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A B S T R A C T

Two-dimensional layered materials are usually synthesized by chemical vapor deposition (CVD). Here we use the
Restricted Boltzmann Machine (RBM) and its enhancement called Limited Boltzmann Machine (LBM) on a
quantum computer to model the chemical vapor deposition (CVD) growth data for a MoS2 monolayer. The CVD
data for Boltzmann machines are generated by reactive molecular dynamics (RMD) simulations. The Boltzmann
machines give insight into the semiconducting (2H) and metallic (1T) phases and defects generated during the
CVD growth of MoS2. We compare the performances of the two types of Boltzmann machine models, i.e. RBM
versus augmented topologies with limited intra-layer coupling between the hidden units (LBM). We show that
limited topologies have a performance advantage over restricted topologies. We examine connectivity within our
topological variants, explore hardware qubit mapping schemes, and discuss what performance differences may
imply about locality within the data without prior knowledge.

1. Introduction

Technologies based on two-dimensional (2D) materials such as
graphene and transition metal dichalcogenides (TMDCs) will play a
crucial role in the development of the next-generation devices [1,2].
Typical 2D materials are atomically thin, comprising a single or a few
layers that are weakly bonded by van der Walls interaction. In contrast,
the intra-layer atomic bonding in layered materials is strong and
usually covalent or ionic in nature. A large variety of experimental
work has shown that TMDCs display unique mechanical, electrical and
optical properties. For example, the switching capability of a MoS2
monolayer between semiconducting and metallic phases can be con-
trolled by a laser. Furthermore, unlike bulk MoS2 with an indirect band
gap of 1.28 eV, 2D MoS2 exhibits a direct band gap of 1.8 eV.

A MoS2 monolayer has several polymorphs, such as 1T and 2H
phases, with different intra-layer structures. The 1T phase consists of
octahedral prismatic molecular units with ABC stacking and the 2H
phase is trigonal prismatic with ABA stacking (see Fig. 1). This differ-
ence in the stacking-order endows MoS2 with distinct materials prop-
erties, e.g. the 1T phase is metallic and the 2H phase is semiconducting.

A robust and high-yield synthesis procedure is critically needed to
generate single-layered 2D materials for TMDC-based engineering

applications and devices. A variety of experimental methods, e.g. che-
mical vaper deposition (CVD), mechanical and chemical exfoliation,
and hydrothermal synthesis have been used to synthesize TMDC
monolayers. Efforts to synthesize device-scale monolayer samples tend
to produce polycrystalline domains and multi-layered heterogenous
structures. Grain boundaries and defects introduce undesired carrier
trap states, which are known to deteriorate mechanical and electrical
properties of 2D TMDCs.

CVD is the most widely used approach to synthesize highly uniform
and large-scale samples of 2D TMDCs [3]. We have performed large-
scale reactive molecular dynamics (RMD) simulations to study the CVD
growth of a MoS2 monolayer on an alumina substrate and used two
types of Boltzmann machines (BMs) to model the RMD data (Fig. 2).
BMs are composed of many interconnected units. Typically, these are
binary but have been extended to continuous variables [4]. BMs are
most often used to pre-train layers of deeper networks. In practical
applications, BMs make simplifying modifications to their architecture,
discussed later, for computational tractability.

Some units of a BM are dedicated to representing data and are called
visible units. The remaining so-called hidden units can be seen as re-
presenting latent factors that influence the distribution of other unit
states. Sampling the network, a process essential to both training and
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output, becomes intractable if the units are fully connected as shown in
Fig. 2c. However, a network topology restricted to a bipartite con-
nectivity between visible and hidden units creates conditional in-
dependence that allows for efficient inference of unit distributions [5].
This modified network is called a restricted BM (RBM).

We also use an alternative to the RBM called the limited BM (LBM).
This topological variant allows sparse connectivity among the hidden
units, something normally disallowed under the RBM topology as it
breaks conditional independence. The LBM is a connection superset of
the RBM and should enjoy a performance advantage since it can utilize
connections normally unavailable to the RBM. Since inference is no
longer straightforward in the LBM, we resort to sampling to estimate
unit state distributions and train a model. Here we use D-Wave’s
adiabatic quantum annealer for our sampling needs.

The annealer samples from Ising spin-glass problems defined by the
user, which we find useful because BMs can be easily restated as Ising
models. Our implementation of BMs using the quantum annealer differs

slightly from other work in that we only place hidden units on the
hardware instead of the whole BM [6]. Our purpose is not to prove any
sort of quantum speedup or supremacy but to practically utilize an
interesting, available tool and apply it to our work. Our implementation
of LBMs was designed with the annealer’s architectural limitations in
mind.

Whereas mathematically there is no limit to the number of other
units a given unit can be connected to in a BM, D-Wave’s annealer has
to contend with real-world physical limitations. The annealer arranges
its quantum bits, or qubits (each of which would represent one unit in a
BM), according to a chimera topology [7]; see Fig. S1 in the
Supplementary material. This is done for practical engineering pur-
poses, being a relatively newer technology with limited connectivity
between qubits as a result. A more detailed description of both the
topology and how it affected our implementation is provided in the
Supplementary material.

2. Simulation method and workflow

We use a combination of BMs and quantum annealers to model RMD
simulation data for the CVD growth of 2D MoS2. The RMD simulation
involved 1,497,600 O atoms, 2,347,200 S atoms and 460,800 Mo atoms
and the system dimensions were 211.0 × 96.3 × 14.5 (nm3). The si-
mulation was based on a newly developed ReaxFF force field, especially
optimized to model the CVD process for MoS2. The force-field para-
meters were validated by extensive theoretical and experimental data
to reproduce structural properties as well as the key chemical reaction
pathways in the reduction and sulfurdization steps of MoO3 substrate.
Details of the simulation schedule and CVD process modeling are de-
scribed elsewhere [8]. The RMD simulation was performed on 524,288
IBM BlueGene/Q cores of Mira and Intel Xeon Knights Landing (KNL)
262,144 cores of Theta machines at Argonne Leadership Computing
Facility.

Developing a Boltzmann machine to restore corrupt/missing data is
a scientifically important and interesting problem because the ability to
do so implies the model has some deeper understanding of the rules that
govern the data. The RBM atomic configurations were converted to a
form understood by BMs. From the position of each Mo atom, three
channels of 32×32 pixel images were generated with a kernel of −e r σ/ ,
where r is the distance between the position of an atom and the pixel
location and σ is chosen to be 0.3 Å. The distribution represents the
density of either S or Mo atom. A brighter pixel indicates its proximity
to an atomic position in the Cartesian coordinates. The 32×32 pixels
correspond to 1 nm2 region on the x-y plane in the RMD simulation. We
assigned one channel for the top S layer, one for the middle Mo layer,
and the third channel for the bottom S layer to better capture the
characteristic features of the dataset as well as to avoid the ambiguity in
the image intensity if the three channels were overlapping (see Fig. 1(b)
& (d)). The training data were labeled as 1T phase, 2H phase, and
disordered (uncategorized) phases. We used 4500 images for training
and 500 images for testing.

Training the BMs creates a model that captures important

Fig. 1. 1T and 2H structures of 2D MoS2 consisting of a single layer of mo-
lybdenum atoms (purple) sandwiched by two layers of sulfur atoms (yellow).
(a) & (b) are top and side views of the 2H phase, and (c) & (d) are the top and
side views of the 1T phase.

Fig. 2. MoS2 monolayer structure obtained by RMD simulation and thermal
annealing of CVD process (a). Yellow spheres represent S (sulfur) atoms, blue
spheres are Mo (molybdenum), and red spheres are O (oxygen) atoms. Atomic
configurations are converted into image representations (b) and then passed to
a Boltzmann machine (c). The visible units v of a Boltzmann machine are set to
represent a given image.

Fig. 3. Conceptual workflow for recovering missing
data. In (a) we have the input image with the top-
left and bottom-right corners missing. This is con-
verted into the vector representation seen in (b).
This vector is passed to the visible units of the
Boltzmann machine in (c). The hidden units of the
Boltzmann machine are mapped onto an adiabatic
quantum annealer in (d), which returns an image
with the missing corners filled in in (e).
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relationships among the data. A model trained in this way is then able
to perform a denoising task and fill in missing or corrupted portions of
an input image. Fig. 3 shows the entire process for training RBM and
LBM. RMD data is converted to a pixel image format with removed or
corrupt portions of the images. The corrupted input is translated into a
vector format that can be understood by a BM. Once converted, the
vector is passed to a BM and the states of the visible units are set ac-
cordingly to represent the data. The parameters defining the BM are
translated into equivalent Ising spin-glass parameters, and logical BM
units are mapped to qubits on the annealer hardware. After several
iterations of Gibbs sampling on the annealer, we recover the resulting
visible states representing the restored and denoised input image.

3. Limited boltzmann machine (LBM) modeling on a quantum
annealer

BMs are defined by an energy function E(v, h; θ) which depends on
visible units v containing the data and hidden layer units h. Here θ
represents hyper-parameters which include the weight matrix W con-
necting visible and hidden units, and biases for all the visible and
hidden units. The probability of a given state is governed by the
Boltzmann distribution = −P v h θ e Z( , , ) /E v h θ( , , ) , where the denomi-
nator is known as the partition function: = ∑ −Z ev h

E v h θ
,

( , , ).
One method of training BMs to learn a given distribution is called

contrastive divergence (CD) [5]. In CD, the weight matrix W is updated
according to the rule

= 〈 〉 − 〈 〉W h v h vΔ ( )ij i j data i j recon∊∊ (1)

where∊∊ is a learning rate hyper-parameter. CD can be split into positive
and negative phases, each corresponding to calculating 〈 〉h vi j data and
〈 〉h vi j recon respectively. The expression 〈 〉h vi j is the probability both
units i and j are “on” together. In the positive phase (where network
activity is being driven by input data), the values of the visible units are
clamped to a training input’s value; in the negative phase (where the
network activity is being driven by reconstruction efforts), no units are
clamped and the network is allowed to settle.

It is here that network topologies diverge in consideration of com-
putational tractability. In the case of unrestricted connectivity, calcu-
lating P(hi = 1|v) is very difficult because P(hi = 1|v) is still dependent
on other hidden units in the network. This is an exponentially large
space that is only viable for small networks. However, if we are allowed
to make simplifying assumptions about the network, we can introduce
independence in the calculation of P(hi = 1|v) to make it much more
straightforward. In a RBM, the only allowed connection type is between
a visible unit vi and a hidden unit hj. Therefore,

∏= = =
=

P h v P h v( 1| ) ( 1| )i j

n
i j1 (2)

Likewise, we can write

∏= = =
=

P v h P v h( 1| ) ( 1| )i j

n
i j1 (3)

With these expressions and an assumption of a simplified con-
nectivity topology, training RBMs [9] becomes efficient. There is some
cost to the representational power of the RBM, although connections
between units of the same type that may have contributed valuable
information to the BM’s performance are deliberately removed for the
sake of tractability.

We modified the RBM by adding some sparse connections between
hidden units; we call this a limited BM, or LBM. Under the CD training
procedure, such a change would run into tractability problems again
when calculating P(h|v) because the conditional independence is lost
(although calculating P(v|h) remains the same as before). Because we
would be unable to infer the proper distribution of hidden units, we
opted to use an adiabatic quantum annealer to perform the sampling
task instead. The annealer is described in the Supplementary material.

Our RBM and LBM implementations use 32 × 32 × 3 = 3072

visible units and 128 hidden units. The visible unit count arises from
the need to represent our input data (32 × 32 pixel images in 3 slices),
and the hidden unit count arises from the chimera topology of the
annealer (16 cells each containing 8 qubits). The weight matrix W in
both RBM and LBM are subsequently 3072 × 128 in the number of
parameters; the LBM has an additional 352 couplers which connect
hidden units together1.

We randomly initialized the weight matrix using a normal dis-
tribution. Our learning rate hyper-parameters for visible-to-hidden
connection weights (εw), hidden-to-hidden couplers (εc), visible unit
biases (εvb), and hidden unit biases (εhb) were all set to 0.1. The noise
control learning parameter was set to α = 1 and the variance to
σα = 0.1. We also used the ADAM hyper-parameter tuning algorithm
[10] and set its parameters to αADAM = 0.005, εADAM = 10−6, β1 = 0.9,
and β2 = 0.9. We trained BMs over 50 epochs for a data set of 4500
training examples and 500 test images.1

4. Results

We were able to successfully train BMs to model MoS2 data. One
sign of a trained network is if it is able to perform an encoding-decoding
task. That is, a BM is exposed to an input image by clamping visible unit
values to correspond to the image pixel values. This produces a set of
hidden unit states, at which point the network releases the clamps on
the visible unit states and allows the states to settle. The set of hidden
unit states, the encoding of the input image, is said to drive the network
to produce a new set of visible unit states, the decoding. The decoding
result should be similar to the input. Fig. 2b shows the result of one
encode-decode task that looks very similar to the input data originally
derived from the RMD simulation shown in Fig. 2a.

In addition to the encoding-decoding task, BMs can perform a task
called denoising. Given an image with some portions omitted or cor-
rupted, a BM can fill in or correct the bad portions of the input. BMs can
perform this task due to their nature as generative models of data as
opposed to discriminative models more commonly found in machine
learning. Recovering data can be done using Markov-chain Monte-Carlo
methods. For our BMs, we clamp the pixel values of our given data and
impute random values to the missing portions. This induces a dis-
tribution of hidden states, which we then use to calculate new values
for our visible units representing the pixel values. We repeatedly sample
the hidden and visible states until the network converges on some va-
lues for the missing visible units. Fig. 4a shows an example of a BM
performing this denoising task. As seen, the results are reasonable
completion of the missing data. We also compared RBM against LBM on
this encoding-decoding task. Fig. 4b shows an error plot of the two
topologies in which the LBM shows a slight advantage over the RBM.

Next, we discuss the results of a qubit remapping experiment.
Earlier we introduced the idea of changing the assignment of qubits to
chimera cells in the hopes of materially affecting our end results, rea-
soning that as qubits begin to specialize as proto feature we might find a
good way to pair them together. These feature detectors may have
useful information for other detectors, but they may be unable to
communicate such information due to chimera topology connectivity
restrictions, hence our remapping of qubits to chimera cells.

We chose to use correlation in hidden unit activities to create a
qubit remapping strategy. When training a BM, we recorded the hidden
unit states for all images. We halted training after improvements in
reconstruction error dropped below 500 per iteration and calculated
Pearson correlation coefficients for the qubits. We used these

1 For an annealer with M × N chimera cells containing 2 partitions of size L
qubits each, we have L2MN + LM (N − 1) + LN (M − 1) couplers. In our case,
M = 4, N = 4, L = 4. Each cell contains L2 connections between the 2 parti-
tions and has L connections with qubits in the adjacent cell, except for cells on
the edges of the chimera cell grid.
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coefficients to find either a maximally or minimally correlated pair of
qubits and seeded them into opposing partitions of a chimera cell. Here,
maximal correlation means the qubits are either strongly positively or
negatively correlated, and minimal correlation means the qubits have
correlation coefficients nearer to 0. We filled the remainder of a chi-
mera cell with either maximally or minimally correlated qubits relative
to the seed qubits. We referred to the maximal correlation method as
strong remapping and the minimal correlation method as weak re-
mapping. We also created an alternative method of filling the cells we
called shoelace remapping. Instead of completely filling each partition
based on a pair of seed qubits, we would only add one new pair and
consider them new seed qubits, repeating until the cell was filled. This
causes the cell to be filled two qubits at a time, resembling the tying of
shoelaces. After performing these remappings, we continued training
the BMs, the results of which can be seen in Fig. 5.

In general, the weak remapping gave better results. We reason this
is the case because qubits that are highly correlated have a lower
chance of having relevant information for each other. In an extreme
case, suppose two qubits are perfectly correlated and linked to each
other. In such a case, neither qubit is useful to the other and we could

delete one qubit without losing any information. If we do a weak re-
mapping, however, we avoid such an effect and give qubits new op-
portunities to interact with different neighbors and incorporate new,
relevant information into their own activations.

Classification of 2H and 1T phases and defects in CVD growth of
MoS2 and other 2D materials such as MoSe2 and MoWSe2 is of great
interest. The BMs provide a slight benefit in classification results.
Though not the main focus of this paper, the use of a support vector
machine (SVM) with a radial basis function kernel (RBF) on raw image
data gave a classification accuracy of 66.2%. We then trained a LBM to
model the images and recorded the hidden unit states produced by the
BM in response to exposure to the input images – the encodings. We
used these encodings as input to another SVM, still using the RBF
kernel, which yielded a classification accuracy of 77.0%. Doubtlessly,
such classification efforts can be tuned and optimized much better, but
this suffices to show that BMs can successfully classify defects, and 2H
and 1T phases in CVD growth of MoS2.

Fig. 4. A comparison of RBM and LBM performance using L2 reconstruction loss, the squared sum of per-pixel differences between the data set and the BM's resulting
encoding-decoding output. (a) Boltzmann machines can fill in missing or noisy data. In the top row are images of the simulation subspace with the top-right quarter
removed. The Boltzmann machine then returns the completed images seen in the bottom row, which appear to be reasonable estimates. (b) A comparison of RBM and
LBM performance using L2 reconstruction loss. LBMs show a small but consistent advantage over RBMs, suggesting the intralayer connectivity between hidden units
is beneficial for learning.

Fig. 5. (a) Remapping results on a training data set. Weak correlation remapping produces the overall best result on the training data and strong correlation
remapping yields a worse result. (b) Remapping results on a test data set. Note that the test data set is 10% the size of the training data set, thus the discrepancy in the
error numbers compared to the training data set. The same trends found in Fig. 5a continue in these results from the test data set.
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5. Conclusion

In this study, we have shown that the RBM and its variant LBM can
successfully model RMD simulation data for CVD growth data of a MoS2
monolayer. Since scientific problems can be simulated on classical
machines in most cases, the quantum annealer might not be strictly
necessary to implement the Boltzmann machines. However, researchers
are constantly looking for cases where quantum devices produce results
that classical simulations cannot. The annealer might be a useful tool if
confronted with some especially complex data. Some of our research is
directed towards how we might implement networks with additional
connectivity, therefore we found it appropriate to try out the annealer.
Another reason we might use the annealer instead of a classical solution
is that simulators may not scale well. Using the quantum annealer re-
quires adjusting parameters on individual qubits. Additionally, because
the annealer is a real-world piece of hardware, not all components are
operational. Some qubits are broken, some couplers are broken, and
this can affect how to program problems onto the chip. The route we
chose was to find contiguous areas of the chip that have fully opera-
tional components and constrain our problems to fit within that area.

We have also demonstrated that the LBM maps well on a D-Wave
adiabatic quantum annealer and performs better than the RBM. We
explored different qubit mapping schemes and their effect on the per-
formance of LBM. In addition to the encoding-decoding task, we have
demonstrated that both RBM and LBM can perform denoising and fill in
the missing data in RMD simulations of MoS2 growth by the CVD
process. These unsupervised learning capabilities of Boltzmann ma-
chines hold a great deal of promise for modeling material structures and
characterization data from various kinds of instruments, in particular
electron microscopy and X-ray scattering probes.
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