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ABSTRACT

Refractive index (RI) of polymers plays a crucial role in the design of optoelectronic devices, including displays and image sensors. We have
developed a framework for (1) high-throughput computation of RI values for computationally synthesized amorphous polymer structures
based on a generalized polarizable reactive force-field (ReaxPQþ) model, which is orders-of-magnitude faster than quantum-mechanical
methods; (2) prediction of composition–structure–RI relationships based on a machine-learning model based on graph attention neural net-
work; and (3) computation of frequency-dependent RI combining ReaxPQþ and Lorentz-oscillator models. The framework has been tested
on a computational database of amorphous polymers.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0161198

Refractive index (RI) is a fundamental material constant that gov-
erns propagation of light in an optical medium, thus serving as a key
material design parameter for optical applications.1 Polymers constitute
essential components of many advanced optoelectronic devices, includ-
ing displays and image sensors.2–7 The attractiveness of polymers in
these applications lies not only in their easy processability into various
forms, mechanical flexibility, and low cost of fabrication but also in fine
tunability of RI values through chemical modifications. Further develop-
ments of advanced polymers for high-performance optical applications
would be greatly accelerated by high-throughput computational screen-
ing of polymers with desired RI values as well as machine learning
(ML) of composition–structure–RI relationships. Despite tremendous
advances in materials genome (i.e., applying informatics to design new
materials significantly faster than the conventional trial-and-error
approach),8,9 high-throughput RI computation of polymers remains
elusive. This is mainly due to high computational costs of quantum-
mechanically evaluating RI10 for large system sizes required to account
for complex chemical and morphological features (e.g., crystalline vs
amorphous) that dictate optical responses of polymers.

In this paper, we address the high-throughput RI-computation
challenge through recent developments in first principles-informed

reactive molecular dynamics (RMD) simulations11,12 based on a gener-
alized polarizable reactive force-field (ReaxPQþ) model.13 The origi-
nal ReaxPQ model used a polarizable charge equilibration (PQEq)
scheme to describe electronic polarization.14,15 The ReaxPQþ model
further incorporates the effect of external electric field to accurately
calculate RI in orders-of-magnitude shorter computational time com-
pared to quantum-mechanical (QM) methods.13 Using ReaxPQþ,
we construct a large computational dataset of amorphous polymers
(Fig. 1) and thereby train a ML model based on graph attention neural
network.16 We further combine ReaxPQþ with a simple Lorentz-
oscillator model to calculate frequency-dependent RI.17

We first compute RI using polarizable charge equilibration
scheme. In the original reactive force-field (ReaxFF) model for RMD
simulations, the potential energy, E ri i ¼ 1;…;Nj g; qi i ¼ 1;jf

��
…;NgÞ, is composed of bonding (Eb) and nonbonding (Enb) terms,
where ri and qi are the position and charge of the ith atom (N is the
number of atoms).11,12 Eb describes the formation and breakage of
chemical bonds through reactive bond orders, BOij, between atomic
pairs, i; jð Þ. Enb is composed of van der Waals (EvdW) and Coulombic
(ECoulomb) terms. Interatomic charge transfer is described by a charge
equilibration (QEq) scheme, in which ECoulomb is minimized as a
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function of atomic charges subject to the charge neutrality condition,P
iqi ¼ 0.18,19 A breakthrough in computationally efficient descrip-

tion of electronic polarization was achieved by an extension of
ReaxFF, i.e., PQEq-based ReaxPQþ.13 In the PQEq scheme, electric
polarization is described using a Gaussian-shaped electron density
(shell) that can polarize away from the nuclei core in response to both
external electric fields and internal electric fields produced by other
atoms. Here, each atom i is partitioned into two charged sites (i.e.,
core and shell). The core (qic) consists of two parts: (1) qi with a vari-
able total charge (qi); and (2) qZi with a fixed total charge (Zi). The
massless shell (qis) has a fixed total charge of �Zi. The shell and core
of an atom are connected by an isotropic harmonic spring with an
element-specific force constant Ksi (Fig. 1). The resulting ECoulomb

involves core–core, core–shell, shell–core, and shell–shell interactions,

ECoulomb ric; ris; qif gð Þ ¼
XN

i¼1 v0i qi þ
1
2
J0iiq

2
i þ

1
2
Ksir

2
ic;is

� �

þ
X

i>j
½T ric;jcð ÞCic;jc ric;jcð Þqicqjc

�T ric;jsð ÞCic;js ric;jsð ÞqicZj

�T ris;jcð ÞCis;jc ris;jcð ÞZiqjc

þT ris;jsð ÞCis;js ris;jsð ÞZiZj�; (1)

where ric, ris, v0i , and J0ii are the core position, shell position, electro-
negativity, and hardness of the ith atom. In Eq. (1), ria;jb (i, j¼ 1, …,
N; a, b¼ c—core or s—shell) are charge–charge distances. The electro-
static energy between two Gaussian charges is given in terms of the
error function Cia;jb ria;jbð Þ, and the Coulombic interaction is screened
using a taper function T(r). The core–core, core–shell, shell–core and
shell–shell charge interactions in Eq. (1) has quadrupled charge com-
putation over the conventional ReaxFF model, which has been acceler-
ated through a series of computational transformations,13 including
extended Lagrangian-based shadow dynamics.20,21

To compute the RI of each amorphous polymer structure, we
apply an external electric field, E, and relax the shell positions, risf g,
to the minimum-energy configuration.13 We then calculate the
induced polarization as

DPE ¼
XN

i¼1

X
a2 c;sf g

qia ria � r0ia
� �

; (2)

where qia and r0ia are charges and their positions in the absence of
external electric field. RI is then obtained as

n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4p

DPe

e

r
; (3)

where DPe=e denotes the average of the diagonal elements of the
dielectric tensor,DPe=e.

We next predict composition–structure–RI relationships using
graph attention neural network (GAT). We consider a graph,
G ¼ V ;Eð Þ, where V is the set of atoms (or nodes) and E is the set of
bonds between atomic pairs (or edges); see Fig. 2(a). A graph neural
network computes the embedding for each node by aggregating neigh-
borhood information from adjacent nodes, which involves two essen-
tial steps of message passing and message aggregation [Fig. 2(b)].16

This step is propagated through multiple layers. At lth layer, each
node aggregates information about other nodes that are l-hops away
from it. Given an initial feature Xv of each node v, GAT learns the final
feature Zv by recursively computing the embedding, hðlÞv , of the vth
node at layer l,

h 0ð Þ
v ¼ Xv; (4)

h lð Þ
v ¼ r

X
u2N vð Þ

avuW
lð Þh l�1ð Þ

u

� 	
; l 2 1;…; Lf g; (5)

Zv ¼ h Lð Þ
v : (6)

FIG. 1. Amorphous polymer structure
(left), which is computationally synthesized
by duplicating and thermalizing a polymer
chain (center). Each atom in the polymer
chain in turn is composed of core and
shell charges within the PQEq scheme
(right).

FIG. 2. (a) An example graph, where the nodes are labeled by alphabet letters and
the edges are represented by red lines. (b) Layers of message composition and
aggregation operations on the sample graph in graph neural network. (c)
Computation of attention coefficients evu in graph attention neural network; see Eq.
(8). (d) Computation of weighting factors avu in Eq. (7).
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Here,NðvÞ is the set of adjacent nodes of node v, and L is the last layer.
In Eq. (5), the message mðlÞu ¼WðlÞhðl�1Þu transforms neighbor u’s
embedding in the previous layer using learnable parameter WðlÞ.
Messages from all adjacent nodes are summed with a weighting factor,

avu ¼
exp evuð ÞX

k2N vð Þ
exp evkð Þ

; (7)

i.e., a softmax function applied to attention coefficients,

evu ¼ a W lð Þh l�1ð Þ
u ; W lð Þh l�1ð Þ

v

� 	
; (8)

where the attention mechanism a is a simple neural network of single-
layer depth; see Figs. 2(c) and 2(d).22 We improve the attention coeffi-
cients using multi-head attention computation, which generates an
ensemble of attention scores with a different set of parameters. This is
followed by application of a nonlinear rectified linear unit (ReLU), r,
to produce the embedding at layer l as shown in Eq. (5).

To compute frequency-dependent RI of polymers, we further
developed a simple Lorentz-oscillator model,17 taking advantage of the
unique polarizable feature of the ReaxPQþ model while augmenting
its massless shells13 to describe dynamics. Frequency-dependent RI
based on an extended Lorentz model is expressed as

n xð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

XNelement

i¼1

4pe�i 2ni
m�i x2 � Ksi














vuut x < mini xið Þð Þ; (9)

where x is the frequency, Nelement is the number of elements (C, H,
etc.), ni and Ksi are the number density of atoms and spring constant
for the ith element in the atomic unit, and (xi ¼

ffiffiffiffiffiffi
Ksi
p

). Here, effective
mass m�i (in unit of the electron mass) and effective charge e�i (in unit
of the electron charge) are introduced to account for many-body
screening. Note that Eq. (9) is valid below the resonant frequencies,
xi, of constituent elements.

In the baseline model, we adopt Ksi values that have been com-
puted based on the PQEq method within the ReaxPQþ model,13

whereas e�i ¼ m�i ¼ 1 for all elements. For a given material system, for
which the static n ¼ nð0Þ has been computed using RMD simulation
based on the ReaxPQþ model, e�i of all the elements are uniformly
scaled to reproduce the ReaxPQþ value as

e�i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n 0ð Þ2ReaxPQþ�1
n 0ð Þ2baseline�1

vuut : (10)

This incorporates the many-body screening effect in RMD simulations,
which is absent in the Lorentz-oscillator model. Furthermore,m�i values
can be adjusted if one would like to reproduce nðxÞ values computed
using, e.g., first-principles QM calculation for a particular frequency; see
the supplementary material for more details on methods.

We have incorporated the ReaxPQþ model into our high-
throughput computational synthesis framework of amorphous poly-
mer structures.23 We have thereby constructed a large dataset of struc-
turally diverse 1276 polymers with quantum accuracy for a class of
flexible all-organic polyolefins composed of C, H, O, N, S, F, Cl, and
Br; for details, see Refs. 23 and 24. In this work, we apply the new RI
computation methods to these datasets.

The initial feature, Xv in Eq. (4), is a 12-dimensional vector com-
posed of Pauling electronegativity, electron affinity, group in periodic
table, covalent radius, ionization energy, number of s electrons, num-
ber of p electrons, atomic polarizability, ionization affinity ratio, liquid
range, liquid ratio, and ratio of electron affinity to electronegativity.
Total number of network parameters is 62 017. The network is trained
for 100 epochs, where the training and test root mean square errors
(RMSE) drop to 0.10 within the first 20 epochs. Figure 3 compares
GATmodel predictions with ground-truth ReaxPQþ values.

The attention mechanism in GAT allows us to visualize local fea-
tures that are relevant for RI. Figure 4(a) shows a monomer of one of
the polymers in the computational dataset, where the color represents
the local features learned by GAT, which reveals the importance of
CF3 group [see the three fluorine atoms colored red, which are con-
nected to the carbon atom colored dark red at the bottom of Fig. 4(a)].
Inspired by this finding, we have compared a subset of polymers in the
dataset, for which the number of fluorine-containing groups in eight-
chain polymer varies. Figure 4(b) indeed shows clear correlation
between RI value and fluorine content.

We have further used the PQEq-Lorentz model to compute
frequency-dependent RI. To demonstrate the optional use of m�i

FIG. 3. Graph attention neural network model prediction vs ground-truth ReaxPQþ
values of refraction index. Correlation coefficient is 0.89.

FIG. 4. (a) Visualization of local features that correlate with RI value. (b) RI value
as a function of fluorine content.
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parameters, we here use ab initio density functional theory (DFT)
calculation of nðxÞ for polyethylene (PE) using the QXMD code.25

The electronic states are calculated using projector augmented wave
(PAW) method.26,27 Projector functions are generated for the 2s and
2p states of C and the 1s state of H. The generalized gradient approxi-
mation (GGA) is used for the exchange-correlation energy.28 The
momentum-space formalism is utilized, where the plane wave cutoff
energies are 30 and 250Ry for the electronic pseudo-wave functions
and pseudo-charge density, respectively. The C point is used for
Brillouin zone sampling for electronic-structure calculations. The van
der Waals interaction between atoms is described in the DFT-D
approach.29 The system is composed of 2� 3� 4 PE crystalline unit
cells in an orthorhombic simulation box of size 14.8� 14.8� 10.136
Å3. Figure 5 shows good agreement between the Lorentz model and
DFT calculation below the calculated bandgap, Eg � 8 eV; only to
which the Lorentz model applies. Especially, the two calculations are
indistinguishable in the visible spectral range of interest.

In summary, we have developed a framework for high-
throughput computation of refraction index and its frequency depen-
dence based on a generalized polarizable reactive force-field
(ReaxPQþ) model, which is orders-of-magnitude faster than
quantum-mechanical methods, as well as prediction of the
composition–structure–RI relationships based on graph attention neu-
ral network. While the framework may readily find applications in
rational design of advanced polymers for high-performance optical
applications, the graph network could potentially be improved by
group-theoretical equivariance for accuracy30 and sharpness-aware
minimization for robustness.31

See the supplementary material for details of the model accuracy
and the computational efficiency comparisons between this study and
other methods along with experimental validations for ML and
ReaxPQþ calculations.
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