

A Scalable Hierarchical Parallelization Framework for
Molecular Dynamics Simulation on Multicore Clusters

Liu Peng, Manaschai Kunaseth, Hikmet Dursun, Ken-ichi Nomura, Weiqiang Wang,

Rajiv K. Kalia, Aiichiro Nakano, Priya Vashishta
Collaboratory for Advanced Computing and Simulations (CACS)

Department of Computer Science, Department of Physics, Department of Materials Science
University of Southern California, Los Angeles, CA 90089-0242, USA

Abstract - We have developed a scalable
hierarchical parallelization framework for
molecular dynamics (MD) simulation on
emerging multicore clusters. The framework
combines: (1) inter-node level parallelism by
spatial decomposition using message passing;
(2) intra-node (inter-core) level parallelism
through a master/worker paradigm and cellular
decomposition using critical section-free
multithreading; and (3) intra-core level
parallelism via single-instruction multiple-data
(SIMD) techniques. Our multithreading scheme
takes account of cache coherency to maximize
performance. For data-level parallelism via
SIMD, zero padding is used to solve the
alignment issue for complex data type as array,
and simple data-type reformatting is used to
solve the alignment issue for data with irregular
memory accessing. By combining a hierarchy of
parallelism, the framework exposes maximal
concurrency and data locality, thereby
achieving: (1) inter-node weak-scaling parallel
efficiency 0.975 on 32,768 BlueGene/P nodes
and 0.985 on 106,496 BlueGene/L nodes; (2)
inter-node strong-scaling parallel efficiency 0.90
on 32 dual quadcore AMD Opteron nodes and
0.94 on 32 dual quadcore Intel Xeon nodes; (3)
inter-core multithread parallel efficiency 0.65
for the whole program (0.89 for two-body force
calculation) for eight threads on a dual
quadcore Xeon platform; and (4) SIMD speedup
1.35 for the whole program (1.42 for the two-
body force calculation).

Keywords: Molecular Dynamics simulation, Single
Instruction Multiple Data, Scalable Hierarchical
Parallelization Framework, Cache Coherency, SIMD
Alignment

1 Introduction

 Molecular Dynamics (MD) simulation is
widely used to study material properties at the
atomistic level [1]. Large-scale MD simulations
involving million-to-billion atoms are beginning to
address broad mechano-chemistry problems such as
nanoenergetic reactions [2]. To encompass even
larger spatiotemporal scales, however, increasingly
larger computing power is needed. Emergence of the
multicore paradigm has provided such unprecedented
computing power. However, due to the shift from
increasing clock speed to increasing number of cores
per microchip [3], how to develop efficient parallel
applications on these platforms is a challenge.

 To address this challenge, we propose a
scalable hierarchical parallelization framework
(SHPF), which takes advantage of the multilevel
feature of multicore clusters through hierarchical
parallelization. For inter-node parallelization, we use
the embedded divide-and-conquer (EDC) scheme [4]
based on spatial decomposition using message
passing, which scales linearly among compute nodes;
for intra-node (inter-core) level parallelization, we
implement cellular decomposition using critical
section-free multithreading with a master-worker
paradigm. Combined with single-instruction
multiple-data (SIMD) techniques to exploit data-level
parallelism, our hierarchical framework is expected
to maximally expose data concurrency and locality
and continue to scale on future multicore platforms.

 This paper is organized as follows: Section 2
describes the multiresolution molecular dynamics
(MRMD) method used in our experiments. Section 3
presents our parallelization framework, and Section 4
shows results of scalability tests. Conclusions are
drawn in Section 5.

2 Multiresolution molecular dyna-
 mics

 In MD simulation, phase-space trajectories of
the system are obtained by numerically integrating

coupled ordinary differential equations to obtain the
positions and velocities of all atoms at discretized
time steps [2, 5]. Atomic force laws for describing
how atoms interact with each other is mathematically
encoded in the interatomic potential energy E(rN),
which is a function of the positions of all N atoms, rN
= {r1, r2, ..., rN} [6].

 In our MRMD simulation, E (rN) consists of
two-body (E2) and three-body (E3) terms [7]. We use
a linked-list cell based EDC algorithm to reduce the
computational complexity to O(N). Here, the whole
simulation system is divided into spatially localized
linked-list cells. In addition, we use various space-
filling curves [8] (e.g. Hilbert or Morton curve) to
traverse the computational cells in order to optimize
the data and computation layouts [9, 10]. We also use
multiresolution in time, where temporal locality is
utilized by computing forces from further atoms with
less frequency with a multiple time-scale method [11-
13]. This not only reduces the computational cost but
also enhances the data locality, and accordingly is
more suitable for parallelization.

3 Scalable hierarchical
 parallelization framework for
 molecular dynamics

 Our scalable hierarchical parallelization
framework (SHPF) combines: (1) inter-node level
parallelism by spatial decomposition using message
passing; (2) intra-node (inter-core) level parallelism
through master-worker pattern with cellular
decomposition using critical section-free
multithreading; and (3) data-level parallelism via
SIMD techniques. The following subsections
describe these parallelization levels.

3.1 Inter-node level parallelism

 In spatial decomposition, the physical system is
partitioned into subsystems of equal volume. Atoms
located in a particular subsystem are assigned to one
of the compute nodes in the cluster, which are
logically arranged according to the topology of
physical subsystems (specifically, we use 3D mesh
decomposition).

 In parallel MD, two events that need
communication are implemented using message
passing. The first is atom caching: In order to
compute interatomic interaction with cut-off length
rc, atomic coordinates of 26 neighbor subsystems,
which are located within rc from the subsystem
boundary, are copied to this node, where cache
coherence is maintained by copying the latest

neighbor surface atoms every time before atomic
accelerations are computed. The second is atom
migration: After the atomic coordinates are updated
according to the time-integration algorithm, some
resident atoms may have moved out of the subsystem
boundary. Such atoms are moved to proper nodes.

3.2 Intra-node level parallelism

With the spatial decomposition in the previous
subsection, each spatial subsystem (or compute node)
contains a block of linked-list cells. On multicore
clusters, we further decompose the block of cells into
small chunks and assign each chunk to a core by
multithreading. For portability among broad
architectures and operating systems, we adopt the
POSIX thread standard. To achieve high parallel
efficiency, we have designed a critical section-free
algorithm to make interatomic force computations
independent at the cost of some computational
overhead.

Our multithreading scheme employs a
master/worker model: The master thread is in charge
of updating the atomic coordinates, constructing
neighbor lists, atom caching, atom migration, and
coordinating the worker threads, while the worker
threads are in charge of force computations. In
addition, semaphores are used to synchronize
between the master and worker threads as well as to
avoid the overhead of thread creation and joining in
each MD step.

Our multithreading also takes account of cache
coherency. It is known that increasing data locality
by packing data together usually increases cache
performance. However, this is not always practiced in
multithread applications, especially for frequently
written data by multiple threads. A typical modern
CPU cache architecture implements write-back cache
policy, which allows modification of data directly in
the cacheline without immediately write modified
data back to main memory. However, this could lead
to cache-level critical section and race condition if
the frequent write destination addresses by several
CPUs lie in the same cacheline. A typical example is
an array sum[NT] (NT is the number of threads) that
provides separate accumulators to different threads to
avoid a critical section for global sum (see Fig. 1 for
NT = 2). Cache-level race condition still occurs when
multiple threads simultaneously modify sum[i] laid in
the same cacheline. Here, we employ a padding
technique that separates sum[i] to different cachelines
by defining a new struct with array pad[NPAD]. An
example of struct for a double-precision datum is
shown below:

#define NPAD 7
struct p {
 double value; // 1x8 bytes
 double pad[NPAD]; // 7x8 bytes
}; // total 64 bytes

 In this example, NPAD has to be chosen to
match the cacheline size. Also, better performance
can be achieved by placing frequently used variables
for individual thread together in the same cacheline.

Figure 1. Illustration of a padding technique
for NT = 2.

3.3 Intra-core level optimization via

SIMD

 We exploit data-level parallelism inside each
core via SIMD vectorization. A basic SIMD
operation packs data into 128-bit vector registers to
be operated simultaneously. However, the streaming
SIMD extensions (SSE) load and store instructions
have a special requirement on alignment, i.e., a load
or store instruction must load from or store to a 16-
byte aligned memory. Though the SSE intrinsics
provides unaligned load instructions, it is at the
expense of a large performance penalty, since such
instruction may cause cacheline splits. It is thus of
great importance to naturally align memory access.

 There are mainly two issues for achieving high
SIMD speedup: One is to exploit as many
SIMDizable statements to maximally reduce the
computation and loading; the other is to arrange data
naturally aligned to gain optimal performance. To
address the first issue, we have previously proposed
translocated statement fusion and vector composition
techniques, thereby achieving 3.5-fold SIMD
speedup out of 4. To address the second issue, we
here propose two key techniques: zero padding for
complex data type (e.g. array); and simple data-type
reformatting for irregular memory accessing.

3.3.1 Zero padding to align complex data
 types

 Zero padding is an effective way to solve the
alignment issue in SIMD vectorization for complex
data type like array with an appropriate padding size.

 This subsection illustrates the use of zero
padding for SIMD vectorization of MRMD.

 Here, the original code is doubly nested for
loops, where the inner loop traverses the x, y and z
Cartesian dimensions to perform certain computation:

for (i=0; i<N; i++)
 for (a=0; a<3; a++)
 r[i][a] = r[i][a]+DeltaT*rv[i][a];

 Our SIMD solution (see Fig. 2) redefines the
array r[N][3] and rv[N][3] (N is the number of atoms)
to array r[N][4] and rv[N][4] by padding zero to each
row of both arrays, i.e., pad 0 to each {r[i][0], r[i][1],
r[i][2]} to make {r[i][0], r[i][1], r[i][2], 0}, and each
{rv[i][0], rv[i][1], rv[i][2]} to {rv[i][0], rv[i][1],
rv[i][2], 0}. After this reformatting, we can unroll the
inner loop, pack data {r[i][0], r[i][1], r[i][2], 0} to
rvec vector, {rv[i][0], rv[i][1], rv[i][2], 0} to rvvec
vector, and {DeltaT, DeltaT, DeltaT, DeltaT} to
DeltaTvec vector, and multiply and add them
simultaneously to obtain the result. The pseudo-code
of the above SIMDization is given below:

Data reformatting by zero padding
/* Number of zeros for padding */
#define NPAD 1
int zeros[NPAD] = {0,0,…0};
r[i] ← {r[i][0],r[i][1],r[i][2],
 zeros[NPAD]};
rv[i] ← {rv[i][0],rv[i][1],
 rv[i][2],zeros[NPAD]};
DelaTvec ← {DeltaT,DeltaT,DeltaT,
 DeltaT}
for (i=0; i<N; i++){
 Data packing and loading
 rvec ← load{r[i][0],r[i][1],
 r[i][2],zeros[NPAD]};
 rvvec ← load{rv[i][0],rv[i][1],
 rv[i][2],zeros[NPAD]};
 Computation
 rvec ← mul_add(rvec,rvvec,
 DeltaTvec);
 Data storing
 {r[i][0],r[i][1],r[i][2],0} ←
 store(rvec);
}

Figure 2. Zero padding for SIMDization.
 The effect of this SIMDization can be analyzed
as follows. For the computation, it reduces the
computation from 3N to N with an ideal speedup of 3
(N is the number of atoms). For the memory

accessing part in the ideal case (i.e., if all data are
stored in the cache), it reduces the memory accessing
from 9N to 3N. (Due to the zero padding, all vector
load and store operations start from an aligned
address, as the stride is 16 bytes for each r[i][0] and
rv[i][0].) Therefore, the ideal memory accessing
speedup is 3. However, the SIMDization introduces
some memory overhead, since it increases the size of
each array by one third, which could cause cache
miss.

3.3.2 Data-type reformatting for
 alignment of irregular memory
 accessing

 While the zero padding is effective for array
reformatting, simple data-type reformatting works for
the alignment of irregular memory accessing. Most
instruction sets provide conversion between simple
data types (e.g. float and double), which allows a
simple way to circumvent unaligned memory
accessing. This subsection illustrates the use of data-
type reformatting for SIMD vectorization of MRMD.

 Here, the original code is a complex doubly
nested while loops with an if statement. It involves
irregular memory accessing to array v[ic][jc][ir+1][0]
via linked list lscl[i]. The innermost loop performs
computation using a large four-dimensional array,
where all data types are float.

while (i != EMPTY) {
 ...
 j = head[c1];
 while (j != EMPTY) {
 if (rr < rcij2[ic][jc]) {
 v0 = (1.0-fr)*v[ic][jc][ir][0]
 +fr*v[ic][jc][ir+1][0];
 v1 = (1.0-fr)*v[ic][jc][ir][1]
 +fr*v[ic][jc][ir+1][1];
 }
 ...
 j = lscl[j];
 }
 i = lscl[i];
 }

 The complex iteration structure of the code
will likely cause irregular accessing to array
v[M][N][2][2], which precludes us from finding four
float elements to be SIMDized. Our solution for the
alignment of this code is simply to redefine array
v[M][N][2][2] from float to double. By simply
redefining the array to double type (and variable fr to
double), we can SIMDize the innermost loop as
follows (see Fig. 3): First, pack data {fr,fr} to frvec,
{1−fr,1−fr} to 1mfrvec, {v[ic][jc][ir][0],
v[ic][jc][ir][1]} to v0vec, {v[ic][jc][ir+1][0],
v[ic][jc][ir+1][1]} to v1vec; then multiply frvec by

v1vec, multiply 1mfrvec by v0vec, and sum the
products; finally use abstract operation to get v0 and
v1. The pseudo-code of the above SIMDization is
given below:

Data reformatting:
double v[M][N][2][2];
double fr;
Data packing and loading:
frvec ← {fr, fr};
1mfrvec ← {1-fr, 1-fr};
V0vec ← load{v[ic][jc][ir][0],
 v[ic][jc][ir][1]};
v1vec ← load{v[ic][jc][ir+1][0],
 v[ic][jc][ir+1][1]};
Computation:
tmp1 ← mul(frvec,v1vec);
tmp2 ← mul(1mfrvec,v0vec);
tmp1 ← add(tmp1,tmp2);
v0 ← abstract(tmp1);
v1 ← abstract(tmp1);

Figure 3. Example of data-type reformatting
for SIMDization.

 The effect of this SIMDization can be analyzed
as follows. It reduces the number of floating-point
operations from 8 to 6 with an ideal computational
speedup of 1.33. It also reduces memory accessing
from 6 to 4. (Due to the data reformatting, all vector
load operations are from aligned address as the stride
is 16 bytes for each rv[ic][ic][ir][0].) Therefore, the
ideal memory-accessing speedup is 1.5.

4 Performance tests and analysis

The scalability of the SHPF applied to MRMD
has been tested on various multicore clusters:

106,496 IBM BlueGene/L nodes (each with two IBM
PowerPC 440 processors at 700 MHz clock) at the
Lawrence Livermore National Laboratory, 32,768
IBM BlueGene/P nodes (each with four 450 POWER
PC processors at 850 MHz clock) at the Argonne
National Laboratory, and dual quadcore Intel Xeon
(2.33 GHz clock) and dual qaudcore AMD Opteron
(2.30 GHz) based clusters at the High Performance
Computing and Communications facility of the
University of Southern California (HPCC-USC).

4.1 Inter-node weak scalability

 We have implemented the inter-node spatial
decomposition using the Message Passing Interface
(MPI) standard and test the inter-node weak
scalability, where the problem size (i.e., the number
of atoms N) is scaled linearly with the number of
nodes P. Here, we define the inter-node weak-scaling
parallel efficiency as the ratio between the running
time on one node and that on P nodes. Figure 4(a)
shows the inter-node weak-scaling parallel efficiency
for 8,177,664P atoms as a function of the number of
nodes P on BlueGene/P, and Fig. 4(b) shows the
efficiency for 4,088,832P atoms on BlueGene/L. Our
framework achieves excellent weak-scaling
efficiency on both platforms: 0.975 on 32,768
BlueGene/P nodes and 0.985 on 106,496 BlueGene/L
nodes based on the speedup over 2,048 nodes.

To quantify the effect of granularities (i.e., the
number of atoms per node, N/P), we have tested the
weak scalability with different granularities. Figure
4(c) shows the execution time of the MRMD
algorithm as a function of the number of nodes P
over a wide range of granularity. The figure shows
that the running time varies only slightly as a
function of P independent of the granularity. Thus the
MRMD algorithm achieves nearly perfect inter-node
weak-scaling parallel efficiency independent of the
value of N/P.

4.2 Inter-node strong scalability

 Next, we test the strong scalability for inter-

node parallelism. Strong-scaling speedup SP on P
nodes is the running time on one node divided by that
on P nodes, while the efficiency EP is defined as
SP/P. We fix the problem size at 3.15 million atoms,
whereas P varies up to 128 nodes (with 8 processors
per node, the total number of processor is 1,024
processors). Figure 5(a) shows the strong-scaling
parallel efficiency as a function of P on dual
quadcore Xeon and Opteron clusters. We observe
superlinear speedup of approximately 2.6% on the
Xeon platform and 0.8% on Opteron platform. The
superlinear speedup may be explained as follows.
Since the workload per node (granularity), N/P,
decreases as P increases, the data becomes less
scattered among paged memory, resulting in less
TLB misses. We analyze this effect using the Intel
Vtune performance analyzer, which shows that the
penalty from TLB misses on Xeon reduces from
2.94% of total CPU clock cycles for P = 32 nodes to
2.49% for P = 64, and eventually to 1.64% for P =
128. When the granularity is further reduced until it
is small enough to fit into L2 cache, cache miss ratio
would be reduced as well, and accordingly, the
running time would be further reduced.

 However, less granularity also introduces
larger sequential overhead. Figure 5(b) shows the
ratio of sequential segment as a function of P. We see
that the sequential bottleneck increases for larger P.
For the smallest granularity on Xeon, the sequential
section accounts for 54% of total running time. The
sequential bottleneck offsets the speedup gained from
the cache effect, and therefore, there exists a tradeoff
between the cache effect and the sequential
bottleneck. This tradeoff causes the strong-scaling
parallel efficiency to be peaked at certain P.

Figure 4. Inter-node weak-scaling parallel efficiency on (a) BlueGene/P and (b) BlueGene/L.
(c) Total running time per MD step on BlueGene/L as a function of the number of nodes.

Figure 5. (a) Inter-node strong-scaling
parallel efficiency on Xeon and Opteron as a
function of the number of nodes P. (b) The
parallel/sequential ratio of the running time
on Xeon as a function of P.

 The cache size also impacts the strong-scaling
parallel efficiency. Figure 5(a) shows that the
efficiency on Xeon is higher than that on Opteron for
P larger than 8, because Xeon has larger L2 cache (6
MB per chip and 12 MB per multi-chip module)
compared to only 2 MB on Opteron. For larger
granularity, when P is less than 8 (i.e., N/P >
370,000), the cache size has less effect, and thus
Figure 5(a) shows no significant difference between
Xeon and Opteron.

4.3 Intra-node multithreading scalabili-

ty

 We test the multithreading scalability of
MRMD on a dual quadcore Intel Xeon platform.
Here, we define the multithreading speedup with nt
threads, Snt, as the running time of the program with
one thread divided by that with nt threads, while the
problem size is the kept constant. We then define the
intra-node (inter-core) multithreading parallel
efficiency Ent as Snt/nt. Figure 6 shows the
multithreading parallel efficiency as a function of the
number of worker threads from 1 to 8. We see that
the code scales rather well up to 8 threads on the 8-

core platform for the two-body force calculation with
efficiency 0.89, while scales less for the whole
program (efficiency 0.65).

Figure 6. Intra-node multithreading parallel
efficiency on Xeon platform for the whole
program and two-body force computation.

 It is important to identify the real factor

causing the decrease of efficiency when the thread
number increases. This is partly due to the redundant
computation introduced for three-body computations
for eliminating critical sections. It could also due to
the overhead for maintaining cache coherency when
there is a cacheline racing as discussed in section 3.2.
Here, we use the Shark 4 profiler on a dualcore Xeon
2.66 GHz to observe the impact of better cache
coherency. Large value of request-for-ownership
(RFO) transactions and modified data sharing ratio
indicate frequent races among threads on using and
modifying data laid in the same cacheline. Table 1
shows that the padding technique reduces more than
98% of RFO transactions compared to the naïve code
and that the modified data sharing ratio is 9 times
less. This analysis indicates a large performance gain
from cache coherency. To quantify the performance
improvement, Figure 7 compares the running time of
the padding code to that of the naïve code. The
padding technique gets average speedup of 53% for
all granularities compared to the naïve code.

Table 1. Cache coherency profiling. The
granularity N/P is 3072 atoms in both results.

Code
Clock per
Instruction

retired (CPI)

RFO to
clock
ratio

Modified
data

sharing
ratio

Naïve 0.83 0.000645 0.0009
Cache

coherency 0.67 0.000012 0.0001

Figure 7. Running times per MD step of
naïve and padding codes.

4.4 Intra-core level SIMD vectorization
 tests

 We use SSE3 intrinsics (which is supported by
the Intel Platform) to implement SIMD for MRMD.
Here, we SIMDize the two-body force computation
that consumes most computation. We test the SIMD
speedup and its scalability with different problem
sizes, while the SIMD speedup is defined as the ratio
of the running time for unSIMDized program over
that of the SIMDized program with the same problem
size. Figure 8 shows that the SIMD speedup for the
whole program is 1.35, while for the two-body force
calculation (for which we have implemented
SIMDization) is 1.42. This is much lower than the
theoretical estimate in the section 3.3.

Figure 8. SIMD speedup with various
problem sizes for whole program and two-
body force computation.

 To identify the cause of the low performance,
we have profiled two code segments similar to the
code in section 3.3.1. For one code segment, the
running time fraction (defined as the running time of
the code divide by the total running time) is reduced
from 0.09% to 0.05% by SIMDization, while for the
other from 0.18% to 0.11 %. For both, the SIMD
speedup is lower than 2. This is mainly due to the

memory overhead, as we introduce 1/3 overhead
when redefining the array. Data layout reordering is
thus of great significance for making the MRMD
application more SIMDizable.

Figure 8 also points out some positive trend as
the SIMD speedup remains more or less the same for
both the whole program and two-body computation:
1.35 for the whole program and 1.42 for the two-
body computation with one worker thread. This
indicates that the SIMDization scales perfectly for
different problem sizes varying from 3,072 to 98,304.

5 Conclusions

 In summary, we have developed a scalable
hierarchical parallelization framework for molecular
dynamics simulation, thereby achieving almost ideal
weak scalability on BlueGene L and P clusters as
well as good strong scalability on dual quadcore
Xeon and Opteron clusters. Within a node,
multithreading has achieved reasonable inter-core
parallel efficiency combined with intra-core level
data parallelization via SIMD vectorization. We have
also quantified the degradation of the scalability
through performance profiling. Future work will
address better data layout to improve the SIMD
performance. This work was supported by NSF-
ITR/PetaApps/EMT, DOE-SciDAC/BES, ARO-
MURI, and DTRA.

References

[1] M.P. Allen and D.J. Tildesley, Computer

Simulation of Liquids, Oxford Science
Publication, Oxford, 1987.

[2] S. J. Plimpton. J. Comput. Phys, 117:1, 1995.
[3] J. C. Phillips et al., Proc. Supercomput. 2002

(CA: IEEE/ACM)
[4] J. Dongarra et al., CTWatch Q. 3:11, 2007.
[5] A. Nakano et al., Comput Mater Sci 38, 642,

2007.
[6] A. Nakano et al., Proc. Supercomput. 2001 (NY:

IEEE/ACM)
[7] H. Kikuchi et al., Proc. IPDPS 2003 (IEEE).
[8] B. Moon et al., IEEE T. Knowl Data Eng., 13:

124 2001.
[9] J. Mellor-Crummey, D. Whalley, and K.

Kennedy, Int’l J. Parallel Prog. 29:217, 2001.
[10] M. M. Strout, and P. D. Hovland, in Proc.

Workshop Memory System Performance, 2004.
[11] Nakano. Comput. Phys. Comm., 105:139, 1997.
[12] A. Nakano. Int. J. High Perform. Comput. Appl.,

13:154, 1999.
[13] M. E. Tuckerman et al. Comput. Phys.Comm.,

128:333, 2000.

