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Abstract - We have developed a scalable 
hierarchical parallelization framework for 
molecular dynamics (MD) simulation on 
emerging multicore clusters. The framework 
combines: (1) inter-node level parallelism by 
spatial decomposition using message passing; 
(2) intra-node (inter-core) level parallelism 
through a master/worker paradigm and cellular 
decomposition using critical section-free 
multithreading; and (3) intra-core level 
parallelism via single-instruction multiple-data 
(SIMD) techniques. Our multithreading scheme 
takes account of cache coherency to maximize 
performance. For data-level parallelism via 
SIMD, zero padding is used to solve the 
alignment issue for complex data type as array, 
and simple data-type reformatting is used to 
solve the alignment issue for data with irregular 
memory accessing. By combining a hierarchy of 
parallelism, the framework exposes maximal 
concurrency and data locality, thereby 
achieving: (1) inter-node weak-scaling parallel 
efficiency 0.975 on 32,768 BlueGene/P nodes 
and 0.985 on 106,496 BlueGene/L nodes; (2) 
inter-node strong-scaling parallel efficiency 0.90 
on 32 dual quadcore AMD Opteron nodes and 
0.94 on 32 dual quadcore Intel Xeon nodes; (3) 
inter-core multithread parallel efficiency 0.65 
for the whole program (0.89 for two-body force 
calculation) for eight threads on a dual 
quadcore Xeon platform; and (4) SIMD speedup 
1.35 for the whole program (1.42 for the two-
body force calculation). 
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1 Introduction 
 

  Molecular Dynamics (MD) simulation is 
widely used to study material properties at the 
atomistic level [1]. Large-scale MD simulations 
involving million-to-billion atoms are beginning to 
address broad mechano-chemistry problems such as 
nanoenergetic reactions [2]. To encompass even 
larger spatiotemporal scales, however, increasingly 
larger computing power is needed. Emergence of the 
multicore paradigm has provided such unprecedented 
computing power. However, due to the shift from 
increasing clock speed to increasing number of cores 
per microchip [3], how to develop efficient parallel 
applications on these platforms is a challenge. 

  To address this challenge, we propose a 
scalable hierarchical parallelization framework 
(SHPF), which takes advantage of the multilevel 
feature of multicore clusters through hierarchical 
parallelization. For inter-node parallelization, we use 
the embedded divide-and-conquer (EDC) scheme [4] 
based on spatial decomposition using message 
passing, which scales linearly among compute nodes; 
for intra-node (inter-core) level parallelization, we 
implement cellular decomposition using critical 
section-free multithreading with a master-worker 
paradigm. Combined with single-instruction 
multiple-data (SIMD) techniques to exploit data-level 
parallelism, our hierarchical framework is expected 
to maximally expose data concurrency and locality 
and continue to scale on future multicore platforms. 

   This paper is organized as follows: Section 2 
describes the multiresolution molecular dynamics 
(MRMD) method used in our experiments. Section 3 
presents our parallelization framework, and Section 4 
shows results of scalability tests. Conclusions are 
drawn in Section 5. 
 
2  Multiresolution molecular dyna-    
      mics 
 

   In MD simulation, phase-space trajectories of 
the system are obtained by numerically integrating 



 

coupled ordinary differential equations to obtain the 
positions and velocities of all atoms at discretized 
time steps [2, 5]. Atomic force laws for describing 
how atoms interact with each other is mathematically 
encoded in the interatomic potential energy E(rN), 
which is a function of the positions of all N atoms, rN 
= {r1, r2, ..., rN} [6]. 

  In our MRMD simulation, E (rN) consists of 
two-body (E2) and three-body (E3) terms [7]. We use 
a linked-list cell based EDC algorithm to reduce the 
computational complexity to O(N). Here, the whole 
simulation system is divided into spatially localized 
linked-list cells. In addition, we use various space-
filling curves [8] (e.g. Hilbert or Morton curve) to 
traverse the computational cells in order to optimize 
the data and computation layouts [9, 10]. We also use 
multiresolution in time, where temporal locality is 
utilized by computing forces from further atoms with 
less frequency with a multiple time-scale method [11-
13]. This not only reduces the computational cost but 
also enhances the data locality, and accordingly is 
more suitable for parallelization. 
 
3  Scalable hierarchical 
      parallelization framework for    
      molecular dynamics  
 

  Our scalable hierarchical parallelization 
framework (SHPF) combines: (1) inter-node level 
parallelism by spatial decomposition using message 
passing; (2) intra-node (inter-core) level parallelism 
through master-worker pattern with cellular 
decomposition using critical section-free 
multithreading; and (3) data-level parallelism via 
SIMD techniques. The following subsections 
describe these parallelization levels. 
 
3.1   Inter-node level parallelism 
 

  In spatial decomposition, the physical system is 
partitioned into subsystems of equal volume. Atoms 
located in a particular subsystem are assigned to one 
of the compute nodes in the cluster, which are 
logically arranged according to the topology of 
physical subsystems (specifically, we use 3D mesh 
decomposition). 

  In parallel MD, two events that need 
communication are implemented using message 
passing. The first is atom caching: In order to 
compute interatomic interaction with cut-off length 
rc, atomic coordinates of 26 neighbor subsystems, 
which are located within rc from the subsystem 
boundary, are copied to this node, where cache 
coherence is maintained by copying the latest 

neighbor surface atoms every time before atomic 
accelerations are computed. The second is atom 
migration: After the atomic coordinates are updated 
according to the time-integration algorithm, some 
resident atoms may have moved out of the subsystem 
boundary. Such atoms are moved to proper nodes. 
 
3.2 Intra-node level parallelism 
 

With the spatial decomposition in the previous 
subsection, each spatial subsystem (or compute node) 
contains a block of linked-list cells. On multicore 
clusters, we further decompose the block of cells into 
small chunks and assign each chunk to a core by 
multithreading. For portability among broad 
architectures and operating systems, we adopt the 
POSIX thread standard. To achieve high parallel 
efficiency, we have designed a critical section-free 
algorithm to make interatomic force computations 
independent at the cost of some computational 
overhead. 

Our multithreading scheme employs a 
master/worker model: The master thread is in charge 
of updating the atomic coordinates, constructing 
neighbor lists, atom caching, atom migration, and 
coordinating the worker threads, while the worker 
threads are in charge of force computations. In 
addition, semaphores are used to synchronize 
between the master and worker threads as well as to 
avoid the overhead of thread creation and joining in 
each MD step. 

Our multithreading also takes account of cache 
coherency. It is known that increasing data locality 
by packing data together usually increases cache 
performance. However, this is not always practiced in 
multithread applications, especially for frequently 
written data by multiple threads. A typical modern 
CPU cache architecture implements write-back cache 
policy, which allows modification of data directly in 
the cacheline without immediately write modified 
data back to main memory. However, this could lead 
to cache-level critical section and race condition if 
the frequent write destination addresses by several 
CPUs lie in the same cacheline. A typical example is 
an array sum[NT] (NT is the number of threads) that 
provides separate accumulators to different threads to 
avoid a critical section for global sum (see Fig. 1 for 
NT = 2). Cache-level race condition still occurs when 
multiple threads simultaneously modify sum[i] laid in 
the same cacheline. Here, we employ a padding 
technique that separates sum[i] to different cachelines 
by defining a new struct with array pad[NPAD]. An 
example of struct for a double-precision datum is 
shown below: 
 



 

#define NPAD 7 
struct p { 
  double value;     // 1x8 bytes 
  double pad[NPAD]; // 7x8 bytes 
};                  // total 64 bytes 
 

  In this example, NPAD has to be chosen to 
match the cacheline size. Also, better performance 
can be achieved by placing frequently used variables 
for individual thread together in the same cacheline. 
 

 
Figure 1.  Illustration of a padding technique 
for NT = 2.  
 
3.3 Intra-core level optimization via 

SIMD 
 
           We exploit data-level parallelism inside each 
core via SIMD vectorization. A basic SIMD 
operation packs data into 128-bit vector registers to 
be operated simultaneously. However, the streaming 
SIMD extensions (SSE) load and store instructions 
have a special requirement on alignment, i.e., a load 
or store instruction must load from or store to a 16-
byte aligned memory. Though the SSE intrinsics 
provides unaligned load instructions, it is at the 
expense of a large performance penalty, since such 
instruction may cause cacheline splits. It is thus of 
great importance to naturally align memory access. 

   There are mainly two issues for achieving high 
SIMD speedup: One is to exploit as many 
SIMDizable statements to maximally reduce the 
computation and loading; the other is to arrange data 
naturally aligned to gain optimal performance. To 
address the first issue, we have previously proposed 
translocated statement fusion and vector composition 
techniques, thereby achieving 3.5-fold SIMD 
speedup out of 4. To address the second issue, we 
here propose two key techniques: zero padding for 
complex data type (e.g. array); and simple data-type 
reformatting for irregular memory accessing. 
 
3.3.1   Zero padding to align complex data    
           types 
 

  Zero padding is an effective way to solve the 
alignment issue in SIMD vectorization for complex 
data type like array with an appropriate padding size.    

  This subsection illustrates the use of zero 
padding for SIMD vectorization of MRMD. 

  Here, the original code is doubly nested for 
loops, where the inner loop traverses the x, y and z 
Cartesian dimensions to perform certain computation: 
 
for (i=0; i<N; i++) 
  for (a=0; a<3; a++) 
    r[i][a] = r[i][a]+DeltaT*rv[i][a]; 
 

   Our SIMD solution (see Fig. 2) redefines the 
array r[N][3] and rv[N][3] (N is the number of atoms) 
to array r[N][4] and rv[N][4] by padding zero to each 
row of both arrays, i.e., pad 0 to each {r[i][0], r[i][1], 
r[i][2]} to make {r[i][0], r[i][1], r[i][2], 0}, and each 
{rv[i][0], rv[i][1], rv[i][2]} to {rv[i][0], rv[i][1], 
rv[i][2], 0}. After this reformatting, we can unroll the 
inner loop, pack data {r[i][0], r[i][1], r[i][2], 0} to 
rvec vector, {rv[i][0], rv[i][1], rv[i][2], 0} to rvvec 
vector, and {DeltaT, DeltaT, DeltaT, DeltaT} to 
DeltaTvec vector, and multiply and add them 
simultaneously to obtain the result. The pseudo-code 
of the above SIMDization is given below: 
 
Data reformatting by zero padding 
/* Number of zeros for padding */ 
#define NPAD 1 
int zeros[NPAD] = {0,0,…0}; 
r[i] ← {r[i][0],r[i][1],r[i][2], 
  zeros[NPAD]}; 
rv[i] ← {rv[i][0],rv[i][1], 
  rv[i][2],zeros[NPAD]}; 
DelaTvec ← {DeltaT,DeltaT,DeltaT, 
  DeltaT} 
for (i=0; i<N; i++){ 
  Data packing and loading 
  rvec ← load{r[i][0],r[i][1], 
    r[i][2],zeros[NPAD]}; 
  rvvec ← load{rv[i][0],rv[i][1], 
    rv[i][2],zeros[NPAD]}; 
  Computation 
  rvec ← mul_add(rvec,rvvec, 
    DeltaTvec); 
  Data storing 
  {r[i][0],r[i][1],r[i][2],0} ←  
    store(rvec); 
} 
 

 
Figure 2.  Zero padding for SIMDization. 
          The effect of this SIMDization can be analyzed 
as follows. For the computation, it reduces the 
computation from 3N to N with an ideal speedup of 3 
(N is the number of atoms). For the memory 



 

accessing part in the ideal case (i.e., if all data are 
stored in the cache), it reduces the memory accessing 
from 9N to 3N. (Due to the zero padding, all vector 
load and store operations start from an aligned 
address, as the stride is 16 bytes for each r[i][0] and 
rv[i][0].) Therefore, the ideal memory accessing 
speedup is 3. However, the SIMDization introduces 
some memory overhead, since it increases the size of 
each array by one third, which could cause cache 
miss. 
 
3.3.2 Data-type reformatting for  
            alignment of irregular memory  
            accessing  
 

    While the zero padding is effective for array 
reformatting, simple data-type reformatting works for 
the alignment of irregular memory accessing. Most 
instruction sets provide conversion between simple 
data types (e.g. float and double), which allows a 
simple way to circumvent unaligned memory 
accessing. This subsection illustrates the use of data-
type reformatting for SIMD vectorization of MRMD. 

    Here, the original code is a complex doubly 
nested while loops with an if statement. It involves 
irregular memory accessing to array v[ic][jc][ir+1][0] 
via linked list lscl[i]. The innermost loop performs 
computation using a large four-dimensional array, 
where all data types are float. 
 
while (i != EMPTY) { 
  ... 
  j = head[c1]; 
  while (j != EMPTY) { 
    if (rr < rcij2[ic][jc]) { 
      v0 = (1.0-fr)*v[ic][jc][ir][0] 
      +fr*v[ic][jc][ir+1][0]; 
      v1 = (1.0-fr)*v[ic][jc][ir][1] 
      +fr*v[ic][jc][ir+1][1]; 
    } 
    ... 
    j = lscl[j]; 
  }  
  i = lscl[i]; 
 } 
 

   The complex iteration structure of the code 
will likely cause irregular accessing to array 
v[M][N][2][2], which precludes us from finding four 
float elements to be SIMDized. Our solution for the 
alignment of this code is simply to redefine array 
v[M][N][2][2] from float to double. By simply 
redefining the array to double type (and variable fr to 
double), we can SIMDize the innermost loop as 
follows (see Fig. 3): First, pack data {fr,fr} to frvec, 
{1−fr,1−fr} to 1mfrvec, {v[ic][jc][ir][0], 
v[ic][jc][ir][1]} to v0vec, {v[ic][jc][ir+1][0], 
v[ic][jc][ir+1][1]} to v1vec; then multiply frvec by 

v1vec, multiply 1mfrvec by v0vec, and sum the 
products; finally use abstract operation to get v0 and 
v1. The pseudo-code of the above SIMDization is 
given below: 
 
Data reformatting: 
double v[M][N][2][2]; 
double fr; 
Data packing and loading: 
frvec ← {fr, fr}; 
1mfrvec ← {1-fr, 1-fr}; 
V0vec ← load{v[ic][jc][ir][0], 
  v[ic][jc][ir][1]}; 
v1vec ← load{v[ic][jc][ir+1][0],    
  v[ic][jc][ir+1][1]}; 
Computation: 
tmp1 ← mul(frvec,v1vec); 
tmp2 ← mul(1mfrvec,v0vec); 
tmp1 ← add(tmp1,tmp2); 
v0 ← abstract(tmp1); 
v1 ← abstract(tmp1); 
 

 
Figure 3.  Example of data-type reformatting  
for SIMDization. 
 

  The effect of this SIMDization can be analyzed 
as follows. It reduces the number of floating-point 
operations from 8 to 6 with an ideal computational 
speedup of 1.33. It also reduces memory accessing 
from 6 to 4. (Due to the data reformatting, all vector 
load operations are from aligned address as the stride 
is 16 bytes for each rv[ic][ic][ir][0].) Therefore, the 
ideal memory-accessing speedup is 1.5. 
 
4 Performance tests and analysis 
 

The scalability of the SHPF applied to MRMD 
has been tested on various multicore clusters: 
 



 

106,496 IBM BlueGene/L nodes (each with two IBM 
PowerPC 440 processors at 700 MHz clock) at the 
Lawrence Livermore National Laboratory, 32,768 
IBM BlueGene/P nodes (each with four 450 POWER 
PC processors at 850 MHz clock) at the Argonne 
National Laboratory, and dual quadcore Intel Xeon 
(2.33 GHz clock) and dual qaudcore AMD Opteron 
(2.30 GHz) based clusters at the High Performance 
Computing and Communications facility of the 
University of Southern California (HPCC-USC). 
 
4.1  Inter-node weak scalability 
 

  We have implemented the inter-node spatial 
decomposition using the Message Passing Interface 
(MPI) standard and test the inter-node weak 
scalability, where the problem size (i.e., the number 
of atoms N) is scaled linearly with the number of 
nodes P. Here, we define the inter-node weak-scaling 
parallel efficiency as the ratio between the running 
time on one node and that on P nodes. Figure 4(a) 
shows the inter-node weak-scaling parallel efficiency 
for 8,177,664P atoms as a function of the number of 
nodes P on BlueGene/P, and Fig. 4(b) shows the 
efficiency for 4,088,832P atoms on BlueGene/L. Our 
framework achieves excellent weak-scaling 
efficiency on both platforms: 0.975 on 32,768 
BlueGene/P nodes and 0.985 on 106,496 BlueGene/L 
nodes based on the speedup over 2,048 nodes. 

To quantify the effect of granularities (i.e., the 
number of atoms per node, N/P), we have tested the 
weak scalability with different granularities. Figure 
4(c) shows the execution time of the MRMD 
algorithm as a function of the number of nodes P 
over a wide range of granularity. The figure shows 
that the running time varies only slightly as a 
function of P independent of the granularity. Thus the 
MRMD algorithm achieves nearly perfect inter-node 
weak-scaling parallel efficiency independent of the 
value of N/P. 
 
4.2  Inter-node strong scalability 

 
   Next, we test the strong scalability for inter-

node parallelism. Strong-scaling speedup SP on P 
nodes is the running time on one node divided by that 
on P nodes, while the efficiency EP is defined as 
SP/P. We fix the problem size at 3.15 million atoms, 
whereas P varies up to 128 nodes (with 8 processors 
per node, the total number of processor is 1,024 
processors). Figure 5(a) shows the strong-scaling 
parallel efficiency as a function of P on dual 
quadcore Xeon and Opteron clusters. We observe 
superlinear speedup of approximately 2.6% on the 
Xeon platform and 0.8% on Opteron platform. The 
superlinear speedup may be explained as follows. 
Since the workload per node (granularity), N/P, 
decreases as P increases, the data becomes less 
scattered among paged memory, resulting in less 
TLB misses. We analyze this effect using the Intel 
Vtune performance analyzer, which shows that the 
penalty from TLB misses on Xeon reduces from 
2.94% of total CPU clock cycles for P = 32 nodes to 
2.49% for P = 64, and eventually to 1.64% for P = 
128. When the granularity is further reduced until it 
is small enough to fit into L2 cache, cache miss ratio 
would be reduced as well, and accordingly, the 
running time would be further reduced. 

   However, less granularity also introduces 
larger sequential overhead. Figure 5(b) shows the 
ratio of sequential segment as a function of P. We see 
that the sequential bottleneck increases for larger P. 
For the smallest granularity on Xeon, the sequential 
section accounts for 54% of total running time. The 
sequential bottleneck offsets the speedup gained from 
the cache effect, and therefore, there exists a tradeoff 
between the cache effect and the sequential 
bottleneck. This tradeoff causes the strong-scaling 
parallel efficiency to be peaked at certain P. 

 
 

Figure 4.  Inter-node weak-scaling parallel efficiency on (a) BlueGene/P and (b) BlueGene/L. 
(c) Total running time per MD step on BlueGene/L as a function of the number of nodes. 



 

 
 

 
Figure 5. (a) Inter-node strong-scaling 
parallel efficiency on Xeon and Opteron as a 
function of the number of nodes P. (b) The 
parallel/sequential ratio of the running time 
on Xeon as a function of P. 

  The cache size also impacts the strong-scaling 
parallel efficiency. Figure 5(a) shows that the 
efficiency on Xeon is higher than that on Opteron for 
P larger than 8, because Xeon has larger L2 cache (6 
MB per chip and 12 MB per multi-chip module) 
compared to only 2 MB on Opteron. For larger 
granularity, when P is less than 8 (i.e., N/P > 
370,000), the cache size has less effect, and thus 
Figure 5(a) shows no significant difference between 
Xeon and Opteron. 
 
4.3 Intra-node multithreading   scalabili-

ty  
 

  We test the multithreading scalability of 
MRMD on a dual quadcore Intel Xeon platform. 
Here, we define the multithreading speedup with nt 
threads, Snt, as the running time of the program with 
one thread divided by that with nt threads, while the 
problem size is the kept constant. We then define the 
intra-node (inter-core) multithreading parallel 
efficiency Ent as Snt/nt. Figure 6 shows the 
multithreading parallel efficiency as a function of the 
number of worker threads from 1 to 8. We see that 
the code scales rather well up to 8 threads on the 8-

core platform for the two-body force calculation with 
efficiency 0.89, while scales less for the whole 
program (efficiency 0.65). 
 

 
Figure 6.  Intra-node multithreading parallel 
efficiency on Xeon platform for the whole 
program and two-body force computation.  

 
   It is important to identify the real factor 

causing the decrease of efficiency when the thread 
number increases. This is partly due to the redundant 
computation introduced for three-body computations 
for eliminating critical sections. It could also due to 
the overhead for maintaining cache coherency when 
there is a cacheline racing as discussed in section 3.2. 
Here, we use the Shark 4 profiler on a dualcore Xeon 
2.66 GHz to observe the impact of better cache 
coherency. Large value of request-for-ownership 
(RFO) transactions and modified data sharing ratio 
indicate frequent races among threads on using and 
modifying data laid in the same cacheline. Table 1 
shows that the padding technique reduces more than 
98% of RFO transactions compared to the naïve code 
and that the modified data sharing ratio is 9 times 
less. This analysis indicates a large performance gain 
from cache coherency. To quantify the performance 
improvement, Figure 7 compares the running time of 
the padding code to that of the naïve code. The 
padding technique gets average speedup of 53% for 
all granularities compared to the naïve code.  

 
Table 1. Cache coherency profiling. The 
granularity N/P is 3072 atoms in both results. 
 

Code  
Clock per 
Instruction 

retired (CPI) 

RFO to 
clock 
ratio  

Modified 
data 

sharing 
ratio 

Naïve 0.83 0.000645 0.0009 
Cache 

coherency 0.67 0.000012 0.0001 
 

 



 

 
Figure 7.  Running times per MD step of 
naïve and padding codes. 
 
4.4 Intra-core level SIMD vectorization    
        tests 
 

  We use SSE3 intrinsics (which is supported by 
the Intel Platform) to implement SIMD for MRMD. 
Here, we SIMDize the two-body force computation 
that consumes most computation. We test the SIMD 
speedup and its scalability with different problem 
sizes, while the SIMD speedup is defined as the ratio 
of the running time for unSIMDized program over 
that of the SIMDized program with the same problem 
size. Figure 8 shows that the SIMD speedup for the 
whole program is 1.35, while for the two-body force 
calculation (for which we have implemented 
SIMDization) is 1.42. This is much lower than the 
theoretical estimate in the section 3.3. 
 

 
Figure 8.  SIMD speedup with various 
problem sizes for whole program and two-
body force computation. 
 

  To identify the cause of the low performance, 
we have profiled two code segments similar to the 
code in section 3.3.1. For one code segment, the 
running time fraction (defined as the running time of 
the code divide by the total running time) is reduced 
from 0.09% to 0.05% by SIMDization, while for the 
other from 0.18% to 0.11 %. For both, the SIMD 
speedup is lower than 2. This is mainly due to the 

memory overhead, as we introduce 1/3 overhead 
when redefining the array. Data layout reordering is 
thus of great significance for making the MRMD 
application more SIMDizable. 

Figure 8 also points out some positive trend as 
the SIMD speedup remains more or less the same for 
both the whole program and two-body computation: 
1.35 for the whole program and 1.42 for the two-
body computation with one worker thread. This 
indicates that the SIMDization scales perfectly for 
different problem sizes varying from 3,072 to 98,304. 
 
5 Conclusions 
 

 In summary, we have developed a scalable 
hierarchical parallelization framework for molecular 
dynamics simulation, thereby achieving almost ideal 
weak scalability on BlueGene L and P clusters as 
well as good strong scalability on dual quadcore 
Xeon and Opteron clusters. Within a node, 
multithreading has achieved reasonable inter-core 
parallel efficiency combined with intra-core level 
data parallelization via SIMD vectorization. We have 
also quantified the degradation of the scalability 
through performance profiling. Future work will 
address better data layout to improve the SIMD 
performance. This work was supported by NSF-
ITR/PetaApps/EMT, DOE-SciDAC/BES, ARO-
MURI, and DTRA. 
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