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Abstract 

We present a practical experience in adding a dynamic-load-balancing capability to an existing 
large parallel application - multiresolution molecular dynamics (MRMD) - which is based on 
uniform mesh decomposition. The new load-balancing scheme uses adaptive curvilinear ccordi- 
nates to represent partition boundaries. Workloads are partitioned with a uniform 3-dimensional 
mesh in the curvilinear coordinate system. Simulated annealing is used to determine the optimal 
coordinate system which minimizes load imbalance and communication costs. The number of 
messages for performing simulations is minimal because of the underlying regular mesh topology. 
Periodic boundary conditions are naturally incorporated in the new scheme. Performance of the 
MRMD algorithm with the new load balancer has been tested for nonuniform multimillion-atom 
systems. 0 1997 Elsevier Science B.V. 

Keywords: Multiresolution molecular dynamics (MRMD); Load balancing; Adaptive curvilinear coordinates; 
Simulated annealing; Communication costs; Message passing 

1. Introduction 

Molecular dynamics (MD) simulation is rapidly becoming an integral part of 
computer aided design of materials 1451. The MD approach provides the phase-space 
trajectories of atoms through the solution of Newton’s equations. Recent developments 
in parallel computing technology and multiresolution numerical methods have enabled 
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US to perform multimillion-atom MD simulations of realistic materials routinely 
[23,27,30]. 

The compute-intensive part of MD simulations is the calculation of interatomic 
interactions. We are dealing with materials in which interatomic interactions are 
characterized by steric repulsion, Coulomb and charge-dipole interactions, and three- 
body covalent interactions [47]. Highly efficient algorithms have been designed to 
compute these interactions on parallel machines [27]. The long-range Coulomb interac- 
tion is calculated with a divide-and-conquer scheme, called the fast multipole method 
(FMM) [14], which reduces the computational complexity from O(N*> to O(N) for 
N-atom systems. The reduced cell multipole method (RCMM) [8] is used to apply the 
FMM to systems with periodic boundary conditions. For short-ranged two- and three- 
body interactions, we have employed a multiple time-step (MTS) approach [41] in which 
the force on an atom is subdivided into primary, secondary, and tertiary components 
according to spatial ranges. A significant reduction in computation is achieved by 
exploiting different time scales of these force components. Domain decomposition is 
used to implement this multiresolution molecular dynamics (MRMD) algorithm on 
parallel computers. 

Major application areas of the MRMD algorithm have been porous glasses [26] and 
fracture of ceramics [28,29]. Porous silica has recently been the focus of many 
investigations, see Fig. la [lo]. This environmentally safe material has numerous 
technological applications: It is used in thermal insulation of refrigerators; in passive 
solar energy collection devices; and in catalysis and chemical separation. There is also 
an exciting possibility of utilizing it as an embedding framework in optical switches 
made of quantum-confined microclusters. More recently we have performed MD 
simulations of nanophase ceramics [43,44], see Fig. lb. Advanced ceramics such as 
silicon nitride have numerous technological applications [46]. The capability to with- 
stand high temperatures, combined with high strength and low weight, make them 
highly desirable for aerospace, surface transportation, electronics, and advanced manu- 
facturing industries. A major drawback of ceramics is their brittleness. In recent years, a 
great deal of effort has been made to synthesize less brittle ceramics by consolidation of 
nanometer size clusters [39]. 

Simulation of porous glasses and nanophase materials is characterized by low mass 
density and irregular atomic distribution. For example, we have simulated highly 
nonuniform porous glasses whose density is as low as one twentieth of the normal glass 
density (Fig. la) [26]. One practical problem in simulating such irregular systems on 
parallel computers is that of load imbalance. Suppose that processors are logically 
organized as a cubic array of dimensions P,, X Py X Pz, and that we partition the 
simulation system into subsystems of equal volume accordingly. Because of the irregular 
distribution of atoms, this uniform spatial decomposition results in unequal partition of 
workloads among processors. As a result the parallel efficiency is degraded signifi- 
cantly. Another problem arises during the preparation of these materials, when global 
rearrangement of structures occurs. This necessitates a dynamic load balancing scheme 
in which workloads are repartitioned adaptively during simulations. 

Various approaches have been developed for load balancing such dynamic irregular 
problems on parallel computers [9]. For example, recursive coordinate bisection is one 
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of the widely used methods [21,48,50]. The load-balancing problem can also be 
formulated in terms of the more general graph partitioning problem. Spectral partitioning 
methods use the lowest nontrivial eigenvectors of the Laplacian matrix of a graph to 
produce a high-quality partition [2,13,19,50]. Since the spectral method involves the 
diagonalization of the Laplacian matrix, its computational cost is high. Recently, 
multilevel algorithms have been combined with the spectral method to reduce the 
computational cost [2,13,19]. By constructing successive coarse approximations of the 
original graph, these multilevel spectral methods solve static problems efficiently where 
the cost to perform load balancing is tolerated. 

In irregular dynamic simulations, need for repeated repartitioning necessitates low 
overhead load balancers. Most successful among dynamic load balancing schemes are 
the methods based on space-filling curves [13,33,35,36,40,49]. These methods use a 
bijective mapping of a l-dimensional array to 3-dimensional grid points. Spatial locality 
is conserved by using recursively defined self-similar curves for the -mapping. The 
space-filling curves have been applied to load balancing astrophysical particle simula- 
tions based on tree codes. In a dynamic load-balancer, partition can be refined 
incrementally during a simulation based on load-imbalance pressure [7,35] or by load 
diffusion [3,5,18,20]. 

While the load-balancing schemes cited above have been quite successful, we must 
take account of several additional points in designing a dynamic load-balancer for 
MRMD simulations. First, the uniform-mesh decomposition in the original parallel 
MRMD algorithm is optimal in reducing the number of messages [27]. With a 
three-dimensional mesh decomposition, message passing to the 26 neighbor nodes is 
completed in total of six steps [30]. This is achieved by sending the coordinates of 
boundary atoms to the six face-sharing neighbor nodes sequentially. Boundary atoms 
located at the comers and edges of a processor are forwarded to proper neighbor 
processors. A two-dimensional decomposition (e.g., for simulation of films) requires 
only four messages. This small number of messages is a desirable feature when we run 
simulations on a cluster of workstations such as the 40-node Digital Alpha system at the 
Concurrent Computing Laboratory for Materials Simulations of Louisiana State Univer- 
sity. If a portable message passing system such as PVM [ 111 or MPI [16] is implemented 
with the TCP/IP protocol on a cluster of workstations, message latency rather than 
communication bandwidth is often the limiting factor for speedup [32]. In such a case, 
minimizing the number of messages is as important as minimizing the volume of each 
message. The message forwarding scheme used with the uniform mesh partitioning is 
optimal in this aspect, and it is desirable to retain this feature with a new dynamic 
load-balancing scheme. Secondly, it is important that a load-balancer conforms to the 
periodic boundary conditions used in the MRMD program. Periodic boundary conditions 
are used often in materials simulations to minimize the surface effects. 

We have developed a low-overhead dynamic load balancing scheme which satisfies, 
both of these requirements: minimizing the number of messages and incorporating 
periodic boundary conditions. The main idea is to introduce an adaptive curvilinear-co- 
ordinate system in which we apply the uniform-mesh partitioning. Coordinate transfor- 
mation is then dynamically adapted to minimize the load-imbalance and communication 
costs. 
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This paper is organized as follows. In Section 2, we describe the MRMD algorithm 
and the adaptive curvilinear-coordinate load balancing scheme. The results of numerical 
tests are given in Section 3, and Section 4 contains discussions. 

2. Methods 

2.1. Multiresolution molecular dynamics 

In MD simulations, a physical system consisting of N atoms is represented by a set 
of atomic coordinates, {xiii = 1, . . . , N}. We are concerned with systems for which the 
potential energy is a sum of pair and triple terms [47], 

v = c u$‘( IXijl) + C uj;i( xijP xik)9 (1) 

Ki,j)l C(i,j,k)) 

where xij = xi - xi. The most time-consuming part of MD simulations is the calculation 
of the potential energy, V, and interatomic forces, Fi = - ~3V/ax~. The MRMD 
algorithms have been designed to efficiently compute the contributions to these quanti- 
ties from various spatial regimes [27]. 

Recently, several divide-and-conquer schemes have been implemented to reduce the 
computational complexity for the long-range Coulomb interaction. The fast multipole 
method (FMM) is based on the multipole expansion of the Coulomb interaction [ 141. 
The rapid decay of the multipole expansion enables one to calculate the Coulomb 
interaction efficiently for a specific level of precision. On a sequential machine, the 
FMM reduces the computational complexity from 0( N*) to O(N). It involves: (i) 
decomposition of the MD box into a hierarchy of cells; (ii) calculation of multipole 
moments; and (iii) Taylor series expansion of the Coulomb potential. 

Fig. 2. Schematic representation of the multitesolution algorithm. (a) Periodically repeated images of the 

original MD box. Replacing each well-separated image by a small number of particles with the same leading 

multipole expansions reduces the computation enormously while maintaining the necessary accuracy. (b) A 

hierarchy of cells in the fast multipole method. (c) The near-field forces on a particle are due to primary, 

secondary, and tertiary neighbor atoms. 
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In the FMM, the MD box is decomposed into a hierarchy of cells according to a tree 
structure (Fig. 2b). The root of the tree is at level 0, and it corresponds to the MD box. 
The MD box is divided into 2 X 2 X 2 cells at level 1. Repeating this procedure, one 
obtains 8’ cells at level 1. The recursive decomposition is stopped at the leaf level, I= L, 
where further decomposition would cause the sides of the cells to be less than the cutoff 
for the non-Coulombic interaction (i.e., charge-dipole, steric, and three-body). Atoms 
experience only the Coulomb potential when they reside in non nearest-neighbor or 
well-separated cells. 

The total potential energy can be decomposed into the near-field and far-field 
contributions. The near-field contribution is due to atoms in nearest-neighbor cells, and 
is calculated directly at the leaf level. The far-field contribution is evaluated by 
expanding the Coulomb field in terms of multipoles. The multipoles are calculated 
hierarchically for every cell at every level. We first determine multipoles for all the cells 
at the leaf level. Next the multipoles at coarser levels are calculated by combining the 
multipoles at deeper levels. At level I, the multipoles at the center of a cell is calculated 
by shifting and adding up the multipoles of its 8 children cells. By traversing the tree 
upward, l=L, L- 1, . . . . 1, 0, one computes the multipoles for all the cells at all 
levels. 

These multipoles are then used to compute the far field at each atom’s position. The 
separation between atoms in a given cell is small compared to the separation between 
atoms in well-separated cells. Therefore, instead of repeating the sum over all well-sep- 
arated cells for each atom in the cell, the field is expanded in Taylor series about the 
center of the cell. Starting at the root level (1= 0) and traversing the tree downward, we 
compute the Taylor coefficients from the multipoles for all the cells at all levels. The 
Taylor coefficients are stored, and are used to calculate the far field at the positions of 
the atoms in the cell. 

In simulations of bulk systems, periodic boundary conditions are imposed by 
repeating the MD box infinitely as shown in Fig. 2a. In this case, the Coulomb 
interaction involves the wellknown Ewald summation which expresses the interaction as 
a local sum in the Fourier space and a sum of short-range terms in real space 1231. The 
Ewald summation is efficiently calculated with the so-called reduced cell multipole 
method (RCMM) [8]. The main idea of the RCMM is that even though the MD box 
contains multimillion atoms, the contribution from m-27 well-separated image cells to 
the far field is described accurately by the first few terms of the multipole expansion. 
Therefore it is reasonable to replace each well-separated image cell by a reduced cell 
containing a small number of randomly positioned fictitious particles whose first K 

multipole moments are the same as those of the original N-atom system. To reproduce 
the multipole moments up to order K, only M = (K + I)( K + 2)( K + 3)/6 fictitious 
particles are needed. The charges, (qi}, of these M fictitious particles are obtained by 
equating their first K multipole moments to the corresponding multipole moments of N 
image atoms. In RCMM, the Coulomb potential is a sum of two terms: (i) the potential 
generated by charges in the central MD box and image atoms in the 26 nearest-neighbor 
boxes; and (ii) the potential due to M fictitious charges in the remaining x-27 cells (see 
Fig. 2a). The first term (i) is computed with FMM. The second term (ii) involves the 
Ewald summation over M fictitious particles. 
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For short-ranged two-body and three-body interactions, we have employed a multiple 
timestep (MTS) scheme [41] in which the force on an atom is subdivided into primary, 
secondary, and tertiary components (Fig. 2~). A significant reduction in computation is 
achieved by exploiting different time scales of these force components. The primary 
forces arise from nearest neighbors (within a cut-off distance, r,> and they are updated 
after every MD time step. Compared to primary interactions, the secondary forces 
(within a cut-off distance, rc) and tertiary forces (due to atoms beyond rc but within the 
nearest-neighbor leaf cells) vary slowly. Therefore they are updated after n, ( N 10) and 
n2 (- 60) time steps, respectively. Between updates, the secondary and tertiary forces 
are calculated from Taylor’s series. The far-field contribution to the Coulomb interaction 
is updated after every n2 time steps. 

2.2. Curvilinear-coordinate approach to load balancing 

The original MRMD algorithm was implemented on parallel computers using uni- 
form mesh decomposition of workloads [27], see Fig. lb. The program has since been 
developed into an extensive software system for materials simulations augmented with 
various analysis tools [26,28,29]. However these software tools lacked load-balancing 
capability, and we have observed performance degradation when they were applied to 
irregular problems. Similar uniform mesh decomposition is currently used in a variety of 
parallel software systems. Examples include molecular dynamics [37], electronic-struc- 
ture calculation [12,31,34], and computational fluid dynamics [38]. Our purpose is to 
develop a load balancer which can be added to these existing uniform-mesh-based 
softwares without modifying their data structures. 

Let{xili= 1, . . . . Nj denote a set of atomic coordinates distributed in a box formed 
by vectors a, b, and c, see Fig. 3. With periodic boundary conditions, there are identical 
atoms at xi + v, where v = la + mb + nc (I, m, and n are integers). Partitioning 
problem can be formulated as a mapping p( x> from R3 to {0, 1, . . . , P - l} where P is 
the number of processors. The ith atom at position xi is thus assigned to processor 
p(x;). The problem is to find a map which minimizes the computational cost. 

a 
Fig. 3. An MD box is formed by three vectors, a, 8, and c. The three-dimensional coordinate, xi, of the jth 

atom is related to its dimensionless coordinate, si, throu9 the relation, X, = hs,, where h = ((I, b, C) is the 
translation matrix. 
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We model the computational cost, T, as a linear combination of the load-imbalance 

cost, E,,, and the communication cost, E,,,, with machine-dependent prefactors, tba, 
and ream: 

T = ‘bal Ebal + tam Emn (2) 

In Eq. (2), Eba, is the standard deviation of the number of atoms assigned to each 
processor. Communication cost, EC,,,,,, is the number of pairs whose elements are in 
different processors but within the cut-off length, rc, of the short-range interaction [27]. 
This cost may be expressed as E,,, = II(i, j)Ip(xi) +/dXj), IxijI < r,II/P, where ISI 
denotes the number of elements of set S. More practical definition of EC,, is the 
average number of atoms per processor that are located within distance rc from the 
processor boundaries, since the coordinates of these boundary atoms must be sent to 
neighbor processors in order to calculate interatomic interactions. The cost functions are 
thus expressed as 

E,, = (<N;> - (N,)*)“*, 

E corn = ;scxi* P) . ( 1 ‘= I 

(3) 

In Eqs. (3) and (4) the number of atoms, Np, assigned to processor p is calculated as 

where 6, n = 1 for m = n and 0 otherwise. The brackets denote an average over 
processors, e.g., (N,) = C;Id N,/P. The function fix, p) = 1 if x is within distance 
rc from the subsystem boundary of processor p, and 0 otherwise. 

We seek a load balancing scheme which retains the data structures of the original 
uniform mesh-partitioning scheme. Such a scheme can be achieved by using adaptive 
curvilinear coordinates. The main idea of our adaptive load-balancing scheme is to 
introduce a curvilinear coordinate system, 5, which is related to the dimensionless 
atomic coordinate, s, by a mapping, t(s). Here s is related to a physical atomic 
coordinate, x, by x = hs, and the matrix, h = (a, b, c), represents the simulation box 
(Fig. 3). We choose to represent t(s) as [17], 

t=s+&Qexp(iQs), 
Q 

(6) 

where Q = 2r(I, m, n) (1, m, and n are integers) are reciprocal lattice vectors. The 
Fourier expansion in Eq. (6) is limited to No plane waves; we consider only those Q 
which satisfy IQ] < Q,, where Q, is a cut-off wavenumber. This map conserves the 
periodicity of the system. Therefore, all the techniques related to periodic boundary 
conditions, including the RCMM and the Ewald summation, are straightforward to use 
with the new load balancer. 

The system is partitioned into a uniform 3-dimensional mesh (more precisely torus 
because of periodic boundary conditions) in the 5 space. Processors are logically 
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Fig. 4. Partition of 2,964-atoms into 2X 2 X 1 processors: (a) curved partition boundaries in the Euclidean 
space; (b) uniform mesh partition in the curvilinear space. Circles are two dimensional projection of atoms, 
and solid curves represent a slice of partition boundaries. 

arranged in a cubic array of dimensions P, X Py X P,. An atom with curved coordinates, 
&, is assigned to a processor whose sequential ID, p( &I, is given by 

P( Si) =P,( Si>pypz +Py(5ilpz +Pz( Si>, 

where 

Pa(5i)=[6iapa]* Cazx, Y, Z>? (8) 

and lx] denotes the greatest integer less than or equal to X. Such a uniform decomposi- 
tion in the space generally results in a curved partition in the physical space, see Fig. 4. 

Different sets of variational parameters {x0) in Eq. (6) lead to different partitions of 
workloads, and therefore to different computational costs. The parameters {CC,) are 
chosen to minimize the cost, Eq. (2). Since subsystem boundaries are defined in the 6 
space through Eq. (81, it is convenient to evaluate the cost function in the 5 space. 
However, the metric is different in this space, and therefore we must use a modified 
cut-off length, ( = rC det(gi,)‘i6, to define boundary atoms. An atom within distance r: 
from any partition boundary in the 5 space is counted as a boundary atom to be copied 
to neighbor processors. Here, 

3 agk agk 
gij = c - 7, 

k=, axi ax’ 

is evaluated at each atom’s position. 
The machine dependent parameters, t,, and t,,, in Eq. (2), characterize the 

computer system to be used. The parameter, t,,, denotes the average processing time 
per atom per MD step, and this represents the performance of a processor. Since the 
time complexity of the MRMD algorithm scales linearly with the number of atoms on a 
sequential computer, this parameter can be measured in a test run on a single processor. 
The measured value (typically 10T4 s per atom per MD step on the IBM SP computer at 
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Argonne National Laboratory) in a sequential run is used in the load-balancing calcula- 
tion in parallel MRMD simulations. The parameter, tcom, may be determined from the 
communication bandwidth of the system. For the SP system at Argonne, we use the 
theoretical bandwidth (35 MBytes/s) of the multistage Omega switch network [15]. In 
the MRMD algorithm, we exchange the coordinates of primary boundary atoms (which 
are located within a distance ra from the processor boundaries) at each MD step. The 
coordinates and their time derivatives (up to the fifth order) of primary and secondary 
boundary atoms (which are located within T-~ from the processor boundaries) are 
exchanged at every n, steps (typically n, - 10). On average, about five double- 
precision numbers are sent per boundary-atom per MD step, and this amounts to t_ - 
lO+j s. 

In addition to communication bandwidth, latency also plays an essential role in 
determining the scalability of the program [32]. Our algorithm retains the topology of the 
uniform mesh partitioning so that the cost associated with the number of message 
passings is constant. Independent of the values of (xe), each processor communicates 
with only six other processors in three-dimensional partitioning [27]. Naive communica- 
tion strategy would require message passing to all the 26 neighbor processors, and an 
irregular partitioning scheme could result in even larger number of messages. Our 
adaptive curvilinear-coordinate load balancer minimizes the number of messages using a 
message-forwarding scheme [27], and it reduces the volume of each message by 
choosing optimal variational parameters { xe)_ There is additional communication cost 
associated with the message passing of boundary cells which are used in the FMM 
approach. In materials simulations where each leaf cell contains over lo* atoms, 
however, the communication cost associated with atoms dominates the cost associated 
with multipoles [27]. 

Given atomic coordinates, {xi), the cost, T({ xe}, (xi)>, is minimized as a function of 
variational parameters, {x,}. We use the simulated annealing (SA) approach for this 
optimization problem [25]. The SA is based on the Monte Carlo (MC) method using 
Metropolis’ algorithm. In each step of this algorithm, a small random displacement is 
given to xp, and the resulting change in the cost is estimated through Eqs. (2)--(4). If 
the change, 6T, in the cost is negative, the displacement in xp is accepted; otherwise it 
is accepted with a probability, exp( - ST/T). The parameter, r is called temperature in 
analogy with statistical mechanics; it controls the uphill search during optimization. 
Larger T allows the cost to increase, and thus enables the search for a better global 
solution. 

We found that the maximum displacement, Sx,, allowed at each MC trial must scale 
with the magnitude of a wave vector, IQ], to achieve faster convergence. Smaller 
wavenumbers represent global movement of partition boundaries, and accordingly larger 
displacements must be applied for them. We have chosen the following scaling function, 

where the scaling factor, cy, is dimensionless. 
The scaling form, Eq. (lo), may be justified by the equipartition principle for the 

underlying physical systems [l]. In an equilibrium system at temperature I-, an oscillator 
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0 
0 500 1000 1500 2000 

MC steps 

Fig. 5. Load-imbalance cost, E,, (dotted curves), and communication cost, Ecom (solid curves), as a function 
of MC steps. Scaled MC displacement (marked by circles) accordin, 0 to Eq. (IO) achieves much faster 
convergence than uniform MC displacement (crosses). 

with frequency w has a root mean square displacement of /W/W where k, is the 
Boltzmann constant and m is the mass of the oscillator. Assuming a sound-wavelike 
relation between the frequency and wavenumber, w = c]Q], the displacement is in- 
versely proportional to IQ]. Eq. (10) reflects the expected large amplitude of small-wave- 
number oscillations, and at the same time it avoids the singularity at Q = 0. 

Fig. 4 shows an example of partitioning 2,964 atoms into 2 X 2 X 1 processors. Fig. 5 
shows the value of the cost function as a function of the number of MC steps during SA 
optimizations. We compare two !caling schemes for 6x,. The first scheme uses Eq. 
(10) with %= 1 and 6x, = 2.0 A. In the second scheme, we useoa uniform scaling, 
Sx, = 0.1 A (taking other values such as 6x, = 1.0 A or 0.05 A results in slower 
convergence). The scaled scheme achieves a much faster convergence than the uniform 
displacement scheme. The total number of, plane waves used for this example is 
Np = 377, and the cut-off length is T-~ = 5.5 A. 

The speed of a load balancer is greatly enhanced by applying it to a smaller system 
which approximates the original system. For example, materials consisting of silicon 
dioxide form a network of SiO, tetrahedral units. By simply representing workloads in 
terms of this larger unit instead of an individual atom, the problem size is reduced by a 
factor of three. Another example is a simulation of solids composed of many nanocrys- 
tals, where the shape of each crystalline is constructed by the so-called Wulff construc- 
tion [43,44]. Even though the original MD simulations involve 10’ clusters each 
containing lo4 - lo5 atoms, we can apply the same Wulff construction algorithm to a 
smaller cluster (_ 10 atoms) to prepare a smaller system with a similar geometry. The 
variational parameters can be precomputed very quickly for this coarsened system. 
Coarse approximation .to a graph has been used extensively for solving the graph 
partitioning problem [2,13,19,36] as well as the graph coloring problem [22]. 

2.3. Parallel implementation 

The adaptive curvilinear-coordinate load balancer has been implemented on parallel 
computers using message-passing programming. We use the MPICH implementation of 
the message passing interface (MPI) standard [ 161. 
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We have implemented both: (i) a stand-alone load balancer; and (ii) a MRMD 
program with a dynamic load-balancing capability. In the former program, each proces- 
sor owns a part of atomic coordinates that are assigned to it. The cost function is first 
calculated locally in each processor using its atomic coordinates. Global summation is 
then performed to calculate the total cost. When a MC displacement is accepted, 
assignment of atoms to processors is changed. Atoms migrate to proper processors by 
message passing according to the new assignment. The six-step message passing 
strategy is used for these migrations [27]. The outputs of this program are: (i) the final 
variational parameters, {x,}; and (ii) one atomic-coordinate file from each processor. 
These files are then used as inputs for parallel MRMD simulations. 

The parallel MRMD program developed previously [27] has been modified to 
incorporate the new dynamic load-balancing scheme. The change in the program is 
minimal since most of the computation is done using the physical coordinates, xi. The 
only subroutines to be modified are: (i) the subroutine for sorting out atoms which must 
be sent to neighbor processors for calculating interatomic interactions; and (ii) the 
subroutine for selecting atoms which have crossed the partition boundary and therefore 
must migrate to proper neighbors. Since the partition boundaries are defined in the 5 
space, these subroutines need to perform the curvilinear transformation of Eq. (6). At 
every n2 steps (we choose n2 = 60) when we update the far-field contribution to the 
long range Coulomb interaction, we also update { xe) to dynamically adjust the partition 
boundaries. The number of MC trials at every n2 steps is N,, (we choose N,, = 5). 

3. Numerical results 

We have performed benchmark tests of the MRMD program augmented with the 
adaptive curvilinear-coordinate load balances. We have used the memory-bounded 
scaling where the number of atoms is linearly proportional to the number of processors 
[42]. We define the speed of a program as a product of the total number of atoms and 
time steps executed per second. The memory-bounded speedup is given by the ratio 

Fig. 6. (a) 3 A slice of a high-density a-quartz nanocrystalline a,, Ooregate (mass density = 1.3 g/cm3). Dots 

and solid curves represent atoms and partition boundaries, respectively. (b) 3 A slice of a low-density cr-quartz 

nanocrystalline aggregate (0.2 g/cm3). 
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between the speed on P processors and that on one processor. The parallel efficiency, 
71, is the memory-bounded speedup divided by P. 

We have performed two sets of benchmark tests on the 128-processor IBM SP 
computer at Argonne National Laboratory. In both cases, the simulated systems were 
aggregates of cy-quartz nanoclusters. In the first set of atomic configurations, each 
processor on average was assigned 52,482 particles. The largest system was 3,358&S 
atoms on 64 processors. The mass density was 1.3 g/cm3 which is about half the 
normal a-quartz density, see Fig. 6a. In these systems, atomic distributions were less 
irregular because nanoclusters were densely packed. In the second set, each processor 
was assigned on average 19,803 atoms and the largest system contained 633,696 atoms 
on 32 nodes. The mass density of this set, 0.2 g/cm3, was much lower than that of the 
first set. This low density made atomic distributions highly irregular, see Fig. 6b. 

In both sets of benchmarks, nanoclusters were positioned randomly. We then applied 
the load-balancing program for a reduced systems with the same nanocrystalline 
geometry but each crystalline having about ten times smaller number of atoms. The 
precomputed parameters { xe) for the smaller systems were used as initial values for the 
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Fig. 7. (a) Parallel efficiency (solid curves) and communication overhead (dashed) of parallel MRMD 

algorithm for 1.3 g/cm’ a-quartz nanocrystalline aggregates on the IBM SP machine at Argonne National 

Laboratory. Circles and squares represent the results with and without the adaptive curvilinear-coordinate load 

balancing, respectively. Because of less irregularity, the effect of load balancing is small. (b) The same as (a) 

for 0.2 g/cm3 a-quartz nanocrystalline aggregates. Because of highly irregular cluster distribution, the load 

balancer significantly improves the parallel efficiency. 
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Fig. 8. Decomposition of the execution time per MD step (in seconds) into core computation tasks of the 
MRMD program with the curvilinear-coordinate load balancer. The system size is 633,696 atoms on 32 nodes 
of the SP machine. MD represents the integration of Newton’s equations. v-force and h-force represent the 
calculation of short-range forces and long-range Coulomb forces, respectively. The copy operations of the 
boundary atoms and boundary cells are denoted by comm. transf is the curvilinear coordinate transformation 
necessary for load balancing. ti is the simulated annealing to minimize the computational cost. 

benchmark of the parallel MRMD program with the larger systems. The number of 
plane waves was Na = 93. 

Fig. 7a shows the parallel efficiency (solid curves> and communication overhead 
(dashed curves) for the higher-density (1.3 g/cm31 systems. The results with and 
without the adaptive curvilinear-coordinate load balancer are represented by circles and 
squares, respectively. In these higher-density systems, uniform partitioning achieves a 
reasonable load balance. With the load balancer, however, the partition boundaries are 
curved to avoid passing through nanoclusters, and thus to reduce the communication 
cost. At this mass density, the effect of load imbalance is small. Fig. 7b shows the 
results for the lower-density (0.2 g/cm31 systems. At this density, simulations without 
the load balancer are subjected to considerable load imbalance. Accordingly, lower 
efficiency is observed compared with that with the load balances. On 32 processors, 
inclusion of load balancing reduces the execution time by a factor of 4.2. Note that 
random generation of nanocrystalline positions causes the fluctuation in the performance 
curves shown in Fig. 7. 

Fig. 8 shows the decomposition of the execution time per MD step (in seconds) into 
core computation tasks of the MRMD program which incorporates the curvilinear-coor- 
dinate load balancer. The system size is 633,696 atoms on 32 nodes of the SP computer. 
MD represents the integration of Newton’s equations. sr-force and h-force represent the 
calculation of short-range forces and long-range Coulomb forces, respectively. The copy 
operations for the boundary atoms and boundary cells are denoted by comm. transf is 
the curvilinear coordinate transformation necessary for load balancing. SA is the 
simulated annealing to minimize the computational cost. The overhead for load balanc- 
ing is the sum of transf and SA, which amounts to 3.7% of the total elapsed time. 

In this performance test, the variational parameters ix,) are precomputed for a 
smaller representation of the system. The computation time for this precomputing (about 
an hour on one processor of Digital Alpha 2100 4/275) is negligible compared with IO3 
processor-hours on the SP system for a typical MD simulation for IO5 steps. The timing 
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of the MRMD program includes simulating annealing procedure (5 MC steps at every 
60 MD steps) for incrementally adjusting { xp). Since any global conformation change in 
MD simulations takes 103-lo4 steps, this annealing schedule sustains reasonable 
dynamic load balancing. 

4. Discussion 

A new dynamic load balancing scheme has been developed for parallel multiresolu- 
tion molecular dynamics simulations, based on adaptive curvilinear coordinates to 
represent partition boundaries for workloads. The curvilinear coordinate system is 
chosen to minimize load imbalance and communication costs using simulated annealing. 
The load balancer has been shown to improve parallel efficiency for highly irregular 
multimillion-atom systems. 

In this paper, the cost function, T, is minimized as a function of the variational 
parameters, {x0}, by simulated annealing. However, the minimization may be done 
more efficiently by dynamical simulated annealing (DSA) [4] or other methods which 
use the derivative of the cost, ST/Gx, (such as the conjugate gradient method). This 
additional information can be utilized for achieving faster convergence compared with 
the SA. To take functional derivative of the cost function, we must extend Eqs. (4) and 
(5) in such a way that functions 8pp.p(X, and fix, p> take continuous values. A similar 
idea of using a continuous field (separator field) to represent partition boundaries has 
been used in a derivation of the spectral bisection method for the graph-partitioning 
problem [50]. We are currently implementing the DSA load-balancer based on a 
continuous valued cost function. 

In this paper, we have used a heuristic scaling, Eq. (lo), for MC displacement. When 
multiple length scales are involved in a complex optimization problem, however, 
selecting an optimal scaling form becomes a nontrivial problem. There has been a great 
advance in using the multigrid method to accelerate the convergence in such complex 
optimization problems [24]. Another effective method to cope with multiple length 
scales is multiresolution analysis using wavelets 163. In particular, an abrupt change in 
atomic distributions (and consequently in partition boundaries) in a localized region is 
compactly represented by using wavelets rather than plane waves. We are exploring the 
possibilities to combine the multigrid method and wavelets with the adaptive curvilin- 
ear-coordinate load balancer. 
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