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Physical realism of molecular dynamics (MD) simulations is greatly enhanced by incorporating variable atomic charges 
which adapt to the local environment dynamically. In the electrostatic plus (ES+) model, atomic charges are determined 
to equalize electronegativity. However, this model involves costly minimization of the electrostatic energy at each MD 
step. A preconditioned conjugate-gradient method is developed for this minimization problem by splitting the Coulomb- 
interaction matrix into short- and long-range components; the computationally less intensive short-range matrix is used as a 
preconditioner. This preconditioning scheme is found to speed up the convergence significantly. Numerical tests involving 
up to 26.5 million atoms are performed on a parallel computer, and the preconditioner is shown to improve the parallel 
efficiency by increasing data locality. The computational cost is further amortized due to the algorithmic similarity to the 
multiple-time-scale MD. @  1997 Elsevier Science B.V. 

1. Introduction 

Recently, large-scale molecular dynamics (MD) simulations have been established as a new research mode 
for understanding how atomistic processes are related to macroscopic materials phenomena such as fracture [ l- 
31. The current focus of research is how to enhance the physical realism of these simulations. For example, 
conventional interatomic potential functions used in MD simulations are often fitted to bulk solid properties, 
and they are not transferable to systems containing defects, cracks, surfaces, and interfaces. In these systems, 
the partial charges on the atoms vary dynamically according to the change in the local environment. This 
environment-dependent charge distribution is crucial for the physical properties of these systems including the 
fracture toughness [ 41. Transferability of interatomic potentials is greatly enhanced by incorporating variable 
atomic charges which dynamically adapt to the local environment. Various approaches have been developed to 
model charge transfers in condensed-phase simulations [ 5-101. Recently a simple semiempirical approach has 
been developed in which atomic charges are determined to equalize electronegativity [ 8-101. In the electrostatic 
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plus (ES+) model [lo], the electrostatic energy due to charge transfer is merged seamlessly with standard 
potential energies representing nonionic (such as metallic and covalent) bonding. 

The increased physical realism in the ES+ model is accompanied by increased computational cost for 
minimizing the electrostatic energy at every MD step. In the extended Lagrangian formalism [9], a fictitious 
Newtonian dynamics is introduced for atomic charges to minimize the electrostatic energy concurrently with 
MD simulations. However, this scheme is not efficient when high-quality solutions are required for the charges. 
This is the case for (i) simulation of fracture in which new surfaces are constantly created, and (ii) calculation 
of dynamical matrices to study vibrational properties in which well-converged solutions are required. 

In this paper, the costly minimization of the electrostatic energy is dealt with the preconditioned conjugate- 
gradient method [ 1 l-131. We develop a preconditioner by splitting the Coulomb-interaction matrix into short- 
and long-range components; the short-range matrix is used as a preconditioner. The new scheme is also 
implemented on a parallel computer, and is found to improve the parallel efficiency significantly. In the next 
section, we describe this multilevel preconditioned conjugate gradient (MPCG) method. In Section 3, a parallel 
implementation of the MPCG method is presented. Section 4 contains numerical experiments, and finally 
Section 5 includes discussions. 

2. Method 

2.1. Variable charge molecular dynamics 

In the electrostatic plus (ES+) approach [ lo], the potential energy of the system is expressed as a sum 
of nonionic, VO, and electrostatic, Ves, terms: V = VO + V,,. The electrostatic energy is a function of atomic 
positions, {Zii,ji = 1,. . . , N}, and atomic charges, {qili = 1,. . . , N} (N is the number of atoms), 

(1) 

In Eq. (l), the first two terms represent intra-atomic electrostatic energies, where xi and Ji denote the elec- 
tronegativity and self-Coulomb repulsion of the ith atom [ 8-101. In the last term of Eq. ( 1)) the contributions 
from atomic pairs (i,j) arise from interatomic Coulomb interaction. Atomic charge distribution is modeled 
by a Slater-type orbital, pi(x’;qi) = (qJ?/r) exp[-2Jiln’- x’,j], where l: I is the decay length for atomic 
orbitals’ . 

In MD simulations, atomic trajectories {X;(t) } are obtained for a time sequence, I, t + At, t + 2At, . . ., by 
numerically integrating Newton’s second law of motion, 

where mi is the mass of the ith atom. At each MD time step, the atomic charges qi are determined to minimize the 
electrostatic energy, V,,( {.?i( t)}, {qi}), subject to the charge-neutrality constraint, Ciql = 0. This constrained 
minimization is equivalent to the electronegativity equalization condition that the chemical potentials aV&/aqi 
be equal for all the atoms. This condition leads to a linear equation system, 

c Mijqj = /L - xi, (3) 

*In [IO], atomic charge distribution in Al/A1203 systems is modeled by an extended form, pi(Zq;) = ZiS(i - 2,) + [(q; - 
z;)Q/P] expl -214x’- ?;I 1. 
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where Mij denotes the Coulomb-interaction matrix, and the Lagrange’s multiplier ,z is determined to satisfy 
the constraint. In practice we solve two linear systems concurrently, 

c Mijqj = --xi, (4) 

c Mij4.i = - 1 , (5) 

and the solution to Eq. (3) is obtained as qi = 4i - ~ucii where the chemical potential is calculated as ,U = 
Ci qi/ Ci Bi. 

2.2. Multilevel preconditioned conjugate gradient method 

We use the conjugate gradient (CG) method [ 1 I-131 to solve the linear systems, Eqs. (4) and (5). This 
iterative method proceeds by generating a sequence of iterates q as successive approximations to the solution, 
residuals r corresponding to the iterates, and search directions (conjugate gradients) p used in updating the 
iterates and residuals. Here we use a vector notation such that q = (41, q2,. . . , q~). In the preconditioned CG 
method, a preconditioning matrix is used to transform the linear system into an equivalent one with improved 
spectral properties [ 1 l-131. A good preconditioner approximates the original matrix M, but for which solving 
the linear system is much easier. 

The multilevel preconditioned conjugate gradient (MPCG) method is based on the decomposition of the 
electrostatic energy into short- and long-range components, V,, = Vs + K. Accordingly, the Coulomb interaction 
matrix is decomposed as M = M, + Ml. The sparse short-range matrix M, is then used as a preconditioner. A 
pseudocode for the MPCG algorithm is given in Appendix A. The algorithm has a doubly-nested loop structure. 
The inner loop computes a preconditioning vector z by solving the linear system, M,z = r, using the CG 
method. Due to the short range of M,y, this system is easier to solve than the original system. The outer loop 
solves the preconditioned linear system which involves the dense matrix, M. 

We have implemented two decomposition schemes based on the Ewald method [ 14-161 and the fast multipole 
method (FMM) [ 16-291. In the Ewald method, the Coulomb potential is decomposed into (i) a sum in the 
real space; (ii) a sum in the reciprocal space; (iii) and a constant term [ 14-161. We define v, to be the sum 
of the real-space and constant terms, 

and V, to be the reciprocal-space term, 

2 

K = C zexp(--y2k2) CqieXp(iZ..Ci) 

!c( #O) i 

In Eqs. (6) and (7), y is the Ewald truncation parameter, R is the volume of the system, 

Yij(x) =-(l ixK)2(2+ K + [ix) eXp(-zlix) - (’ ixK)2(2 - K +[jX) eXp(-2c,x), 

(6) 

(7) 

(8) 

and K = (&? +l;>/(&? - [j). 

In the FMM, the simulation box is recursively divided into smaller cells, generating a tree structure [ 171. 
The root of the tree is at level 0, and it corresponds to the entire simulation box. A parent cell at level I is 
decomposed into 2 x 2 x 2 children cells of equal volume at level 1 f 1. The recursive decomposition stops at 
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the leaf level, I = L, so that there are 2L x 2L x 2L leaf cells. The short-range Coulomb potential energy is the 
contributions from atomic pairs (i, j) within the nearest neighbor leaf cells, 

(9) 

where NN denotes the set of atomic pairs which reside within the nearest-neighbor cells from each other. For 
the cth cell, the nearest-neighbor cells are the cell c itself and the 26 other cells which share a corner with it. 
The long-range potential energy is given by 

K= c 4iq.j 

(i, i)@NN Ix’, - <,I ’ 
(10) 

where we have assumed that lip1 are much shorter than the edges of the leaf cell. Assuming that the number of 
cells is proportional to the number of atoms N, the entire Coulomb interaction is computed in O(N) operations 
by recursively computing the truncated multipoles and the Taylor expansion of the potential on the hierarchy 
of cells [ 171. 

3. Parallel implementation 

To implement the MPCG-algorithm on parallel computers, we use a divide-and-conquer strategy based on 
domain decomposition [ 15,291. The total volume R of the system is divided into p subsystems of equal volume, 
and each subsystem is assigned to a node in an array of p processors 3 . The data associated with the atoms 
in a subsystem are assigned to the corresponding node. Message passing is used to exchange the necessary 
information on distributed-memory computers. 

The parallel implementation uses the FMM-based preconditioner since it is asymptotically faster than the 
0( N3/*) Ewald method [ 161. The most time-consuming part of the FMM-MPCG algorithm is the computation 
of the electrostatic interaction. The computational steps in this algorithm are listed below together with the 
analysis of the computation and interprocessor communication involved in each step. Below, steps 1 to 5 are 
for calculating K (far-field computation), while step 6 is for calculating k’, (near-field computation). The 
computation time per outer MPCG iteration involves only one evaluation of the far-field, while the near-field is 
evaluated Ninner + 1 times (once in the outer interaction and Ninner times in the inner loop, see Appendix A). 
Step 1 Compute multipoles @L,~ for all the cells c at the leaf level L of the tree. This computation is performed 

locally in each processor, and its time complexity is ryrnP = cl N/p, where ct is a constant4. 
Step 2 (upward pass) For tree levels 1 = L - 1, L - 2,. . . , 0, compute @L,~ for all the cells c by summing the 

multipoles of their 8 children cells, 

@ l,c = c T (@l+l.cO 1 (11) 

c’E{childrPn(c)} 

where the multipole-to-multipole (M2M) translation operator Tt shifts the origin of the multipole represen- 
tation, and {children(c)} is the set of 8 children cells of parent c (see Fig. 1). 

For I 2 logs p, each processor computes the multipoles for 8’/p cells. For 1 < logsp, each processor is 
assigned only one cell to compute. Therefore, 

3 We assume that the processors are logically arranged as a three-dimensional cube of size p’/’ x  P’/~ x  p”‘, and that p is a multiple 
of8. 

4 The constants in the estimated costs take account of the computation for both 4 and ij. 
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Upward pass Downward pass 
Fig. 1, Schematic of the far-field computation in a two-dimensional system. In the left column, the multipoles of a parent cell (shown in 
gray) at level 2 are obtained by shifting the multipoles of its 8 children cells at level 3 by the M2M translation operator rt and summing 
them. In the right column, the local Taylor expansion coefficients of a child cell (gray) at level 3 are computed from two contributions. 
First the local expansions of its parent at level 2 are inherited; the L2L translation operator, T3. is used to shift the origin of the local 
expansion. The M2L translation operator, T2. is then used to compute the contributions due to the interactive cells (shaded) at the same 
level. 

(12) 

where c:! = CMM is the computation time associated with each M2M shift operation. The approximation in 
Eq. ( 12) holds for the number of leaf cells NC = gL >> p > 1, assuming uniform atomic density. The 
leaf-cell length in unit of (O/N) ‘/3 is denoted by 5. 

For 1 2 logsp, the M2M operations are performed locally in each processor. For 1 < logsp, the multipoles 
of only one child cell are locally available out of 8. The rest must be copied from other processors with the 
communication cost rymm = 7d, logs p (d,, is the time required for copying the multipoles of one cell). 

Step 3 If periodic boundary conditions are used, summation over infinitely repeated image boxes is carried out 
after step 2 [ 21,291. The multipoles @a,0 of the total simulation box is used to compute the local Taylor 
expansion Pc,c of the potential due to the cc - 27 well-separated images. This step involves a constant cost 
rymP = c3 (the computation is duplicated in all the processors). 

Step 4 (downward pass) For 1 = 1,2,. . . , L, compute the local Taylor expansion Pl,, for all the cells c (see 
Fig. I), 

q1.c = T3 (‘f’[-, ,pnrent(c) > + c Tz(@l,c~) . (13) 
c’E{inreroctioe(c)} 

The first term in Eq. ( 13) contains the contributions from the parent’s well-separated cells. This is inherited 
from the parent, parent(c), of the cth cell by shifting the origin of the Taylor expansion using the local- 
to-local (L2L) translation operator T3. The second term is due to the atoms in the interactive cells, which 
are the children of the parent’s nearest-neighbors but are well-separated from the cth cell. The set of all the 
interactive cells of the cth cell is denoted by {interactioe(c)}. The multipole-to-local (M2L) translation 
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operator T2 converts the multipoles of an interactive cell to local Taylor expansion coefficients centered at 
the cth cell. 

Since each cell has 63 - 33 = 189 interactive cells, the computation time per cell is cd = CLL + 189cr,,~, 
where CLL and cML denote the computation costs associated with the L2L and M2L operators, respectively. 
For 1 5 logsp, each processor computes the local expansions for one cell. For 1 > logsp, each processor is 
assigned the 8//p local cells, 

q”p = c4 
( & $+iE1) wc4(+g+log*P), 

I=log,,1+1 /=I 

(14) 

For 1 5 logsp, the multipoles of up to 189 interactive cells must be copied from other processors. For 
1 > log, p, each subsystem must be augmented by copying two boundary layers of cells from other processors. 
The associated communication cost is 

r?“m=d.;.[l$+,{ (-$+“)3-;}+‘~189] -&(;(~)2’3+18910gsp). (15) 

Step 5 The far-field contribution is evaluated at each atom’s position using the local Taylor expansion V,,,(i) at 
the leaf level, where c(i) denotes the leaf cell to which the ith atom belongs. This computation is performed 
locally with the cost rFmP = c~N/p. 

Step 6  (near field) Contributions to the electrostatic potential from all the atomic pairs within the 27 nearest- 
neighbor cells are evaluated directly without using multipoles. Using the Newton’s third law, rrmp = 
[27(Ninner + I)~&“/21 (N/p). Note that the near-field is evaluated Ni”,,, + 1 times per outer MPCG it- 
eration. 
At step 6, each subsystem is augmented with the atoms in one boundary layer of cells with the cost 

cOmm _ doN(Ninner + 1) 
r6 - Nc {(~+2)3-~}-6(Ninn~~+l)d,5(~)2'3~ (16) 

where d,, is the communication cost per copied atom. 
The total execution time is the sum of the above contributions, r( N,p) = rcamr( N,p) + rcomm( N,p), where 

rcomr( N, p) = rFmp + rymp + . . + ryrnp and rcomm( N, p) = rymrn + ~7”‘~. Using the memory-bounded 
scaling [ 301, the parallel efficiency of the program is defined as E = rcomr( N/p, 1) /r( N, p) . According to the 
above analysis, the parallel efficiency of the MPCG program is estimated to be 

E-l =, +  (8~2+~4+196d,,)plog~p/N+{16d,,/~~+6(Ni,, , ,+ l)&S}(p/N)“” 
CI + CS i- 8(~2 •I C4)/7g •t 27C6(Ninner f 1  )c3/2 

(17) 

In deriving Eq. (17), we have omitted the term proportional to ~3, which was found small for the systems we 
have tested. For a large number of processors p, the term proportional to p logs p/N in Eq. ( 17) degrades the 
parallel efficiency significantly. W ith the preconditioning using a large Ninner, this logarithmic p dependence is 
hidden by the term proportional to (p/N) ‘i3. In fact, E-’ = 1 + ( 12d,/27c&*) (p/N)‘i3 for Ninner -+ co, and 
this efficiency can be improved by increasing the granularity N/p. 

4. Numerical experiment 

We first compare the performance of the MPCG scheme with that of the conventional CG method. The 
physical system is a 4 800 atom c~-Al2O3 crystal with periodic boundary conditions. The program is run on a 
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Fig. 2. The residual (in atomic unit) in the conjugate gradient calculation as a function of the execution time. The results for the MPCG 
method and the conventional CC method without preconditioning are shown with the solid and dashed curves, respectively. 

single processor of Digital Alpha 2100/275 with a clock cycle of 275 MHz. We choose y = 0.9 A, and the 
real-space sum in Eq. (6) is truncated at Xij = 6 A. The number of plane waves k’ in Eq. (7) is 7 152. 

Fig. 2 shows the residual of the linear system associated with 4 as a function of the execution time. (The 
residual for the 4 vector behaves similarly.) The solid and dashed curves represent the results of the MPCG 
and CG methods, respectively. The Ewald scheme is used to split the Coulomb interaction matrix. We choose 
the number of inner iterations Ninner = 8 per outer iteration. For this system, the preconditioner reduces the 
execution time to achieve the same convergence level ( lo-l2 a.u.) about 20%. 

Next we test the parallel performance of the MPCG program on the IBM SP2 computer at the Maui High 
Performance Computing Center. The program is written in a message passing programming style using the 
Message Passing Interface (MPI) standard [ 3 1,321. The FMM is used to partition the Coulomb matrix. The 
size of the leaf cell is 6 A, and the number of nonzero rows of the preconditioning matrix is N 50. The 
multipole expansion is truncated at the quadrupole level, and we use Ni”,,r = 8. We measure a scaled speedup 
such that the number of atoms is proportional to the number of processors, N = 414 720~. The largest system 
contains 26542080 atoms on 64 processors. 

Fig. 3 shows the total execution time (solid line) and the time spent for communication (dashed line) as a 
function of the number of atoms. Both times increase only slightly when the number of processors increases 
from 1 to 64, exhibiting a good scalability. 

Fig. 4 shows the parallel efficiency (solid lines) and communication overhead (dashed lines) as a function 
of the number of atoms. The results with and without preconditioning are denoted by circles and squares, 
respectively. For the largest (26.5 million-atom) system, the preconditioning improves the parallel efficiency 
from 0.92 to 0.95. The communication overhead of the MPCG scheme is 5% of the total execution time for 
the largest system. The multilevel preconditioning scheme enhances the locality of computation by extensively 
using the short-range interaction matrix M,, and consequently the program runs efficiently on parallel platforms. 

5. Discussion 

We have also embedded the MPCG algorithm in our parallel MD programs. In fact, the new preconditioning 
scheme was motivated by the multiple time scale (MTS) method [33-361 used in these MD programs. In the 
MTS approach, the Liouville operator for an N-atom system is decomposed into two parts: iL = iL, + iL[, 
where 
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Fig. 3. Execution time of the parallel MPCG program (solid line) increases only slightly as the number of atoms increases. Each processor 
contains 414720 atoms, and the largest system is 26542080 atoms on 64 processors. The communication overhead (dashed line) of the 
same program is also shown. 

Fig. 4. Memory-bounded parallel efficiency E of the MPCG program (solid lines) as a function of the number of atoms. Open circles and 
open squares are the results for the MPCG and CG methods, respectively. Communication overheads of the same program are shown by 
the dashed lines. 

a(%+V,) d .- 
aZj afi 

=iK+iP, 

Navr d i.&- -._. c 
j=l ad?j C3pj 

(18) 

(19) 

The Trotter factorization gives the temporal propagator for the positions and momenta of the system, r = 
{xj9P,j} [341, 

r( At) = exp( iLlAt/2) exp( iL,Aht) exp( iLlAt/2)T(O) , (20) 

where the short-range propagator characterized by shorter time scales is further factored into 

exp( iL,At) = [ exp( iPAt/2Ninnermd) exp( iKAt/Ninnermd) exp( iPAt/21\rinnermd) ] N’nrrrmd . (21) 

The MTS algorithm based on this decomposition is shown in Appendix B, where the diagonal mass matrix is 
Pij = mi6ij. The MTS algorithm has a doubly-nested loop structure which is similar to the one in the MPCG 
algorithm. Due to this structural similarity, the interatomic forces for the MD and the electrostatic potential for 
the electronegativity equalization can be computed in a single loop over atomic pairs. This greatly amortizes 
the cost of the MPCG scheme in MD simulations. 

In summary, we have developed a multilevel preconditioned conjugate-gradient method to speed up the 
electrostatic-energy minimization in variable-charge MD simulations. The scheme splits the Coulomb-interaction 
matrix into short- and long-range components, and uses the computationally less intensive short-range matrix 
as a preconditioner. The new scheme speeds up the solution because of three reasons: 
- increased convergence rate of the preconditioned linear system; 
- increased parallel efficiency by the enhanced data locality; 
- amortized computational cost due to the algorithmic similarity to the multiple-time-scale MD. 
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Appendix A. Multilevel preconditioned conjugate gradient algorithm 

A.1. Outer loop 

Compute the residual Y’ +- -x - M. 9’ for an initial guess 4’ for charges 
for i +- 1 to N,,,,, 

Solve M,s. zi-l = ri-’ //Inner loop to obtain the preconditioning vector zi-’ 
if i=l 

p’ + z” 
else 

p1 +- z 
i-l + ;:-‘:::~‘pi-l 

endif 
9’ + 4 

i-1 j--‘.~lm’ 
+ p.M.p P[ 

ri + ri--l r’+‘,z’-’ M . pi 
p’.M.p’ 

if not convergent, continue 
endf or 

A.2. Inner loop 

Compute the residual go t r - M, ’ z” for an initial guess z” 
for j = 1 to Ni,,,, 

if j=l 
h’ -go 

else 
h’ +.m gj-’ + d$$..hj-1 

K 
endif 
zj +- zj-l + tfL!&Chj 

r 
gJ + gj-l - *MS hi 

s 
if not convergent, continue 

endf or 
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Appendix B. Multiple-time-scale molecular dynamics algorithm 

B.I. Outer loop 

g1+-- -VK 
for m = 1 to Nr,urer31d 

u + u + +-*gr 
r c exp( -L,At)T 
g1 + -m 
V+V+ALZ-’ 2” g1 

endf or 

//Initial long-range force 

//Velocity update due to the long-range force 
I I Inner loop 
//Long-range force calculation 
//Velocity update due to the long-range force 

8.2. Inner loop 

endf or 

//Initial short-range force 

//Velocity update due to the short-range force 
//Short-range force calculation 
//Position update due to the short-range force 
//Velocity update due to the short-range force 
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