel Xeon cluster and (b) BlueGene/Q. 

 

 
Figure 8. Runtime of SC-MD (red), FS-MD (green), and 

Hybrid-MD (blue) as a function of the granularity on (a) 48 
Intel Xeon nodes and (b) 64 BlueGene/Q nodes. The plot 

shows that SC-MD is the fastest for N/P < 2,095 and 425 on 
Intel Xeon and BlueGene/Q platforms, respectively. 

 



mathematically proven analysis of dynamic range-limited n-tuple 
MD, which to the best of our knowledge, has not been done 
before. The new formulation and analysis have led to the 
development of the SC algorithm, which generalizes some of the 
best pair (n = 2) computation algorithms to an arbitrary n. 
Benchmark tests have shown that SC-MD outperforms our 
production Hybrid-MD code for fine granularities. Excellent 
strong scalability has also been observed for SC-MD. The results 
demonstrate the advantage of SC-MD over Hybrid-MD when the 
time-to-solution (rather than simulating the largest possible 
system size) is the major goal. 

There is an additional benefit of SC-MD compared with Hybrid-
MD that combines cell and Verlet-neighbor-list methods. Namely, 
SC exposes maximal concurrency on heterogeneous architectures 
such as GPU-accelerated and many-core clusters. Since SC 
executes different n-tuple computations independently, they can 
be assigned to different hardware (e.g. multiples GPUs). In 
contrast, Hybrid-MD has a sequential dependence, i.e., the Verlet-
neighbor list must be constructed within the pair computation 
before any n > 2 computation can be performed. Another issue is 
the cell size. Though we have restricted ourselves to the cell size 
larger than rcut-n for simplicity, it is straightforward to generalize 
the SC algorithm to a cell size less than rcut-n as was done, e.g., in 
the midpoint method [30]. In this case, the SC algorithm improves 
the midpoint method by further eliminating redundant searches. 
Relative advantages between ES and midpoint methods have been 
thoroughly discussed by Hess et al. [26]. 
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