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Abstract 
This paper presents practical approaches to deal with the 
complex problem of the uncertainty assessment in the 
performance forecast using reservoir simulation models with 
extensive production history.  The complexity and difficulty of 
this type of problem arises mainly from the necessity of 
finding a large number of simulation models that are 
consistent not only with the geological data but also with the 
observed production history. In simpler terms this means 
finding an appropriate number of multiple solutions to the 
history match problem that can be used to estimate uncertainty 
in the forecasts. The rigorous solution1,2 to this kind of 
problem involves the application of methods based on Monte 
Carlo simulation; but they are not routinely applied because of 
the computational cost associated to the necessary large 
number of simulations for real field problems. 

Advances in computing technology in recent years, 
especially in the areas of CPU speed and of high performance 
computing affordability with medium to large CPU clusters, 
indicate that now is, probably the appropriate time to explore 
and revisit the practical aspects of performing a more 
comprehensive history match and forecast uncertainty analysis 
with Monte Carlo simulation methods.  

The approaches presented in this work take advantage of 
the availability of a medium size 256 CPU Linux cluster that 
allowed the coupling of distributed high performance 
computing with efficient sampling techniques to solve the 
history match and the associated forecast uncertainty problem 
under a probabilistic inverse problem framework, and to 
present the results of both history match and forecast in the 
form of probability density functions (PDF). Prior 
probabilistic model information is incorporated in the process.  

The tests performed with data from a real field indicated 
that our approaches provide one practical way to address, 
more comprehensively than current existing approaches, the 

non-uniqueness issue of the history matching problem and the 
associated uncertainties in performance forecasts in real fields. 
Since the results are accomplished in a very short time, 
significant changes in reservoir management paradigms may 
result. 
 
Introduction 
History matching is an inverse problem to calibrate reservoir 
simulation models to the observed production history, and it is 
a critical and necessary step in optimizing reservoir 
management decisions associated to the subsurface of oil and 
gas reservoirs. It is recognized that, because of the nature of 
the geological and production data, and the limitations of the 
numerical models to properly represent the true physics of real 
reservoirs, it is not possible to resolve uniquely and 
deterministically the underlying reservoir description. Thus 
the uncertainty in the resolution of the subsurface model 
translates into the uncertainty in the flow predictions 
(forecasts), which are one of the critical inputs to the reservoir 
management decision making processes.  

The importance of constraining the reservoir models to the 
observed production data (history match) is that it reduces the 
uncertainty in the reservoir model description and 
consequently it reduces the uncertainty in the forecasts. 
Unfortunately incorporating production data information into 
the reservoir model is not a simple task. It increases the 
complexity and difficulty of reservoir property estimation over 
the case of using geological data alone.  

The history match problem in reservoir simulation is not 
new; researchers and practitioners have been working in this 
area for at least 40 years and this has resulted in an extensive 
literature.  Most of the published work relates to the use of   
automatic/assisted history match algorithms3-31 with the goal 
of finding efficiently a single good solution to the history 
match problem. History matching methods based on 
implementations of gradient based search algorithms32 proved 
to be very successful.  However, history match methods with 
the goal of identifying multiple solutions, which are actually 
what is needed to make probabilistic forecasts, were not 
extensively explored, most likely because of the assumption 
that the computational cost would make them impractical to 
deal with the real field problems. Recent work in academics 
and industry33-36 is beginning to address the practical issues of 
dealing with the non-uniqueness in real field history match 
problems. 

The development of rapid, efficient and accurate 
computational methods and of associated computer 
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infrastructure is then necessary to facilitate multiple 
realizations in history matching, so that one can capture the 
uncertainty in the reservoir parameters. Fast simulation 
techniques utilizing high performance computing are 
particularly needed with the expected availability of an 
avalanche of high quality real-time data from novel sensors.  
 
Probabilistic History Match 
The probabilistic inverse problem theory1,2 provides the 
mathematical framework to resolve in a comprehensive way 
the inverse problem involving the use of incomplete and 
uncertain data to make inferences of the parameters defining a 
physical model. When applied to the reservoir simulation 
history match case, the theory indicates that the parameters 
defining a reservoir model should not be deterministically 
estimated. Instead a probabilistic description of them should 
be sought.  The multiplicity of solutions to the history match 
problem is thus expressed as a probabilistic description of the 
reservoir model, and this means that it is necessary to estimate 
the probability distribution function (PDF) of the reservoir 
model parameters. The solution of inverse problems such as 
reservoir simulation history matching under a probabilistic 
framework requires the utilization of algorithms based on 
Monte Carlo simulation.  

Monte Carlo methods are well known and fully developed. 
Their application implies the need to compute many thousands 
of times the forward model associated with the inverse 
problem of interest. For the case of history match this 
translates into thousands of flow simulations. Since current 
medium size simulation models have a "running" time in the 
orders of hours, a simple math calculation indicates that the 
rigorous probabilistic methods are not easily applicable and 
some approximations have to be done to make the problem 
tractable.  In order to maximize the business impact of 
production data collected at the field, that is to take advantage 
of the production data to reduce forecast uncertainty, the level 
of such approximations to the inverse problem theory 
framework have to be evaluated taking into account the 
technology and resources that are available at the time of 
solving a specific real field problem. Both technology and 
resource availability are continuously evolving with time.  

The approaches of solving the history match problem and 
associated forecast uncertainty with gradient methods 
implicitly assume that the critical limitation is the availability 
of computational power. It is recognized that the major 
shortcoming of gradient based methods is that they provide a 
single solution to the history match problem, and it is not 
guaranteed that such a solution satisfies the maximum 
likelihood criteria, the algorithms will stop at the first local 
minima they find. Uncertainty analysis based on gradient 
information38-39 is limited to a region in the parameter space in 
the vicinity of the solution found. Gradient based methods are 
very elegant from the mathematical point of view and most 
importantly they are still the most practical and 
computationally efficient methods when only one CPU is 
available, and thus they should not be disregarded. 

Advances in computing technology in recent years have 
resulted in a significant increase of CPU speed and the 
simultaneous reduction of costs, making high performance 
computing with medium-large size CPU clusters (100-2,000 

CPU’s) economically viable.  This trend is expected to 
continue for the foreseeable future. It is then not necessary to 
constrain the history match analysis to methods developed to 
work with limited computational resources.  This paper 
explores the practicality of one approach that takes advantage 
of the availability of medium-large cluster computing to 
provide not only better quality but also faster solutions to the 
history match and uncertainty problem for real field problems.  

 
Description of Approach for Probabilistic History 
Match and Uncertainty Assessment using High 
Performing Computing 
The approaches we developed here are based on previous 
work on history match and uncertainty estimation36 that was 
adapted40 to take advantage of the availability of medium size 
CPU clusters with the purpose of computing history match 
solutions approximating the probabilistic inverse problem 
theory framework1,2. Our approaches draw mainly from the 
work of Pan and Horne41 that relied on the use of organized 
sampling techniques and high quality proxies as a substitute 
for CPU intensive numerical reservoir simulation in 
applications for field development optimization problems. 

Our goal is not only to obtain higher quality results than 
existing approaches but also to obtain them in a timely 
manner, which in our work means in a period of time short 
enough to be practical for dealing with real fields. Quality, 
speed and the efficient use of computational resources are then 
necessary to have a positive impact on the use of production 
history information in reservoir management.   

A brief and general description of the procedures in our 
approaches follows.  

1. First an objective function {EHM} is defined to 
quantify the quality of the match between the 
simulated data and the observed production history. 
General forms of this function are shown in Eqn. 1-4 
which are all commonly used in automatic history 
match. From the probabilistic point of view, EHM in 
Eqn. 2 and 3 is linked to the Bayesian Likelihood 
function L {  L α exp(-EHM ) }. 
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2. Based on an analysis of the field problem, a threshold 

in the objective function is defined. Simulations in 
models that result in computed objective functions 
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below this threshold are considered "acceptable" 
solutions. 

3. An initial sample scheme of the history match 
parameter space is generated. The sampling scheme 
depends, among other things, on the number of 
CPU's available and the actual time to compute one 
simulation.  Simulations are then performed and the 
values of the objective function are computed and 
stored in a database. 

4. The parameter space is resampled following a second 
sampling scheme with an interpolation algorithm that 
acts as a proxy for the reservoir simulator. This step 
provides the estimated values of the objective 
function in the second sampling locations. Recall that 
the objective function EHM being modeled is related 
to the Bayesian Likelihood function. 

5. Analyses of the results from the secondary sampling 
are then used to generate a new sampling scheme to 
sample with real numerical simulation. 

6. Steps 4 to 5 are repeated until a predetermined stop 
point is reached. Intermediate steps are taken during 
the process to improve the reliability of the 
interpolation algorithms (proxies).  This further 
enhances the efficiency of our approach. 

7. By the end of this process a large number of 
"acceptable" solutions should have been identified. 
The acceptable solutions are then augmented36 with 
realizations of the parameters which have been found 
to have none or little effect in history match but to 
have effects in the forecasts, and then new 
simulations are run. 

8. Depending on the number of identified acceptable 
simulations and the sampling schemes used during 
the history match period, the forecasts computed 
following this procedure could be enough to compute 
the statistics that quantify the forecast uncertainty. 
Another more general and preferred alternative36 is to 
use proxies to estimate the statistics for forecast 
uncertainty.   Estimations of the forecasts at a large 
number of sample locations are computed as a 
function of the forecasts generated by the sampling 
with real numerical flow simulation. 

9. Both history match parameters and forecasts results 
are presented in the form of approximate probability 
density functions (PDF’s), which are obtained by 
processing  the output generated by the proxies 
during the history match and forecasting stages of the 
process. 

 
The a priori information is incorporated into the 

uncertainty estimates using Bayes theorem which allows the 
updating of the prior probabilistic model parameter description 
with the incorporation of new information, the production 
history.  That is: prior PDF + production data → posterior 
PDF.  

It is clear from the description of the process that the 
PDF’s we compute are not the “true” PDF’s. We obtain an 
approximation of them using the proxy modeling procedure.  

One of the differences with the probabilistic inverse theory 
is that in our approach equal likelihood is assigned to models 

with associated objective function values below the 
"acceptability" threshold and zero if above the threshold. This 
is a minor departure from the theory and arises from the 
decision36 to consider on "equal basis" all the models that 
result in simulated data within an error band around the 
observed data. 

Although our process is conceptually simple, care should 
be taken to obtain an efficient implementation, especially in 
the area of sampling and proxy modeling. For example, 
gradient information can be incorporated36 in the process, both 
in the sampling and proxy construction.  
 
Field Case Application 
Preliminary Information 
Our approaches were tested with data from a real field subject 
of a published field case study37. A 3D structural view of the 
field is shown in Fig. 1.   
 
 
 
 
 
 
 
 
 
 
 
Fig. 1 3D structural view of the field (From ref. 37) 
 

This is a large oil field that after more than 30 years of oil 
production and some gas injection is being considered as a 
place for storing the associated gas produced in neighboring 
fields. The feasibility study requires the use of full-field 
numerical reservoir simulation to estimate, in a probabilistic 
way, the volume of gas that can be injected into the two 
reservoirs that make up this depleted field.  

The earlier real field study37 was used as the starting point 
and data input source for this test. In the earlier study 60 
"acceptable" solutions to the history match problem were 
found after running one batch of 600 simulations that were 
arranged to sample the parameter space with the special 
procedure described by Pan and Horne41. The 600 flow 
simulations were performed using a small Linux cluster. 

Our test aimed to use efficiently high performance 
computing to obtain high quality estimation of the uncertainty 
in the rates and volumes of gas to inject. The forecast 
uncertainty was to be constrained to: 

 
a) A predefined simulation model constructed on 

geological and geostatistical data. 
b) A parameterization scheme of the simulation model 

predefined by the earth scientists familiar with the 
field. 

c) A predefined development plan for new wells and 
surface facilities. 

d) The observed 30 years production history. 
 



4  IPTC 10751 

From the constraints enumerated above it is clear that the 
uncertainty estimated in this work is only a component of the 
total true uncertainty. 

The parameterization scheme of the simulation model for 
history match and forecast is shown in Table 1.   
 
Table 1 Parameter definition for history match and forecast 
uncertainty analysis 

# Parameters Min Max 

1 Water Oil Contact (WOC) Base-50' Base+50' 

2 Gas Oil Contact (GOC) Base-50' Base+50' 

3 Fault Transmissibility Multiplier 0.00  1.00 

4 Global Kh Multiplier 0.10  2.00 

5 Global Kv Multiplier 0.01  2.00 

6 Fairway Y-Perm Multiplier 0.75  4.00 

7 Fairway Kv Multiplier 0.75  4.00 

8 Critical Gas Saturation 0.02  0.04 

9 Kv Multiplier Between Reservoirs 0.00  5.00 

10 Skin @ New Gas Injection Wells 0.00  30.00 

 
The parameters in Table 1 are indicated in our plots in a 

normalized scale of [0 , 1]; 
that is pnorm  =  (p – pmin)/(pmax – pmin). 
Two different prior states of model information were 

studied. By prior we mean the probabilistic description of the 
model parameters in Table 1 before taking in consideration 
the production history data. By posterior we mean the 
probabilistic description of the same model parameters after 
the addition of the production history data. In one case the 
prior information was represented in the form of independent 
and uniform distributed PDF's for all the parameters defined in 
Table 1.  In the second case the prior information consisted of 
triangular PDF’s for the parameters 1 and 2 in Table 1 (WOC 
and GOC respectively – Fig. 14b) and uniform distribution 
PDF for all the other model parameters. The triangular PDF 
distribution represents a more certain state of the prior 
knowledge of the model parameters than the uniform PDF 
distribution. 

To quantify uncertainty in the gas injection forecast it is 
thus necessary to find different combinations of the 
parameters in Table 1 that when applied to the simulation 
model result in good matches to the historical data. These 
combinations of parameters (multiple solutions to the history 
match problem) are used later to estimate the uncertainty in 
the forecasts.  Parameters #9 and #10 on Table 1 deserve 
additional explanation. Parameter #9 relates to the vertical 
communication between the two reservoirs that make up the 
field. Parameter #10 relates to the skin damage factor of the 
new gas injector wells to be drilled as specified in the field 
development plan, and it is obvious that this parameter has no 
effect whatsoever to the history match but it may have a 
significant effect in the forecasts. 

The historical data to match consisted of observed water 
and gas field production rates. Fig. 3 shows the historical field 
water production rate. Fig. 4 displays a field cumulative water 
production plot. The history match was executed to match 
rates, not cumulative production. Display of the historical gas 

production data is omitted for brevity.   During the history 
match period the flow simulation was constrained to the 
observed well oil production rate.  The simulation model has 
Cartesian grid of 21 x 83 x 47 cells, it is a black-oil type 
formulation, and the average total running time in a single 
CPU is about 3 hours. 

The quality of the match was determined using an 
objective function defined following Eqn. 2.  

The threshold in the objective function used to accept-
reject models based on the quality of the match was 
determined by taking into account not only an assessment of 
the measurement errors but also from practical experience in 
history matching, and the insight gained  in the earlier study37. 

 
Field Case - Discussion of Results 
During this test a total of 3,159 flow simulations were 
performed following the process outlined earlier. And 285 
(confirmed by simulation) acceptable solutions were found. 
Fig. 2 shows a simplified diagram of the process.  
 
 
 
 
 
 
 
 
 
Fig. 2 the 256 CPU Linux cluster at USC used for History Match 
using High Performance Computing (HPC) – from ref. 40. 
 

A medium size 256 CPU Linux cluster40 was used.  The 
simulations were sent to the Linux cluster in 7 batches of input 
decks. As explained earlier, the sample locations for each 
batch is determined by analysis of the sampling of the 
parameter space using a proxy for the reservoir simulator. The 
proxy for the flow simulator in this work consisted in kriging 
interpolation. After 7 batches (3,159 simulations) the process 
was stopped. Total effective computational time was about 2 
days. As a simple comparison, should this work have been 
performed using 1 CPU it would have taken more than a year 
of computation time. 

Figures 3 – 15 illustrate the quality of the results and give 
the indication at a glance of the value that can be created in 
just 2 days of computer work. A description and comments 
follows. 

 The quality of the match to the observed data can be 
appreciated in Fig. 3. It shows how the simulated field water 
production rates corresponding to the 285 "acceptable" 
solutions compare with the historical data.  Recall that one of 
the targets was to find multiple combinations of parameters 
within the ranges specified in Table 1 that would produce 
simulated data within a narrow band around the observed data 
(historical data).  An easier way to visualize the same 
information carried by Fig. 3 is by plotting "cumulative 
production" data as shown in Fig. 4, nonetheless it should be 
reminded that the history match was performed on production 
rates - not on cumulative production, and thus the 
"acceptability" band observed in Fig. 3 becomes a "fan" shape 
band in the cumulative plot of Fig. 4. 
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The quality of the match to the other production data, that 
is the field gas production rate, was of the same quality as in 
the case of field water production rate. The corresponding 
plots are omitted only for brevity. 

An estimation of the wide range of the dynamic behavior 
of the model unconstrained to the production data is shown in 
Fig. 5 where the field cumulative water production curves 
corresponding to the 3,159 flow simulations are plotted. 

Information related to the uncertainty in the volume of gas 
to inject, which was the focus of this field study, is shown in 
Figs. 6 – 7. The field cumulative gas injection corresponding 
to the 285 solutions is shown in Fig. 6. An estimation of the 
range in the volume of gas to inject unconstrained to the 
production history is shown in Fig. 7.  The uncertainty in the 
forecast is quantified by sampling the parameter space with a 
proxy and is presented in the form of a histogram (Fig. 8) 
and/or as a Cumulative Density Function - CDF (Fig. 9). 

The values taken by the parameters water-oil and gas-oil 
contacts (WOC and GOC) in the 285 “acceptable” solutions 
are plotted in Fig. 10. This plot is the 2-dimensional projection 
of a higher dimensional parameter space defined in Table 1. 
For comparative purposes we have included in Fig. 10 the 
history match solution found in a previous study using the 
traditional trial and error method.  

Probabilistic descriptions of the model parameters after 
incorporating the production data were estimated using 
proxies. Figure 11 shows the multiple solutions estimated for 
two different error thresholds and it gives a preliminary idea 
of the posterior PDF describing the reservoir model. Figures 
12 to 14 formalize such a probabilistic model description, a 
single thresholds was used in the estimation process.  Figure 
12 shows an estimation of the joint marginal posterior PDF 
corresponding to parameters # 1 and #2 (Water-Oil and Gas-
Oil Contacts respectively) assuming uniform PDF’s as prior 
model information.  

The effect of the prior probabilistic information in model 
inversion (history match) is shown in Figs. 13 and 14.  Figure 
13 shows an estimation of the joint marginal posterior PDF 
corresponding to parameters # 1 and #2 (Water-Oil and Gas-
Oil Contacts respectively) for two different prior information 
scenarios (a) prior PDF is uniform distribution, and (b) prior 
PDF is triangular distribution for WOC and GOC.  Figure 14 
shows the posterior marginal PDF for WOC for the two prior 
states of model information described before.  

The effect of the prior probabilistic information in the 
forecasts is shown in Fig. 15 in the form of PDF’s. The CDF 
corresponding to Fig. 15a was already shown in Fig. 9.  The 
CDF corresponding to Fig. 15b is omitted for brevity. 

The effect on the posterior PDF corresponding to the 
history match parameters 1 and 2 that arises from changing the 
prior information from uniform to triangular distribution could 
be more or less anticipated in this case. The effect on the 
forecasts (Fig. 15) is not trivial. 

Figures 13 – 15 show also that a) the posterior uncertainty 
in the model description and the forecasts were reduced by 
improving the prior belief in the model description, and b) the 
value of incorporating production history data in the model 
description to reduce model uncertainty. 

We have limited the description to parameters 1 and 2 for 
brevity. The other model parameters can be analyzed the same 
way.  

Obtaining the kind of information shown in Fig. 13 to 15 
was within our technical goal, which is to obtain probabilistic 
descriptions of the model parameters and a probabilistic 
estimation of the forecasts. The practicality of our approaches 
was proved by the fact that the effective computational time to 
obtain the results was less than two days (Table 2).  

A comparison of the computational cost between our 
approach and other alternatives is presented in Table 2. The 
numbers of acceptable solutions confirmed with flow 
simulation for the case of probabilistic history match with 1 
and 5 CPUs were left unreported since it is difficult to 
estimate them because we need to follow a sampling strategy 
different from the one used in this work. The table includes an 
actual test performed using a gradient based approach for 
history match, an implementation25 of the Gauss-Newton 
algorithm. There are other gradient search alternatives to the 
Gauss-Newton, they would also produce a single solution and 
the amount of CPU time may be of the same order of 
magnitude. The number of “Model Simulations” for the 
Gauss-Newton option in Table 2 is the number of iterations. 

 
Table 2 Comparison of history match methods – Estimated CPU 
time  

Number 
of 

CPU's 
Method 

Number 
of  Model  

Simulations 

Effective 
Simulation* 
CPU time 

Number 
of 

Acceptable 
Solutions 

1 Trial & Error n/a n/a 1 

1 Gauss-Newton 
(Numerical Derivatives) 7 8.8 days 1 

1 Gauss-Newton 
(Analytical Derivatives) 7 2.8 days 1 

1 Probabilistic History 
Match 3,159 394.9 days n/a 

5 Probabilistic History 
Match 3,159 79.9 days n/a 

256** Probabilistic History 
Match 3,159 1.5 days 285 

 
(*) Assumed 3 hours average running time 
(**) This study 

 
Although it is clear that, to obtain quality results, it is 

necessary to make a large number of simulations, that 
condition is not enough. The efficiency of the sampling 
schemes used in this work is compared with the theoretical 
ones calculated for standard Monte Carlo random sampling in 
Fig. 16, where we plot {σest/n0.5

accepted_confirmed} vs. {total 
number of simulations runs}. Our organized sampling 
procedure reduces the forecast uncertainty much more rapidly 
than the standard Monte Carlo sampling would predict as a 
function of the number of forward simulation runs. Simple 
Monte Carlo sampling and high performance computing alone 
are not enough to obtain results in a time frame to make this 
technology practical, and it is necessary to perform an 
organized sampling such as the one used in this work. 

 
Conclusions  
This work shows that a high quality solution to the history 
match and uncertainty forecast problem can be obtained in a 
time frame of just days by the efficient use of high 
performance computing with medium size CPU clusters.  The 
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high quality solution comes from the probabilistic history 
match approach we used to approximate the solution proposed 
by the Probabilistic Inverse Problem theory.  The model 
parameters are described in the form of probability density 
functions and their effects in the forecasts are quantified in the 
form of probabilistic estimation of forecast uncertainty. The 
practicality of our approach is given by the fact that the high 
quality results can be generated in matter of days. The results 
from this work also indicate that the combination of intelligent 
sampling and proxy modeling are the critical factors to reach 
practicality. 
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Nomenclature 
 C = covariance matrix 
 CDF = cumulative density function 

 d = production data 
 E = objective function 
 GOC = gas oil contact 
 K = permeability 
 L = likelihood function 
 n_data = number of production data observations 
 PDF = probability density function 
 W = Data Weight Matrix 
 WOC = water oil contact 
 w = data weight 
 α = reservoir parameters  
Subscripts  
 d = data 
 HM = history matching 
 h = horizontal 
 i = observation index 
 v = vertical 
 α = model parameter  
Superscripts 
 -1 = inverse matrix 
 calc = calculated with numerical model 
 est = estimated 
 obs = observed – historical data 
 → = vector 
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Fig. 3 - Field Water Production Rate: historical data and multi-
model match 

 
 
Fig. 4 - Field Cumulative Water Production: historical data and 
multi-model match 

 
 

 
 
 

Fig. 5 - Field Cumulative Water Production: historical data and 
3,159 simulations performed using High Performance Computing. 
 
 
 

 

 
 
Fig. 6 - Field Cumulative Gas Injection Volumes: historical data 
and forecast constrained to historical data (285 confirmed 
acceptable models) 
 

 
 

Fig. 7 - Field Cumulative Gas Injection Volumes: Uncertainty in 
Forecasts (unconstrained to production history) 

 
 
 

 
 
 
Fig. 8 - Field Cumulative Gas Injection Volume: Uncertainty in 
Forecasting expressed in the form of Histogram. Prior model PDF 
is uniform distribution for all parameters. 
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Fig. 9 - Field Cumulative Gas Injection Volume: Uncertainty in 
Forecasting expressed in the form of CDF. Prior parameters PDF 
are uniform distribution. 
 

 
 
 
Fig. 10 - Combinations of WOC and GOC that result in 285 
confirmed history matches.  
 
 
 
 

 
Fig. 11 - Estimated combinations of WOC and GOC that resulted 
in misfit functions values below two thresholds – EHM (T2 < T1). 
 
 

 
 
 

 
 

Fig.12 - Estimated posterior joint marginal PDF for parameters #1 
and #2 (WOC & GOC). Prior PDF is uniform distribution in all the 
parameters. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 13 - Estimated posterior joint marginal PDF for parameters #1 
and #2 (WOC & GOC). (a)  Prior PDF is uniform distribution in all 
the parameters (same as Fig. 12). (b) Prior PDF is triangular 
distribution for parameters 1 & 2 and uniform for all the other 
parameters. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 14 - Estimated posterior marginal PDF for parameter #1 
(WOC). (a) Prior PDF is uniform distribution. (b) Prior PDF is 
triangular distribution. 
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Fig. 15 - PDF for the Normalized Field Cumulative Gas Injection 
Volume after including production history data; (a) a priori 
information consisting of uniform PDF for all model parameters; 
(b) a priori information consisting of triangular distributions for 
parameters 1 and 2, and all other parameters have uniform 
distribution. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 16 - Efficiency of proposed approach: Comparison of the 
proposed approach with theoretical standard Monte Carlo 
sampling (also in ref. 40).  
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