
A Scalable Parallel Algorithm for Dynamic Range-Limited
n-Tuple Computation in

Many-Body Molecular Dynamics Simulation

Manaschai Kunaseth1,2, Rajiv K. Kalia1, Aiichiro Nakano1, Ken-ichi Nomura3,1, Priya Vashishta1

1Collaboratory for Advanced Computing and Simulations
Department of Computer Science, Department of Physics & Astronomy, Department of Material Science,

University of Southern California, Los Angeles, CA 90089-0242, USA
2National Nanotechnology Center (NANOTEC)

National Science and Technology Development Agency,
Thailand Science Park, Klong Luang, Pathumthani 12120, Thailand

3Center for High-Performance Computing and Communications
University of Southern California, Los Angeles, CA 90089-0706, USA

{kunaseth, rkalia, anakano, knomura, priyav}@usc.edu

ABSTRACT
Recent advancements in reactive molecular dynamics (MD)
simulations based on many-body interatomic potentials
necessitate efficient dynamic n-tuple computation, where a set of
atomic n-tuples within a given spatial range is constructed at
every time step. Here, we develop a computation-pattern algebraic
framework to mathematically formulate general n-tuple
computation. Based on translation/reflection-invariant properties
of computation patterns within this framework, we design a shift-
collapse (SC) algorithm for cell-based parallel MD. Theoretical
analysis quantifies the compact n-tuple search space and small
communication cost of SC-MD for arbitrary n, which are reduced
to those in best pair-computation approaches (e.g. eighth-shell
method) for n = 2. Benchmark tests show that SC-MD
outperforms our production MD code at the finest grain, with 9.7-
and 5.1-fold speedups on Intel-Xeon and BlueGene/Q clusters.
SC-MD also exhibits excellent strong scalability.

Categories and Subject Descriptors
J.2 [Computer Applications]: Physical Sciences and Engineering
– physics, chemistry.

General Terms
Algorithms, Performance, Theory.

Keywords
Dynamic range-limited n-tuple computation, Molecular dynamics,
Parallel computing

1. INTRODUCTION
Molecular dynamics (MD) is a simulation method to study the
dynamics of particles (e.g. atoms). It has broad applications in
diverse fields such as physics, chemistry, biology, and materials
science. MD simulation using a differentiable interatomic
potential-energy function Φ was started by Rahman in 1964 [1]
using a pair-wise potential energy, in which Φ is a sum of atomic-
pair energies. Since then, scientists started performing many-body
MD simulations that use n-tuple (n ≥ 3) energy functions for
accurate description of a wider range of materials. In one type of
n-tuple computation (i.e. static n-tuple computation) used
typically in biomolecular simulations [2], the list of atomic n-
tuples is fixed throughout the simulation. In another (i.e. dynamic
n-tuple computation), n-tuple lists within given interaction ranges
are constructed at every simulation time step [3, 4]. Recent
advancements in chemically reactive MD simulations [5] have
renewed interests in efficient implementation of dynamic n-tuple
computation [6]. Reactive MD describes the formation and
breakage of chemical bonds based on a reactive bond-order
concept [5]. In the ReaxFF approach, for example, n is 4
explicitly, and force computation involves up to n = 6 due to
chain-rule differentiations through bond-order terms [7-9].

Scalable implementation of MD on massively parallel computers
has been one of the major driving forces of supercomputing
technologies [10-16]. Earlier parallel implementations of MD
were based on spatial decomposition, in which the simulated
physical volume is subdivided into spatially localized sub-
volumes that are assigned to different processors [17]. For long-
range pair (n = 2) computation, octree-based O(N) algorithms (N
is the number of atoms) [18] have highly scalable parallel
implementations [19, 20]. For short-ranged (or range-limited) pair
computation, Plimpton relaxed the conventional “owner-compute”
rule (i.e., computation is performed by a processor that has data)
to design a force-decomposition algorithm to increase the
concurrency [21]. Since then, various hybrid spatial-force
decomposition algorithms have been designed [22]. On
distributed-memory parallel computers, atomic data needed for
range-limited pair computations are copied from neighbor
processors. The most primitive scheme for these atom-caching

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from
Permissions@acm.org.

SC '13, November 17 - 21 2013, Denver, USA
Copyright 2013 ACM 978-1-4503-2378-9/13/11 $15.00.
http://dx.doi.org/10.1145/2503210.2503235

operations is full shell (FS), in which data from 26 (face-, edge-,
and corner-sharing) neighbor sub-volumes are imported from
other processors. In the half-shell (HS) scheme, Newton’s third
law is utilized to halve the number of imported sub-volumes to 13
[17]. Relaxation of the owner-compute rule further reduces this
number to 7 in the eighth-shell (ES) scheme [23]. In the case of
special-purpose computers with low network latency, neutral-
territory (NT) [24] and related [25] schemes achieve
asymptotically smaller import volumes for fine granularities, N/P
(P is the number of processors). In addition to these parallel
algorithms for dynamic pair computations, numerous schemes
have been employed in biological MD codes to efficiently
compute static n-tuple computations [22, 26].

In contrast to these remarkable progresses in parallel algorithms
for dynamic pair (n = 2) and static n-tuple computations, parallel
dynamic n-tuple computation is still in its infancy. Fundamental
questions include: How can we generalize the computation-
redundancy removal in the HS scheme and the import-volume
reduction in the ES scheme developed for pair computation into
arbitrary dynamic n-tuple computations? To answer these
questions in a mathematically rigorous and systematic manner, we
here develop a novel computation-pattern algebraic framework.
Based on this framework and translation- and reflection-invariant
properties of n-tuple computations, we then design a shift-collapse
(SC) algorithm. Our algebraic framework allows not only a formal
proof of force-computation completeness but also a quantitative
analysis of n-tuple search cost and import volume. We will show,
for general dynamic n-tuple computations, that: (1) the pair HS
scheme can be generalized to a reflective-collapse (RC) scheme to
tighten the n-tuple search space; and (2) the pair ES scheme can
be generalized to an octant-compression (OC) shift scheme to
minimize the import volume.

This paper is organized as follows. Section 2 provides background
information on n-tuple MD. Section 3 presents the computation-
pattern algebraic framework for n-tuple computation and the SC
algorithm along with a proof of its correctness. Section 4 analyzes
the search-space size and communication cost of the SC
algorithm. Section 5 presents performance benchmark results on
BlueGene/Q and Intel Xeon clusters. Conclusions are drawn in
section 6.

2. BACKGROUND
In this section, we describe many-body MD, followed by the
introduction of dynamic range-limited n-tuple computation in it.

2.1 Many-Body Molecular Dynamics
MD simulation follows the time evolution of an N-atom system by
numerically integrating Newton’s equations of motion:

 m
i

d
2
x
i

dt
= f

i
= −

∂Φ(X)

∂x
i

, (1)

where X = {x0,…,xN-1} denotes a set of atomic positions, mi and fi
are the mass of and force acting on atom i, and t is time.
In Eq. (1), the many-body interatomic potential-energy function
Φ(X) is a sum of n-body potential terms Φn:

 Φ(X) =Φ
2
+Φ

3
+...+Φ

nmax
= Φ

n

n=2

nmax

∑ , (2)

where nmax is the maximum n and Φn is a function of n-tuples of
atomic positions (x0,...,xn−1).

Force computation is the most time-consuming step in MD
simulation. For each simulation time step, we need to map the
current set of atomic positions, R = {r0, …, rN-1}, to n-body force
terms for all n ∈ [2, nmax] and all atoms i ∈ [0, N−1] as

 fi
(n) = −

∂
∂xi

Φn (x0,...,xn−1)
∀(r0 ,...,rn−1)∈Γ

(n)
∑

(x0 ,...,xn−1)=(r0 ,...,rn−1)

, (3)

where Γ(n) denotes the set of all n-tuples of atom positions in R.
For a given n-tuple, χ = (r0,r1,...,rn-1) (see Figures 1 (a)-(c) for n =
2-4), forces exerted on all atoms in χ can be calculated
simultaneously in one computational step:

 ∀ri ∈ χ : fi
(n)← fi

(n) −
∂
∂xi

Φn (x0,...,xn−1)
(x0 ,...,xn−1)=χ

. (4)

Namely, the set of n-body forces on all atoms can be decomposed
into partial contributions from different n-tuples χ:

 fi
(n) i ∈ [0,N −1]{ }= F(n) = Fχ

(n)

∀χ∈Γ(n)
 . (5)

In all problems we consider, χ in Eq. (5) is undirectional,
reflecting the Newton’s 3rd law [9, 12]. Namely, (r0,r1,...,rn-1)
produces the same forces as (rn-1,rn-2,...,r0), thus they are not
counted as separate entities. We call this reflective equivalence.

Assume that force calculation for each Fχ

(n) can be executed in
constant time. The computational complexity of n-body force
computation is then proportional to the size of Γ(n), i.e., N!/[2(N-
n)!] = O(Nn) for a system with N >> n (which is the case in most
MD simulations). Thus, the computational complexity is dictated
by that of the largest n-body term, O(Nnmax) .

2.2 Dynamic Range-Limited n-Tuple
Computation
Atomic interaction is often range-limited, i.e., only atoms within
short distances contribute to forces. Force computation for a
range-limited n-body interatomic potential is defined as Eq. (3),
where Γ(n) is replaced by its subset Γ*(n) ⊆ Γ(n) :

 Γ*(n) = (r0,...,rn−1) rk,k+1 < rcut−n for all k ∈ {0,...,n− 2}{ } , (6)

where rk,k+1 is the interatomic distance between rk and rk+1 and
rcut-n is the cutoff distance for n-body interaction, see Figures 1(a)-
(c).

Formal complexity of pruning Γ(n) to obtain Γ*(n) is exponential
in n, which is not practical. However, it is possible to efficiently
find a set of n-tuples S(n) ⊆ Γ(n) such that |S(n)| << |Γ(n)| and
Γ*(n) ⊆ S(n) (Figure 2). After finding S(n), elements in Γ*(n) can be
obtained simply by exhaustive “filtering” from S(n). Since S(n) is
used to compute forces, hereafter we denote S(n) as a force set, and

Figure 1. Schematic of range-limited n-tuples: (a) pair (n = 2),

(b) triplet (n = 3), and (c) quadruplet (n = 4).

S(n) that satisfies Γ*(n) ⊆ S(n) as a bounding force set. Thus, MD
force computation can be restated as a problem to find a bounding
force set S(n) for all n ∈ {2,…,nmax}. To solve this problem, an
efficient pruning algorithm A:R⇒S(n) is required. A widely used
approach to achieve this is a cell method. It employs a cell data
structure to prune Γ(n) in O(N) time to obtain S(n) that tightly
bounds Γ*(n) .

Cell-based methods are powerful yet simple. Its procedure is
straightforward to implement for the case of pair computation.
However, cell methods for general n-tuple computation have not
been formalized mathematically. To address this problem
systematically, we formulate a cell-based n-tuple MD problem
using an algebraic framework in the next section.

3. COMPUTATION-PATTERN
ALGEBRAIC FRAMEWORK
In this section, dynamic range-limited n-tuple MD is formalized
using a computation-pattern algebraic framework. Subsection 3.1
introduces a uniform-cell pattern (UCP) formalism, which is an
algebraic generalization of conventional cell methods to solve n-
tuple MD problems for arbitrary n. In subsection 3.2, we propose
a shift-collapse (SC) algorithm to efficiently solve n-tuple MD on
the basis of UCP. Correctness of the SC algorithm is proved in
subsection 3.3.

3.1 Algebraic Formulation of Cell-Based MD
3.1.1 Cell data-structure
Cell-based MD divides a simulation volume into a non-
overlapping set of small cells with side lengths equal or slightly
larger than rcut-n. Each cell volume ζ contains a subset of atoms
in R that fall within its volume:

 c = {ri | ∀ri ∈ R and in volume ζ}, (7)

see Figure 3(a). For simplicity, we consider a simple lattice of
cubic cells. Then, each cell c(q) can be indexed using a 3-element
vector q = (qx, qy, qz), which specifies the Cartesian coordinate of
the cell position in the lattice. Let Lx, Ly, and Lz be the number of
cells in the x, y, and z directions, respectively. Then, the set of all
cell indices constitutes a vector space L:

 L = q = (qx,qy,qz)
∀qx ∈ {0,...,Lx −1}
∀qy ∈ {0,...,Ly −1}

∀qz ∈ {0,...,Lz −1}

$

%
&&

'
&
&

(

)
&&

*
&
&

.

An essential ingredient of our algebraic formulation is a cell
domain Ω, which is defined as a set of all cells:

 Ω = {c(q) |∀q ∈ L} . (8)

In this paper, we assume periodic boundary conditions in all
Cartesian directions. Then, for cell c(q), we define a cell-offset
operation c(q+Δ)→ c(#q) (Δ ∈ ℤ3) as

 ′qα = (qα +Δα)%Lα (α ∈ {x, y, z}) ,

where % is a modulo operation. Note that Ω needs to be
dynamically constructed every MD step because the positions of
atoms are changing as the computation proceeds.

3.1.2 Uniform-cell pattern MD
UCP formalism is a generalization of a cell-based MD method
using an algebraic approach (Figure 3(b)). To compute forces for
each n-body potential term, UCP generates a force set S(n) using
information from cell domain Ω along with a computation pattern
Ψ(n), which is a set of pre-define rules regarding interaction
among cells. UCP applies Ψ(n) to each cell c and generates a cell
search-space Scell, a set of n-tuples that forms a force subset
Scell(c, Ψ(n)) ⊆ S(n). By looping over all cells, it generates the entire
S(n). This is analogous to stencil computation for solving partial
differential equations, in which a stencil (equivalent to
computation pattern in our framework) defines local computation
rules for each grid point and its neighbor grid points and the
stencil is applied to all grid points in a lattice to solve the problem
[27, 28].

To describe UCP, we first define a computation path p(n) for n-
tuple computation as a list of n vectors in L (see each arrow in
Figure 3(b) as an example of pair-computation path):

 p(n) = (v0,...,vn−1)∈ L
n .

The inverse of p is defined as p-1 = (vn-1,…,v0). In addition, we
define a differential representation, σ(p) ∈ Ln-1, of each path p as

 σ (p) = (v1 − v0,...,vn−1 − vn−2) .

Then, a computation pattern is defined as a set of computation
paths Ψ(n) = {p(n)} (i.e. set of all arrows in Figure 3(b)). Given a
cell domain Ω and a computation pattern Ψ(n), a force set S(n) is
obtained as a union of cell search-spaces Scell:

 S(n) =UCP(Ω,Ψ (n)) = Scell (c(q),Ψ
(n))

∀c(q)∈Ω
 , (9)

where cell search-space Scell for each cell c(q) is defined as

Figure 2. Set diagram showing the relationship of a bounding

force set S(n) with Γ (n) and Γ*(n).
Figure 3. (a) Cell data-structure, where circles are atoms and

small squares are cells. Dashed circle denotes the cutoff
radius centered at atom i. (b) Uniform-cell pattern for pair

computation, which generates all pairs between each cell and
its neighbor cells.

Scell (c(q),Ψ
(n)) =

(r0,...,rn−1)
∀p = (v0,...,vn−1)∈ Ψ (n)

∀k ∈ {0,...,n−1} :∀rk ∈ c(q+ vk)

%
&
'

('

)
*
'

+'

. (10)

Namely, Scell is a set of n-tuples contained in all paths p ∈ Ψ(n),
which is associated with cell c(q), see Figure 4. An algorithm that
performs operations in Eqs. (9) and (10) is given in Table 1. S(n) in
Eq. (9) is obtained by looping over all c ∈ Ω (line 2), where each
iteration adds Scell(c) to S(n) (line 9). In order for UCP to be a valid
MD computation, its computation pattern Ψ(n) must satisfy the n-
body completeness condition by generating a bounding force set:

 Γ*(n) ⊆ UCP(Ω,Ψ (n)) . (11)

In this way, MD problem amounts to finding a computation
pattern that satisfies Eq. (11). Such a computation pattern is
regarded as n-complete. Existing cell-based methods can be
expressed as particular computation patterns, and our algebraic
formalism can be used to prove their completeness (e.g. HS and
ES for pair-completeness). This will be discussed in section 4.3.

Satisfying Eq. (11) only guarantees that Ψ(n) is sufficient to
generate a bounding force set using the UCP algorithm in Table 1.
The generated force set could still contain duplicated or
reflectively equivalent tuples as mentioned in section 2.1. In a
practical implementation, these redundant tuples must be
removed. Hence, the cost of the UCP algorithm, TUCP, is a cost for
filtering out the unnecessary tuples from cell search-space Scell of
every cell. This is proportional to a sum of all search-space sizes
|Scell|:

 TUCP ∝ Scell (c,Ψ
(n))

∀c∈Ω
∑ . (12)

3.1.3 Parallel UCP
In this paper, we consider parallel MD algorithms, where different
sets of atoms c along with associated computation Scell(c, Ψ(n)) are
assigned to different processors. Since Scell(c, Ψ(n)) requires data
from other cells, these data must be imported if they reside in
other processors. Depending on computation paths in Ψ(n),
different cells need be imported. This leads to different import

volumes (i.e. the number of imported cells), and hence different
communication costs.

To quantify the import volume, we define the cell coverage Π of a
computation pattern Ψ(n) as a set of cells that are needed in order
to compute Scell(c(q), Ψ(n)):

 Π(c(q),Ψ (n)) = c(q+ vk)
∀p = (v0,...,vn−1)∈ Ψ (n)

∀k : vk ∈ p

&
'
(

)(

*
+
(

,(
,

for an arbitrary cell c(q) = c. We also define the cell footprint of a
computation pattern to be the cardinality of Π(c,Ψ(n)). The cell
footprint is independent of cell, thus we denote it as |Π(Ψ(n))|.
Also, we define the cell-domain coverage as a union of the cell
coverage of all cells in the domain:

 Π(Ω,Ψ (n)) = Π(c,Ψ (n))
∀c∈Ω
 , (13)

which is the set of cells that are needed to do computation of all
cells in Ω. Here and in subsequent discussions of parallel MD, Ω
denotes a cell domain for each processor. Then, the set of cells ω
that needs to be imported from other processors are the cells that
are in the cell-domain coverage but not in the cell domain:

 ω(Ω,Ψ (n)
) =Π(Ω,Ψ

(n)
)−Ω .

The import volume of n-tuple computation is defined as the size
of all cells that need to be imported (i.e. the cardinality of ω):

 Vω (Ω,Ψ
(n)
) = ω(Ω,Ψ (n)

) . (14)

The overall import volume Vimport is determined by the largest
import volume among all n:

 Vimport =maxn (Vω (Ω,Ψ
(n))) .

3.1.4 Optimal UCP-MD problem
Based on the computational and communication cost functions of
UCP in Eqs. (12) and (14), the parallel MD problem is reduced to
the following optimization problem:

PROBLEM (OPTIMAL UCP-MD). Given a cell domain Ω,
find a set of n-complete computation patterns {Ψ*(n)} for all n ∈
{2,…,nmax} such that each Ψ*(n) satisfies the following:

1. Ψ*(n) = argmin
Ψ(n)

Scell (c,Ψ
(n))

∀c∈Ω
∑

&

'
(

)

*
+

Table 1. Uniform-cell pattern algorithm

Algorithm UCP
Input:
 Ω : a cell domain
 Ψ(n) ⊆ Ln: a computation pattern
Output:
 S(n) ⊆ Rn: a force set
Steps:
1. S(n)

 = ∅
2. for
3. Scell(c(q)) = ∅
4. for
5. for

6.
7. for

8.
9.

Figure 4. n-tuple (n = 3) generation for cell search-space Scell

of cell c(q) (colored in magenta) and computation path
(v0,v1,v2). Scell generates all triplets where the 1st, 2nd, and 3rd
atoms in the triplet are in cells c(q+v0), c(q+v1), and c(q+v2),
respectively. Dashed line shows one of the triplets (ri,rj,rk).

2. Ψ*(n) = argmin
Ψ(n)

Π(c,Ψ (n))
∀c∈Ω
 −Ω

'

(
)

*

+
,

The first condition minimizes the search cost (i.e. filtering out the
unnecessary tuples), while the second condition minimizes the
import volume in parallel MD. In the next subsection, we present
an SC algorithm to solve the optimal UCP-MD problem. We will
show in section 4 that the SC algorithm in the case of pair
computation is reduced to the best cell methods.

3.2 Shift-Collapse Algorithm
We propose an SC algorithm, which makes a complete
computation-pattern while addressing the two optimality
conditions presented in subsection 3.1.4. The SC algorithm
consists of three main phases (see Table 2). The first phase, full-
shell generation subroutine (GENERATE-FS in Table 3) performs
(n-1)-fold nested loops (lines 2-5) to enumerate all possible paths
to generate an n-complete pattern (e.g. for n = 3 in Figure 5(a)).
This creates a computation pattern centered at the original cell
(i.e. c(q) in Eq. (9)) surrounded by (n-1)-layers of nearest-
neighbor cells (yellow region in Figure 5(a)). In the following, we
refer to this computation pattern as full shell (FS).

In the second phase, octant-compression shift subroutine (OC-
SHIFT) shifts all paths in the FS pattern to the first octant in order
to compact the cell footprint |Π(Ψ(n))|. To achieve this, all of the
paths in FS are shifted toward the upper corner (the highest
Cartesian coordinates in all 3 directions, see Figure 5(b)) of the FS
cell coverage (see lines 3-4 in Table 4).

In the last phase, reflective collapse subroutine (R-COLLAPSE)
finds and removes redundant paths that generate the same force
set (Table 5). This is achieved by doubly nested loops (lines 2-3)
over all pairs of paths to compare their equivalence (line 4). If a
path-pair is found to be equivalent, one of the paths is removed
from the pattern (line 5). The equivalence between two arbitrary
paths p and pʹ′ is tested as σ(pʹ′) = σ(p-1), which will be proven in
Lemma 3 in section 3.3.

The most important property for the SC algorithm is that a path-
shift operation does not alter the resulting force set, i.e.,
translational invariance. Let p = (v0,…,vn-1) be an n-tuple
computation path, then path shifting is defined as a translation of
the origin of the computation path:

 p+Δ = (v0 +Δ,...,vn−1 +Δ) ,

where Δ ∈ ℤn denotes a shifting vector. The following theorem
proves the path-shift invariance of force computation.

THEOREM 1 (PATH-SHIFT INVARIANCE). Let Ω be a cell
domain and p be an n-tuple computation path. For an arbitrary
shift vector Δ ∈ ℤn, UCP(Ω,{p}) = UCP(Ω,{p+Δ}).

PROOF. For a particular cell c(q)∈Ω and p = {v0,…,vn-1},
Scell(c(q),{p+Δ}) reads

Scell (c(q),{p+Δ}) = {(r0,...,rn−1) |∀rk ∈ c(q+ vk +Δ)}
= {(r0,...,rn−1) |∀rk ∈ c((q+Δ)+ vk)}
= Scell (c(q+Δ),{p})

. (15)

The union of Eq. (15) over all cells in the domain yields

Table 2. Shift-collapse algorithm

Algorithm SC
Input:
 n ∈ {2,3,…}, the length of a tuple
Output:
 Ψ(n)

SC ⊆ Ln: Shift-collapse pattern
Steps:
1. ΨFS ← GENERATE-FS(n)
2. ΨOC ← OC-SHIFT(ΨFS)
3. ΨSC ← COLLAPSE(ΨOC)

 Table 3. Full-shell generation subroutine

Subroutine GENERATE-FS(n)
Input:
 n ∈ {2,3,…}, the length of a tuple
Output:
 Ψ(n)

FS ⊆ Ln: Full-shell computation pattern
Steps:
1. Ψ(n)

FS = ∅ , v0 = (0,0,0)
2. for

3. for

4.
5. for

6.

 Table 4. Octant-compression shift subroutine

Subroutine OC-SHIFT(Ψ(n))
Input:
 Ψ(n) ⊆ Ln: computation pattern
Output
 Ψ(n)

OC ⊆ Ln: OC computation pattern
Steps:
1. Ψ(n)

OC = ∅
2. for

3.

4.
5.

Table 5. Reflective-collapse subroutine

Subroutine R-COLLAPSE(Ψ(n))
Input:
 Ψ(n) ⊆ Ln: computation pattern
Output:
 Ψ(n)

RC ⊆ Ln: non-redundant computation pattern
Steps:
1. Ψ(n)

RC = Ψ(n)
2. for
3. for

4. if

5.

Scell (c(q+Δ),{p})

∀c(q+Δ)∈Ω
 = Scell (c(%q),{p})

∀c(%q)∈Ω

=UCP(Ω,{p})
.

The last equality comes from the definition of UCP in Eq. (9).
Therefore, UCP(Ω,{p+Δ}) = UCP(Ω,{p}). □

3.3 Correctness of SC Algorithm
To prove the correctness of the SC algorithm, we will show that
the computation pattern generated by it is complete as defined in
Eq. (11). The SC algorithm consists of three phases. We will show
that the first phase generates a complete pattern, while the second
and third phases do not alter the resulting force set.

First, we prove that the GENERATE-FS routine generates a
pattern that constitutes a bounding force set.

LEMMA 1. Given a computation pattern Ψ(n)
FS =

GENERATE-FS(n), the force set S(n) = UCP(Ω,Ψ(n)
FS) is a

bounding force set for an arbitrary cell domain Ω.

PROOF. GENERATE-FS(n) in Table 3 constructs Ψ(n)
FS as a

union of (v0,…,vn-1) such that vk+1 = (vk
x ±1,vk

y ±1,vk
z ±1) for all 0 ≤

k < n-1. Thus c(q+ vk) is a nearest neighbor cell of c(q+ vk+1)
for an arbitrary q ∈ L. Consider an arbitrary n-tuple
χ = (r0,...,rn−1)∈ Γ*(n) , where rk,k+1 < rcut−n for all 0 ≤ k < n-1.

We will prove that χ is included in a cell set
(c(q+ v0),c(q+ v1),...,c(q+ vn−1)) using mathematical induction:

Base: r0 ∈ c(q+ v0) ,
Induction: if rk ∈ c(q+ vk) , then ∃vk+1 : rk+1 ∈ c(q+ vk+1) .

Base step is trivial because we choose q such that r0 ∈ c(q+v0).
For the induction step, atomic pair (rk , rk+1) with distance
rk,k+1 < rcut−n is guaranteed to reside in cell c(q+vk) and c(q+vk+1)
because the cell size is larger than the cutoff rcut-n. This proves the
induction step. Hence, ∃vk : rk ∈ c(q+ vk) for all 0 ≤ k < n-1 and
thus, the entire n-tuple χ is contained in a cell set
(c(q+ v0),c(q+ v1),...,c(q+ vn−1)) . From the definition of Scell in

Eq. (10), for an arbitrary n-tuple in Γ*(n) there exists
Scell(c(q),Ψ(n)

FS). Therefore from the definition of UCP in Eq. (9),
Γ*(n) ⊆ UCP(Ω,Ψ (n)) is satisfied and UCP(Ω,Ψ(n)) is complete. □

Next, we prove that OC-SHIFT operation does not alter the
resulting force set.

LEMMA 2. Consider an arbitrary computation pattern Ψ(n)
and a cell domain Ω. For Ψ(n)

OC = OC-SHIFT(Ψ(n)),
UCP(Ω,Ψ(n)

OC) = UCP(Ω,Ψ(n)).

PROOF. The OC-SHIFT subroutine performs a series of
shifting operations to all paths in Ψ(n). From Theorem 1, each
shifting operation keeps the force set unchanged. Therefore,
UCP(Ω,Ψ(n)

OC) = UCP(Ω,Ψ(n)) □

To prove that R-COLLAPSE keeps the force set unchanged, we
first prove the equivalence between paths (i.e. line 4 in Table 5)
used in R-COLLAPSE.

LEMMA 3 (REFLECTIVE INVARIANCE). Consider a cell domain
Ω and paths p, pʹ′ of size n. If σ(p-1) = σ(pʹ′), then UCP(Ω,{p}) =
UCP((Ω,{pʹ′}).

PROOF. Let p = (v0,...,vn−1), "p = (u0,...,un−1) and the inverse

path of p be p-1 = (vn−1,...,v0) . From the assumption

σ (p-1) =σ (!p) , we have

 uk+1 −uk = vn−2−k − vn−1−k , (16)

for all k ∈ {0,…,n-2}. From the shift-invariant property in
Theorem 1,
 Scell (c(q),{ !p })

∀c(q)∈Ω
 = Scell (c(q),{ !p +Δ})

∀c(q)∈Ω
 .

Let Δ = vn-1-u0, then Scell (c(q),{ !p +Δ}) reads

Scell (c(q),{ !p }) = {(r0,...,rn−1) |∀rk ∈ c(q+uk +Δ)}

= {(r0,...,rn−1) |∀rk ∈ c(q+ vn−1 −u0 +uk)}
, (17)

Using telescoping, q+ vn−1 −u0 +uk in Eq. (17) can be rewritten
as

 q+ vn−1 −u0 +uk = q+ vn−1 + (ui+1 −ui)
i=0

k−1

∑ . (18)

ui+1-ui in the R.H.S. of Eq. (18) can be replaced by vn-2-i-vn-1-i
according to Eq. (16), which yields

q+ vn−1 + (ui+1 −ui)

i=0

k−1

∑ = q+ vn−1 + (vn−2−i − vn−1−i)
i=0

k−1

∑

= q+ vn−1−k

.

Therefore,

 q+ vn−1 −u0 +uk = q+ vn−1−k . (19)

Substituting Eq. (19) back into Eq. (17) yields,

Scell (c(q),{ !p }) = {(r0,...,rn−1) |∀rk ∈ c(q+ vn−1−k)}
= {(r0,...,rn−1) |∀rn−1−k ∈ c(q+ vk)}
= {(rn−1,...,r0) |∀rk ∈ c(q+ vk)}

. (20)

Based on the undirectionality of tuples described in section 2.1,
(r0,...,rn−1) = (rn−1,...,r0) . Therefore Eq. (20) reads

Scell (c(q),{ !p }) = {(r0,...,rn−1) |∀rk ∈ c(q+ vk)}

= Scell (c(q),{p})
.

Based on the definition of UCP in Eq. (9), this proves
UCP(Ω,{p}) =UCP(Ω,{ "p }) . □

Figure 5. 2D schematic of a shift-collapse (SC) computation
pattern. (a) FS computation pattern for n = 3, containing all

possible paths of length 3 originated from the center cell
(magenta). (b) SC computation pattern after OC-shift and R-
collapse subroutines. Yellow cells denote the cell coverage of

the center cell, which for SC is much smaller than that for FS.

Using Lemma 3, we can now prove that the R-COLLAPSE
subroutine preserves the completeness of a pattern.

LEMMA 4. Let Ω be an arbitrary cell domain and Ψ(n) be a
computation pattern. For Ψ(n)

RC = R-COLLAPSE(Ψ(n)),
UCP(Ω,Ψ(n)

RC) = UCP(Ω,Ψ(n)).

PROOF. In R-COLLAPSE subroutine (Table 5), lines 2-3
loop over all pairs of computation paths {p, !p } in Ψ(n). For each
pair of paths, we remove one of them (i.e. collapsing) only when
σ (!p) =σ (p-1) (lines 4-5). In such a case, ΨRC

(n) =Ψ (n) −{ #p }
. Based on Lemma 3, p and pʹ′ produce the same force set, and
thus

 UCP(Ω,Ψ (n)) =UCP(Ω,Ψ (n) −{ $p }) . (21)

Substituting ΨRC
(n) =Ψ (n) −{ #p } into Eq. (21) yields

UCP(Ω,Ψ (n)) =UCP(Ω,ΨRC
(n)) , which proves the Lemma. □

Using Lemmas 1, 2, and 4, we can now prove the correctness of
the SC algorithm by proving the completeness of SC pattern.

THEOREM 2. Given an arbitrary cell domain Ω, a
computation pattern Ψ(n)

SC generated from the shift-collapse
algorithm is n-complete.

PROOF. Lemma 1 states that GENERATE-FS produces
Ψ(n)

FS, which is an n-complete pattern. Lemma 2 guarantees that
for Ψ(n)

OC = OC-SHIFT(Ψ(n)
FS), UCP(Ω,Ψ(n)

OC) = UCP(Ω,Ψ(n)
FS)

and thus Ψ(n)
OC is also complete. According to Lemma 4, for

Ψ(n)
SC = R-COLLAPSE(Ψ(n)

OC), UCP(Ω,Ψ(n)
SC) = UCP(Ω,Ψ(n)

OC).
Therefore Ψ(n)

SC is complete. □

4. THEORETICAL ANALYSIS
In this section, we perform theoretical analysis of the SC
algorithm. First, we quantify the cost of n-tuple searches of the SC
pattern. We then analyze and estimate the import volume of the
SC the pattern. Finally, we discuss the relation of SC to previous
works in the case of pair computation.

4.1 Search-Cost Analysis of SC Pattern
In this subsection, we show that the search cost for the SC pattern
is approximately half that of FS. This size reduction arises from
R-COLLAPSE, which removes all redundant computation paths
using their reflective-invariant property in Lemma 3. First, we
show that the size of a search space can be estimated by the
cardinality of a computation pattern.

LEMMA 5. Assume that the atom distribution is uniform. For
an arbitrary cell domain Ω and a computation pattern Ψ(n), the
search cost TUCP is proportional to |Ψ(n)|.

PROOF. Let 〈ρcell〉 be the average number of atoms per cell.
For all paths p = (v0,…,vn-1) in Ψ(n) and an arbitrary cell c(q) ∈ Ω,
the average number of atomic pairs in a cell-pair c(q+vk) and
c(q+vk+1) is 〈ρcell〉

2. Thus, for an n-1 consecutive cell-pairs, the
number of tuples in a cell search-space Scell centered at an
arbitrary cell c(q) is

 Scell (c(q),{p}) = ρcell
n−1

. (22)

By summing Eq. (22) over all paths in Ψ(n), we obtain the average
number of n-tuples associated with cell c(q) as

 Scell (c(q),Ψ
(n)) = ρcell

n−1
Ψ (n) . (23)

Summation of Eq. (23) over all cells in Ω yields the search cost in
Eq. (12):

 Scell (c,Ψ
(n))

∀c∈Ω
∑ = TUCP = L ρcell

n−1
Ψ (n) . (24)

Hence, TUCP ∝ |Ψ(n)|. □

Based on Lemma 5, we can estimate the costs of UCP(Ω,Ψ(n)
FS)

and UCP(Ω,Ψ(n)
SC) in terms of |Ψ(n)

FS| as follows.

For each path p in Ψ(n)
FS, there are n-1 consecutive cell-vector

pairs (vk, vk+1) for 0 ≤ k < n-1. For a particular cell q+vk, there are
27 nearest-neighbor cells q+vk+1. Thus for n-1 neighbor-search
steps, we have the number of paths as

 ΨFS
(n) = 27n−1 . (25)

Substituting Eq. (25) in Eq. (24), the search cost for
UCP(Ω,Ψ(n)

FS) is obtained as

 TUCP = L 27 ρcell()
n−1

.

Next, we analyze the search cost of UCP(Ω,Ψ(n)
SC). Paths in

Ψ(n)
SC

 are only removed in the R-COLLAPSE routine, where
redundant paths are collapsed. To estimate |Ψ(n)

SC|, we need to
find how many path are collapsed. Thus, we first categorize paths
in Ψ(n)

FS into collapsible and non-collapsible paths as

 ΨFS
(n) =ψcollapsible

FS ∪ψnon-collapsible
FS , (26)

where ψcollapsible and ψnon-collapsible are disjoint sets of collapsible
and non-collapsible paths, respectively. In the following, we
prove that for each path in Ψ(n)

FS, there exists a unique path in
Ψ(n)

FS that produces the same force set.

LEMMA 6 (REFLECTIVE PATH-TWIN (RPT)). For an arbitrary
cell domain Ω and a path p = (v0,…,vn-1) ∈ Ψ(n)

FS, there exists a
unique reflective path-twin RPT(p) = p-1-vn-1 ∈ Ψ(n)

FS, such that
σ(p-1) = σ(RPT(p)).

PROOF. For p = (v0...,vn−1) , we have p−1 = (vn−1,...,v0) .
From the definition of UCP (Eq. (9)) for the case of a single-path
pattern {p} and the undirectionality of n-tuple, it is
straightforward to prove that

 UCP(Ω,{p}) =UCP(Ω,{p−1}) .

For a particular path !p = p−1 − vn−1 , we have

!p = p−1 − vn−1
= (vn−1 − vn−1,vn−2 − vn−1,...,v0 − vn−1)
= (0,vn−2 − vn−1,...,v0 − vn−1)

.

Since the first cell offset of p is (0,0,0), we have pʹ′ ∈ Ψ(n)
FS from

the generation of Ψ(n)
FS (line 1 in Table 3). Thus, for every path p

∈ Ψ(n)
FS, there exists a path-twin RPT(p) = !p = p−1 − vn−1 ∈

Ψ(n)
FS.

The a differential representation of pʹ′ is

σ (!p) = (vn−2 − vn−1 − 0,..., (v0 − vn−1)− (v1 − vn−1))

= (vn−2 − vn−1,...,v0 − v1)
,

while that of p-1 is

 σ (p−1) = (vn−2 − vn−1,...,v0 − v1) .

Hence σ(pʹ′) = σ(p-1). From Lemma 3, this proves the equivalence
of p and its twin RPT(p). Next we consider the uniqueness of
RPT(p). Since all paths in a computation pattern begin with the
same cell, they are all inequivalent if the path is directional. The
only source of equivalence therefore arises from the
undirectionality of paths, which is a direct consequence of the
undirectionality of n-tuples stated in section 2.1. The reflective
equivalence is two-fold by definition, and it can produce at most
one redundant path. □

From Lemmas 3 and 6, there exists a unique path twin that
produces the identical force set for every path p. However, if p =
p-1, then RPT(p) is p itself. Thus, it is not collapsible.

COROLLARY 1 (SELF-REFLECTION). For an arbitrary cell
domain Ω and a path p ∈ Ψ

(n)
FS. If p = p-1, RPT(p) = p.

PROOF. Let p be (v0,…,vn-1). From Lemma 6, RPT(p) = p-1 –
vn-1. From the assumption, p = p-1, thus RPT(p) = p – vn-1. Also, p
= p-1 implies v0 = vn-1. Since p ∈ Ψ(n)

FS, v0 = 0. Hence, RPT(p) =
p – vn-1 = p – v0 = p. □

According to the self-reflection in Corollary 1, ψnon-collapsible = {p |
∀p ∈ Ψ(n)

FS: p = p-1}. To estimate |ψnon-collapsible|, we need to count
the number of paths that are self-reflective. Note that

p = p
−1
=

(v
0
,...,v

(n−1)/2−1
,v

(n−1)/2
,v

(n−1)/2−1
,...,v

0
) ; n is odd

(v
0
,...,v

n/2−1
,v

n/2−1
,...,v

0
) ; n is even

,

thus, the number of self-reflective (i.e. non-collapsible) paths is

 ψnon-collapsible = 27
n+1
2

!
"!

#
$#
−1

. (27)

Substituting Eq. (27) in Eq. (26) yields

ψcollapsible
FS = ΨFS

(n) − ψnon-collapsible
FS

= 27n−1 − 27
n+1
2

#
$#

%
&%
−1

. (28)

Lemma 6 states that there is a unique reflective path-twin of p for
each collapsible path p such that one of them can be removed.
Thus, the number of collapsed paths in SC pattern is half of the
collapsible paths in Eq. (28):

ΨSC
(n) =

1
2
ψcollapsible
FS + ψnon-collapsible

FS

=
1
2
(27n−1 − 27

n+1
2

#
$#

%
&%
−1
)+ 27

n+1
2

#
$#

%
&%
−1

=
1
2
27n−1 +O(27n/2)

. (29)

Hence, the search cost of SC is roughly half that of FS for large n.

4.2 Communication Analysis of SC Pattern
In this subsection, we analyze the communication cost of the
parallel SC-MD. The communication cost is defined as

 Tcomm = Tbandwidth +Tlatency . (30)

Here, we assume that the bandwidth cost Tbandwidth is proportional
to the amount of imported data. The imported data in parallel MD
is proportional to the imported volume Vimport in subsection 3.1.3
in the average case. On the other hand, the latency cost Tlatency is
proportional to the number of nodes ncomm_node from which data
needs to be imported. Hence, Eq. (30) can be rewritten as

 Tcomm = cbandwidthVimport + clatencyncomm_nodes , (31)

where cbandwidth and clatency are prefactors. To quantify Tcomm for
SC-MD, we first determine the import volume of the SC pattern.
For simplicity, we assume that the given cell domain has a cubic
shape such that Lx = Ly = Lz = l.

From the definition of import volume in Eq. (14), we need to find
the union of cell coverage of all cells in the domain. To analyze
the cell coverage, we define a layered cell coverage in the range
[a, b] (where a and b are nonnegative integers such that a ≤ b) as

 c[a,b]q = c(q+

δ) ∀δβ ∈ {a,a+1,...,b} for all β ∈ {x,y,z}{ } .

In the SC algorithm, the key step that affects cell coverage is the
OC-SHIFT subroutine. OC-SHIFT performs 1st-octant
compression, in which all computation paths in the pattern are
shifted to the first octant of cell coverage (i.e. non-negative cell
indices along x, y, and z directions relative to the center cell).
Thus, the cell coverage Π(c(q),Ψ(n)

SC) for an arbitrary cell c(q) is

 Π(c(q),ΨSC
(n)) = c[0,n−1]q .

From Eq. (13), the cell-domain coverage of the SC pattern is

 Π(Ω,ΨSC
(n)) = c[0,n−1]q

∀c(q)∈Ω
 .

Hence, the import volume of the SC pattern reads

 Vω (Ω,ΨSC
(n)) = c[0,n−1]q

∀c(q)∈Ω
 −Ω . (32)

Since Ω⊆Π(Ω,ΨSC
(n)) , the cardinality in the R.H.S. of Eq. (32)

can be taken individually. Hence the import volume of Ψ(n)
SC is

Vω (Ω,ΨSC

(n)) = c[0,n−1]q
∀c(q)∈Ω
 − Ω

= (l + n−1)3 − l3
. (33)

Regarding the latency cost, unlike some methods such as NT [24]
that minimize the bandwidth cost at the expense of latency cost,
all cell-based methods have small constant latency. In SC-MD, we
only need to import atom data from 7 nearest processors using
only 3 communication steps via forwarded atom-data routing.

Figure 6. Schematic of shell methods for pair computation:

(a) full-shell, (b) half-shell, and (c) eighth-shell patterns.

4.3 Relation to Previous Works
Numerous algorithms have been designed to utilize the cell data
structure for efficient range-limited n-tuple search. For the case of
pair computation (n = 2), in particular, shell-based methods—such
as full-shell (FS), half-shell (HS), and eighth-shell (ES)—are used
extensively for efficient search of pairs in Γ*(2). These methods
can be described systematically in terms of UCP. In the following
subsections, we provide their unified descriptions and compare
them with SC.

4.3.1 Full-shell method
FS is the simplest among shell methods and it produces a
bounding force set. FS searches all atoms within the nearest-
neighbor cells (i.e. cells of indices within ±1 in the x, y, z
directions) surrounding the center cell [17]. In our algebraic
notation, FS is equivalent to Ψ(2)

FS, and thus is 2-complete
according to Lemma 1. However, FS is not optimal in the light of
the search cost: |Ψ(2)

FS| = 27 (see Figure 6(a)). Since FS has
reflective redundancy, the extra computational cost is involved for
filtering the collapsible pairs.

4.3.2 Half-shell method
HS reduces the search cost of FS using the symmetric property of
reflected pairs to eliminate redundant search (see Figure 6(b))
[17]. This amounts to ΨHS = R-COLLAPSE(Ψ(2)

FS). Thus, the
search cost and import volume are reduced by nearly half
compared to that of FS, i.e., |ΨHS| = 14.

4.3.3 Eighth-shell method
ES improves over HS by relaxing the owner-compute rule,
thereby interacting only with the neighbor cells in the upper-
corner octant [23]. This amounts to ΨES = OC-SHIFT(ΨHS) =
Ψ(2)

SC. Hence, ES is a special case of the SC algorithm for n = 2.
OC-shift reduces the cell footprint of ES to |Π(ΨES)| = 7, see
Figure 6(c). This in turn reduces the import volume for parallel
computation, which is Eq. (33) for n = 2.

5. PERFORMANCE BENCHMARKS
In this section, we benchmark the performance of SC-MD and
two existing n-tuple computation codes—FS-MD and Hybrid-
MD—for a real many-body MD application. Specifically, we
consider MD simulation of silica (SiO2), which involves dynamic
pair and triplet (n = 2 and 3) computations [4]. In this application,
rcut-3 is smaller than rcut-2, i.e., rcut-3/rcut-2 ~ 0.47. FS-MD uses a
computation pattern generated from GENERATE-FS in Table 3
without further performing OC-shift and R-collapse. Hybrid-MD
is a production code presented in Ref. [12]. In this code, the pair
computation is done by constructing a dynamic pair list (called
Verlet neighbor list) within UCP for Ψ(2)

FS. Then, Hybrid-MD
exploits the shorter cutoff of the triplet computation by pruning
the triplet search directly from the pair list without using the cell
data structure with rcut-3. Although this hybrid cell/Verlet-
neighbor-list approach reduces the triplet search cost in this
particular situation, the import volume is not reduced from that of
FS-MD.

Performance evaluations in this section are performed on two
platforms: BlueGene/Q at Argonne National Laboratory and an
Intel-Xeon cluster at the Center for High Performance Computing
and Communication of the University of Southern California
(USC-HPCC). The BlueGene/Q consists of 49,152 compute
nodes, where each node has 16 PowerPC A2 cores. Each core
supports 4 hardware threads, which is clocked at 1.6 GHz. The
network topology of BlueGene/Q is a 5D torus. Four MPI tasks

are spawn on each core of BlueGene/Q to fully take advantage of
integer pipeline and cache-latency hiding in the BlueGene/Q
architecture. Details of the BlueGene/Q architecture can be found
in Ref. [29]. Tests on the USC-HPCC cluster are performed on
dual 6-core processor nodes with 2.33 GHz Intel Xeon X5650
processors and 48 GB memory per node.

5.1 Search Cost of SC and FS Algorithms
According to the analysis in section 4.1, the search cost of SC is
much smaller than that of FS (asymptotically half for large n). To
confirm this assertion, we measure the actual number of n-tuples
in the force set for SC-MD and FS-MD. Figure 7 shows the
measured number of triplets per MD step (averaged over 10,000
time steps) as a function of the number of cells, where the average
cell density 〈ρcell〉 is fixed for each measurement. The plot shows
that the triplet count of FS-MD is ~2.13 times of that of SC-MD.

5.2 Fine-Grain Parallelism
We compare the runtime of SC-MD with those of FS-MD and
Hybrid-MD to characterize the performance as a function of
granularity (i.e. the number atoms per core, N/P) on 48-64 nodes
for small grains (N/P = 24 – 3,000).

Figure 8(a) shows an average runtime over 10,000 MD steps of
the three codes on 48 nodes of the Intel-Xeon cluster. The average
grain size is varied from 24 to 3,000 atoms per core. At the
smallest grain (N/P = 24), the runtime per MD step of SC-MD is
much shorter than those of FS-MD and Hybrid-MD—by factors
of 10.5 and 9.7, respectively. This is mainly due to the small
import volume of SC-MD. Accordingly, SC-MD is faster than FS-
MD for all granularities. However, the Hybrid-MD performance
relative to that of SC-MD improves gradually as the granularity
increases. This can be understood as follow. While SC-MD
reduces the import volume as compared to Hybrid MD, Hybrid-
MD reduces the triplet search cost by taking advantage of the
special cutoff condition. For larger granularities (or larger
computation/communication ratios), the advantage of smaller
import-volume for SC-MD becomes overshadowed by its larger
triplet search cost, and hence Hybrid MD becomes more
advantageous. The crossover of performance advantage from SC-
MD to Hybrid-MD occurs at the granularity of 2,095 atoms per
core.

Figure 8(b) shows an average runtime over 10,000 MD steps of
the three codes on 64 nodes of BlueGene/Q. In accordance with
the result on the Intel Xeon platform, the finest-grain result of SC-
MD shows 5.7- and 5.1-fold speedups over FS-MD and Hybrid-
MD, respectively. In this test, the crossover of performance

Figure 7. Average number of triplets as a function of domain

size. Error bars are too small to be visible in the plot.

advantage from SC-MD to Hybrid MD on BlueGene/Q is found to
be at N/P = 425, which is considerably smaller than that on Intel
Xeon. This is likely due to the lower computational power per
core of BlueGene/Q compared with that of Intel Xeon.
Consequently, the benefit of smaller triplet search space for
Hybrid-MD is emphasized to shift down the trade-off point
between the search cost and import-volume size.

5.3 Strong-Scaling Benchmark
In this subsection, we perform a strong-scaling benchmark of SC-
MD, FS-MD, and Hybrid-MD on 1−512 BlueGene/Q nodes (i.e.
16−8,192 cores) and on 1−64 Intel Xeon nodes (i.e. 12−768
cores). Strong-scaling speedup is defined as

 Sstrong =
Treference
Tparallel

, (34)

where Treference denotes the time spent on a reference test (i.e. the
timing result on a single node) and Tparallel is the time spent on a
larger parallel run to solve the same problem. The corresponding
parallel efficiency is ηstrong = Sstrong/(Pparallel/Preference), where Pparallel
and Preference are the numbers of cores used in the parallel and
reference runs, respectively. The total number of atoms used in
the benchmark is fixed at 0.88 and 0.79 millions atoms on Intel-
Xeon and BlueGene/Q platforms, respectively. Atoms in both
systems are uniformly distributed.

Figure 9(a) shows the strong-scaling speedup of SC-MD, FS-MD,
and Hybrid-MD as a function of the number of cores on the Intel-
Xeon cluster. The plot shows that SC-MD achieves excellent

scalability from 1−64 nodes with a 59.3-fold speedup (or 92.6%
parallel efficiency) on 768 Intel Xeon cores. On the other hand,
the scalability of FS-MD and Hybrid-MD decline after the
number of cores exceeds 96, so that Sstrong becomes 24.5 and 17.1
on 768 cores, respectively. The corresponding parallel efficiencies
are 38.3% and 26.8%. The number of cores and system size used
in this benchmark are in an affordable range for general scientists
using commodity clusters.

The second benchmark measures strong scalabilities of the three
codes on BlueGene/Q. Similarly to the previous benchmark, the
results in Figure 9(b) indicate that SC-MD maintains excellent
strong scalability with Sstrong = 465.6 (or ηstrong = 90.9%) on 8,192
cores. This demonstrates an excellent strong scalability of SC-MD
on larger platforms. On the other hand, FS-MD and Hybrid-MD
maintain decent parallel efficiency only on small numbers of
nodes, where 7.1- and 7.0-fold speedup is observed on 8 nodes.
After that, their scalabilities decrease gradually, and only 55.1-
and 95.2-fold speedups (10.8% and 18.6% efficiencies) are
observed on 8,192 cores (N/P ~100 or ~26 atoms per MPI task).

To confirm that SC-MD scales on extreme-scale clusters, we
perform a larger strong-scaling benchmark for a 50.3 million-
atom system involving up to 32,768 BlueGene/Q nodes (or
2,097,152 MPI tasks on 524,288 cores for the largest
measurement). The result shows an excellent speedup Sstrong =
3,764.6 (or 91.9% parallel efficiency) on 524,288 cores compared
to the reference timing of 128-core run on 8 BlueGene/Q nodes.

6. CONCLUSION
We have developed a computation-pattern algebraic framework to
formalize dynamic n-tuple computation in many-body MD. This
new formalism allows us to perform systematically and

Figure 9. Strong scaling speedup of SC-MD, Hybrid-MD, and

FS-MD on (a) Intel Xeon cluster and (b) BlueGene/Q.

Figure 8. Runtime of SC-MD (red), FS-MD (green), and

Hybrid-MD (blue) as a function of the granularity on (a) 48
Intel Xeon nodes and (b) 64 BlueGene/Q nodes. The plot

shows that SC-MD is the fastest for N/P < 2,095 and 425 on
Intel Xeon and BlueGene/Q platforms, respectively.

mathematically proven analysis of dynamic range-limited n-tuple
MD, which to the best of our knowledge, has not been done
before. The new formulation and analysis have led to the
development of the SC algorithm, which generalizes some of the
best pair (n = 2) computation algorithms to an arbitrary n.
Benchmark tests have shown that SC-MD outperforms our
production Hybrid-MD code for fine granularities. Excellent
strong scalability has also been observed for SC-MD. The results
demonstrate the advantage of SC-MD over Hybrid-MD when the
time-to-solution (rather than simulating the largest possible
system size) is the major goal.

There is an additional benefit of SC-MD compared with Hybrid-
MD that combines cell and Verlet-neighbor-list methods. Namely,
SC exposes maximal concurrency on heterogeneous architectures
such as GPU-accelerated and many-core clusters. Since SC
executes different n-tuple computations independently, they can
be assigned to different hardware (e.g. multiples GPUs). In
contrast, Hybrid-MD has a sequential dependence, i.e., the Verlet-
neighbor list must be constructed within the pair computation
before any n > 2 computation can be performed. Another issue is
the cell size. Though we have restricted ourselves to the cell size
larger than rcut-n for simplicity, it is straightforward to generalize
the SC algorithm to a cell size less than rcut-n as was done, e.g., in
the midpoint method [30]. In this case, the SC algorithm improves
the midpoint method by further eliminating redundant searches.
Relative advantages between ES and midpoint methods have been
thoroughly discussed by Hess et al. [26].

7. ACKNOWLEDGMENTS
This work was partially supported by DOE-BES/EFRC/INCITE,
NSF-CDI/PetaApps, and ONR.

8. REFERENCES
[1] A. Rahman, "Correlations in the motion of atoms in liquid

argon," Physical Review, vol. 136, pp. A405-A411, Oct
1964.

[2] J. A. Mccammon, B. R. Gelin, and M. Karplus, "Dynamics
of folded proteins," Nature, vol. 267, pp. 585-590, Jun 1977.

[3] F. H. Stillinger and T. A. Weber, "Dynamics of structural
transitions in liquids," Physical Review A, vol. 28, pp. 2408-
2416, Oct 1983.

[4] P. Vashishta, R. K. Kalia, J. P. Rino, and I. Ebbsjo,
"Interaction potential for SiO2 - a molecular-dynamics study
of structural correlations," Physical Review B, vol. 41, pp.
12197-12209, Jun 1990.

[5] S. B. Sinnott and D. W. Brenner, "Three decades of many-
body potentials in materials research," MRS Bulletin, vol. 37,
pp. 469-473, May 2012.

[6] S. J. Plimpton and A. P. Thompson, "Computational aspects
of many-body potentials," MRS Bulletin, vol. 37, pp. 513-
521, May 2012.

[7] A. C. T. van Duin, S. Dasgupta, F. Lorant, and W. A.
Goddard, "ReaxFF: a reactive force field for hydrocarbons,"
Journal of Physical Chemistry A, vol. 105, pp. 9396-9409,
Oct 2001.

[8] A. Nakano, R. K. Kalia, K. Nomura, A. Sharma, P.
Vashishta, F. Shimojo, A. C. T. van Duin, W. A. Goddard, R.
Biswas, D. Srivastava, and L. H. Yang, "De novo ultrascale
atomistic simulations on high-end parallel supercomputers,"
International Journal of High Performance Computing
Applications, vol. 22, pp. 113-128, Feb 2008.

[9] K. Nomura, R. K. Kalia, A. Nakano, and P. Vashishta, "A
scalable parallel algorithm for large-scale reactive force-field

molecular dynamics simulations," Computer Physics
Communications, vol. 178, pp. 73-87, Jan 2008.

[10] P. S. Lomdahl, P. Tamayo, N. Gronbech-Jensen, and D. M.
Beazley, "50 Gflops molecular dynamics on the CM-5,"
Proceedings of Supercomputing (SC93), ACM/IEEE, 1993.

[11] T. Narumi, R. Susukita, T. Koishi, K. Yasuoka, H. Furusawa,
A. Kawai, and T. Ebisuzaki, "1.34 Tflops molecular
dynamics simulation for NaCl with a special-purpose
computer: MDM," Proceedings of Supercomputing (SC00),
ACM/IEEE, 2000.

[12] A. Nakano, R. K. Kalia, P. Vashishta, T. J. Campbell, S.
Ogata, F. Shimojo, and S. Saini, "Scalable atomistic
simulation algorithms for materials research," Proceedings of
Supercomputing (SC01), ACM/IEEE, 2001.

[13] J. C. Phillips, G. Zheng, S. Kumar, and L. V. Kale, "NAMD:
biomolecular simulation on thousands of processors,"
Proceedings of Supercomputing (SC02), ACM/IEEE, 2002.

[14] T. C. Germann, K. Kadau, and P. S. Lomdahl, "25 Tflop/s
multibillion-atom molecular dynamics simulations and
visualization/analysis on BlueGene/L," Proceedings of
Supercomputing (SC05), ACM/IEEE, 2005.

[15] J. N. Glosli, D. F. Richards, K. J. Caspersen, R. E. Rudd, J.
A. Gunnels, and F. H. Streitz, "Extending stability beyond
CPU millennium: a micron-scale atomistic simulation of
Kelvin-Helmholtz instability," Proceedings of
Supercomputing (SC07), ACM/IEEE, 2007.

[16] D. E. Shaw, R. O. Dror, J. K. Salmon, J. P. Grossman, K. M.
Mackenzie, J. A. Bank, C. Young, M. M. Deneroff, B.
Batson, K. J. Bowers, E. Chow, M. P. Eastwood, D. J.
Ierardi, J. L. Klepeis, J. S. Kuskin, R. H. Larson, K. Lindorff-
Larsen, P. Maragakis, M. A. Moraes, S. Piana, Y. Shan, and
B. Towles, "Millisecond-scale molecular dynamics
simulations on Anton," Proceedings of Supercomputing
(SC09), ACM/IEEE, 2009.

[17] D. C. Rapaport, "Large-scale molecular-dynamics simulation
using vector and parallel computers," Computer Physics
Reports, vol. 9, pp. 1-53, Dec 1988.

[18] L. Greengard and V. Rokhlin, "A fast algorithm for particle
simulations," Journal of Computational Physics, vol. 73, pp.
325-348, Dec 1987.

[19] A. Nakano, R. K. Kalia, and P. Vashishta, "Multiresolution
molecular-dynamics algorithm for realistic materials
modeling on parallel computers," Computer Physics
Communications, vol. 83, pp. 197-214, Dec 1994.

[20] S. Ogata, T. J. Campbell, R. K. Kalia, A. Nakano, P.
Vashishta, and S. Vemparala, "Scalable and portable
implementation of the fast multipole method on parallel
computers," Computer Physics Communications, vol. 153,
pp. 445-461, Jul 2003.

[21] S. Plimpton, "Fast parallel algorithms for short-range
molecular dynamics," Journal of Computational Physics,
vol. 117, pp. 1-19, Mar 1995.

[22] L. Kale, R. Skeel, M. Bhandarkar, R. Brunner, A. Gursoy, N.
Krawetz, J. Phillips, A. Shinozaki, K. Varadarajan, and K.
Schulten, "NAMD2: greater scalability for parallel molecular
dynamics," Journal of Computational Physics, vol. 151, pp.
283-312, May 1999.

[23] K. J. Bowers, R. O. Dror, and D. E. Shaw, "Zonal methods
for the parallel execution of range-limited N-body
simulations," Journal of Computational Physics, vol. 221,
pp. 303-329, Jan 2007.

[24] D. E. Shaw, "A fast, scalable method for the parallel
evaluation of distance-limited pairwise particle interactions,"

Journal of Computational Chemistry, vol. 26, pp. 1318-1328,
Oct 2005.

[25] M. Snir, "A note on N-body computations with cutoffs,"
Theory of Computing Systems, vol. 37, pp. 295-318, Mar-Apr
2004.

[26] B. Hess, C. Kutzner, D. van der Spoel, and E. Lindahl,
"GROMACS 4: Algorithms for highly efficient, load-
balanced, and scalable molecular simulation," Journal of
Chemical Theory and Computation, vol. 4, pp. 435-447, Mar
2008.

[27] K. Datta, M. Murphy, V. Volkov, S. Williams, J. Carter, L.
Oliker, D. Patterson, J. Shalf, and K. Yelick, "Stencil
computation optimization and auto-tuning on state-of-the-art
multicore architectures," Proceedings of Supercomputing
(SC08), ACM/IEEE, 2008.

[28] H. Dursun, K. Nomura, L. Peng, R. Seymour, W. Wang, R.
K. Kalia, A. Nakano, and P. Vashishta, "A multilevel
parallelization framework for high-order stencil
computations," Proceedings of the International European
Conference on Parallel and Distributed Computing (Euro-
Par 2009), 2009.

[29] R. A. Haring, M. Ohmacht, T. W. Fox, M. K. Gschwind, D.
L. Satterfield, K. Sugavanam, P. W. Coteus, P. Heidelberger,
M. A. Blumrich, R. W. Wisniewski, A. Gara, G. L. T. Chiu,
P. A. Boyle, N. H. Chist, and K. Changhoan, "The IBM Blue
Gene/Q Compute Chip," IEEE Micro, vol. 32, pp. 48-60,
Mar/Apr 2012.

[30] K. J. Bowers, R. O. Dror, and D. E. Shaw, "The midpoint
method for parallelization of particle simulations," Journal of
Chemical Physics, vol. 124, p. 184109, May 2006.

