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Abstract

An algorithm has been designed to search for the escape paths with the lowest activation barriers when starting from a local minimum-energy
configuration of a many-atom system. The pathfinder algorithm combines: (1) a steered eigenvector-following method that guides a constrained
escape from the convex region and subsequently climbs to a transition state tangentially to the eigenvector corresponding to the lowest negative
Hessian eigenvalue; (2) discrete abstraction of the atomic configuration to systematically enumerate concerted events as linear combinations of
atomistic events; (3) evolutionary control of the population dynamics of low activation-barrier events; and (4) hybrid task+ spatial decompositions
to implement massive search for complex events on parallel computers. The program exhibits good scalability on parallel computers and has been
used to study concerted bond-breaking events in the fracture of alumina.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Many important material processes occur through a se-
quence of infrequent events [1,2]. An example is slow crack
growth, such as stress corrosion cracking, in which a sequence
of bond-breaking events over years leads to a catastrophic fail-
ure of a structure [3]. Enumeration of events with low activa-
tion barriers and accurate estimation of their barrier energies
are essential for understanding microscopic mechanisms of the
long-time dynamics as well as for predicting the lifetime of the
structure.

Various computational methods have been proposed for car-
rying out an exhaustive search of activated events in many-atom
systems [4,5], including the activation–relaxation technique [6],
the dimer method [7], and a variety of eigenvector-following
methods [8–11] especially those using the Lanczos algorithm
to obtain the lowest eigenvalue of the Hessian matrix and the
corresponding eigenvector [12]. In materials with complex mi-
crostructures, however, the search for activated events remains
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a hard computational problem [13,14], since the events with
the lowest activation barriers often involve unexpected combi-
nations of elementary atomistic events [15]. It is thus of great
importance to design an efficient algorithm with tractable com-
putational complexity to systematically search for such con-
certed events.

Discrete abstraction [16,17] of atomic configurations en-
ables the use of combinatorial techniques to systematically
enumerate concerted events. For example, an atomic config-
uration can be abstracted as a graph G = (Sv, Se), in which
atoms constitute the set of vertices Sv, and the edge set Se con-
sists of chemical bonds [18]. Graph-based topological analysis
(e.g., shortest-path circuit analysis) of million-to-billion node
chemical bond networks has been used successfully to discover
complex atomistic events underlying impact-damage [19] and
hardening [20] mechanisms of materials.

Another computational technique that can significantly ac-
celerate the combinatorial search for concerted events is evolu-
tionary computation [21,22]. In evolutionary algorithms, a pop-
ulation of candidate solutions in the search space is maintained,
and its dynamics is controlled with various techniques (e.g.,

http://www.elsevier.com/locate/cpc
mailto:anakano@usc.edu
http://dx.doi.org/10.1016/j.cpc.2006.11.003


A. Nakano / Computer Physics Communications 176 (2007) 292–299 293
recombination and mutation) to obtain approximate solutions
while avoiding the combinatorial complexity of the search.

Advanced parallel and distributed computing technolo-
gies are also expected to facilitate massive searches for con-
certed events. Event-search algorithms are often implemented
as loosely-coupled parallel applications, in which multiple
search tasks are executed concurrently on distributed comput-
ers [23–25]. When each search task becomes computationally
demanding, a hybrid task + spatial decomposition approach
[26,27] can be implemented using the communicator construct
in the message passing interface (MPI) language [28], which is
a natural migration path to hybrid Grid remote procedure call
(GridRPC) + MPI programming on a Grid of geographically
distributed parallel computers [29].

This paper presents the design of a search algorithm for
activated events with low barrier energies, starting from a lo-
cal minimum-energy configuration of a many-atom system.
The pathfinder algorithm combines: (1) a steered eigenvector-
following (SEF) method that guides a constrained escape from
the convex region of the minimum and subsequently climbs to
a transition state tangentially to the eigenvector corresponding
to the lowest negative Hessian eigenvalue; (2) discrete abstrac-
tion of the atomic configuration to systematically enumerate
concerted events as linear combinations of atomistic events
(LCAE); (3) elitist control of the population dynamics of low
activation-barrier events; and (4) hybrid task + spatial decom-
positions (HTSD) to implement massive searches on parallel
computers. The program exhibits good scalability on parallel
computers and has been used to study concerted bond-breaking
events in the fracture of aluminum oxide.

This paper is organized as follows. The next section de-
scribes the pathfinder algorithm for systematic event search,
and its parallelization is discussed in Section 3. Numerical re-
sults are presented in Section 4, and Section 5 contains sum-
mary.

2. Pathfinder algorithm

Consider a system of N atoms with its state specified by a
3N -dimensional vector R = [r1x, r1y, r1z, . . . , rNx, rNy, rNz]T ∈
R

3N , where ri = [rix, riy, riz]T ∈ R
3 is the position of the ith

atom (R is a set of real numbers, and the superscript T denotes
a transpose). The forces F on the atoms are computed from the
potential energy function V (R) as

(1)F =
⎡
⎣ f1

...

fN

⎤
⎦ =

⎡
⎣ −∂V/∂r1

...

−∂V/∂rN

⎤
⎦ = −∂V

∂R
.

Let Rinit be an initial state, which is a local energy-minimum
such that F(Rinit) = 0 and such that all the eigenvalues of the
Hessian matrix,

(2)H = ∂2V/∂R2 ∈ R
3N×3N,

are positive at Rinit. (For systems with periodic boundary
conditions, we filter out the zero-eigenvalue translational mo-
tions [30].)
The problem is to find a set of activated events with the low-
est barrier energies, starting from Rinit. Within the framework of
the transition state theory [2,31], we define an event as a triplet
of states, e = (Rinit,Rtst,Rfin), that are interconnected by a con-
tinuous escape path R(τ ) (R → R

3N ; τ is a real-valued parame-
ter such that Rinit = R(τinit),Rtst = R(τtst), and Rfin = R(τfin)

with τinit < τtst < τfin). The ascent path R(τinit � τ � τtst) con-
nects Rinit to a transition state, taken here to be a saddle point
Rtst, at which F(Rtst) = 0, and at which only the lowest eigen-
value λ1 of the Hessian matrix is negative. The final state Rfin is
another local energy-minimum that is reached along a steepest-
descent path R(τtst � τ � τfin), staring from R = Rtst pushed
slightly away from Rinit. The barrier energy of event e is de-
fined as b(e) = V (Rtst) − V (Rinit).

The pathfinder algorithm generates a set of events with low
barrier energies in such a way that concerted events are sys-
tematically constructed from elementary events. Each event,
in turn, is generated from an event seed based on a steered
eigenvector-following algorithm. Section 2.1 first defines the
event seed and then describes the generation of a single event by
the steered eigenvector-following algorithm. Systematic con-
struction of concerted events through the control of event-
population dynamics in the pathfinder algorithm is described
in Section 2.2.

2.1. Steered eigenvector-following (SEF) event generator

In order to initiate an ascent path R(τinit � τ � τtst) from the
initial state, R(τinit) = Rinit, to a transition state, R(τtst) = Rtst,
we first define an event seed σ as a parameterized sequence
of (3N − 1)-dimensional surfaces S(τ), in which the atoms’
moves are constrained. A specific example for the slow crack-
growth problem is a bond-length constraint imposed on a given
atomic pair (i, j),

(3)σ = {
S(τ)

} = {‖rij‖ = rij (τ ) = r0
ij + ṙij (τ − τinit)

}
,

where rij = ri − rj , r0
ij is their bond length in the initial state,

and ṙij is the bond-stretching rate along the path.
The steered eigenvector-following event generator algo-

rithm consists of three algorithmic phases (see Table 1):
(1) steered centrifugal escape from the convex region (in which
the Hessian matrix is positive definite) of the initial energy-
minimum; (2) eigenvector-following climb to a transition state;
and (3) steepest descent to reach a final energy-minimum [32].

The steered centrifugal escape phase starts from the initial
state Rinit, and performs a sequence of steepest-descent steps,

(4)R ← R + δτ 2

2〈m〉F,

where δτ (∼1 fs) is a time-discretization unit, and 〈m〉 is the
average mass of the atoms. (Various energy-minimization meth-
ods can be used in this step, such as variable-step steepest-
descent [12], conjugate-gradient [11] and quasi-Newton [4]
methods.) Each steepest-descent step is followed by the pro-
jection of state R onto the constrained surface,

(5)R ← P
(
S(τ)

)
R,
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Table 1
Steered eigenvector-following event generation algorithm

Algorithm event_generator
Input:

Rinit ∈ R
3N : an initial local minimum-energy state

σ = {S(τ)}: an event seed, i.e. a parameterized sequence of (3N − 1)-dimensional constraint surfaces
Output:

e = (Rinit,Rtst,Rfin): an event, i.e. a triplet of initial, transition, and final states

Steps:
1. Steered centrifugal escape

τ ← 0
R ← Rinit

do
τ ← τ + δτ

R ← R + (δτ2/2〈m〉)F // steepest-descent step
R ← P(S(τ))R // projection onto the constraint surface

while λ1 � −�λ1

2. Eigenvector-following climb
do

R ← R − δτ2

2〈m〉 (V1V1T
)F + δτ2

2〈m〉 (I − V1V1T
)F // eigenvector-following step

while maxiα{|fiα | | i = 1, . . . ,N;α = x, y, z} > �f

Rtst ← R

3. Steepest descent
R ← Rtst + δos(Rtst − Rinit) // push the state over the transition state away from the initial state
do

R ← R + (δτ2/2〈m〉)F // steepest-descent step

while maxiα{|fiα | | i = 1, . . . ,N;α = x, y, z} > �f

Rfin ← R
corresponding to the current time τ , where P(S(τ)) is the pro-
jection operator [33]. For the bond-length constraint in Eq. (3),
the projection operator is expressed as [34]

P
(
S(τ)

)
rk

(6)= rk + δki − δkj

2

(
rij (τ )

‖rij‖ − 1

)
rij (k = 1, . . . ,N),

where δki = 1 (if k = i) and 0 (else).
After each constrained steepest-descent step, the minimum

eigenvalue λ1 of the Hessian matrix is computed iteratively
using the Lanczos algorithm [4,12] in Appendix A. We use a
finite-difference method to evaluate the product of the Hessian
matrix H and a vector Q ∈ R

3N ,

(7)H(R)Q = cfd
[−F(R + Q/cfd) + F(R)

]
,

so that only the forces but not the Hessian matrix need to be
computed. We use various divide-and-conquer algorithms to
compute the forces in Eq. (7) in O(N) time. For example, a
space–time multiresolution molecular dynamics (MRMD) al-
gorithm [35] and a fast reactive force-field (F-ReaxFF) algo-
rithm [36] are used in cases of classical interatomic poten-
tials and semi-classical reactive force fields, respectively. To
compute the forces quantum-mechanically from the Hellmann–
Feynman theorem, we use an embedded divide-and-conquer
density-functional-theory (EDC-DFT) algorithm [37]. Conse-
quently, the computational complexity of the pathfinder algo-
rithm is O(N). In Eq. (7), cfd = maxiα{|qiα| | i = 1, . . . ,N;α =
x, y, z}/δfd and δfd (∼10−2 Å) is a discretization unit for fi-
nite differencing. It typically requires 4–8 force evaluations for
λ1 to converge within a convergence criterion �eigen (∼10−3).
The steered centrifugal escape steps are terminated when λ1
becomes negative. For systems with a large number of small
Hessian eigenvalues (due to floppy oscillations of dangling
bonds) such as amorphous solids, we alternatively introduce a

control parameter, −�λ1 (∼−10 eV/Å
2
), to terminate the es-

cape steps when λ1 < −�λ1.
Once the minimum Hessian eigenvalue becomes suffi-

ciently negative, the eigenvector-following climb phase per-
forms steepest ascent parallel to the Hessian eigenvector,

(8)V1 =
⎡
⎢⎣

v1
1
...

v1
N

⎤
⎥⎦ ∈ R

3N,

corresponding to λ1 and steepest descent perpendicular to it
[4,11,12]:

(9)R ← R − δτ 2

2〈m〉 (V
1V1T

)F + δτ 2

2〈m〉 (I − V1V1T
)F,

where I is the 3N by 3N identity matrix, and V(1) is normalized
as

(10)‖V1‖ =
(

N∑
i=1

∥∥v1
i

∥∥2

)1/2

= 1.

At a transition state, the forces are zero, whereas the energy
takes a minimum value for all directions except for V1, along
which the energy is instead maximum. Thus the eigenvector-
following climb, through steepest ascent parallel to V1 and



A. Nakano / Computer Physics Communications 176 (2007) 292–299 295
Table 2
Pathfinder algorithm to search for concerted events with low activation barriers

Algorithm pathfinder
Input:

Rinit ∈ R
3N : an initial local minimum-energy state

{σ(k) | k = 1, . . . ,Nseed}: a set of Nseed elementary event seeds
Output:

{e(k) | k = 1, . . . ,Nelite}: a set of Nelite events with the lowest activation barriers

Steps:
1. Elementary (singly-excited) event generation

for k = 1 to Nseed
call event_generator: e(k) ← G(σ(k))

Nevent ← Nseed

2. Multiply-excited event generation
for excitation = 2 to Max_excitation

Ncombination ← 0
for ∀(σ (k), σ (l))(k, l ∈ [1,Nevent];k < l)

σ ← σ(k) ∪ σ(l) // composite event seed as a union
if m(σ) = excitation

Ncombination ← Ncombination + 1
σ(Nevent + Ncombination) ← σ

bestimate(σ (Nevent + Ncombination)) ← b(e(k)) + b(e(l)) // estimated barrier energy
sort σ(Nevent + 1 : Nevent + Ncombination) in ascending order of bestimate
for k = Nevent +1 to Nevent +min(Ncombination,Nadd_event) // generate only Nadd_event new events

call event_generator: e(k) ← G(σ(k))

b(e(k)) ← V (Rtst) − V (Rinit) // actual barrier energy
Nevent ← Nevent + min(Ncombination,Nadd_event)

sort e(1 : Nevent) in ascending order of b

Nevent ← min(Nevent,Nelite) // retain only Nelite new events
steepest descent perpendicular to it, converges to a transition
state. The eigenvector-following climb steps are terminated,
when the maximum force component of every atom falls below
a prescribed threshold value: maxiα{|fiα| | i = 1, . . . ,N;α =
x, y, z} < �f (∼ 0.1 eV/Å).

Once the eigenvector-following climb converges to a transi-
tion state Rtst, the state is pushed slightly away from Rinit [6],

(11)R ← Rtst + δos(Rtst − Rinit),

where the dimensionless overshoot parameter δos (∼0.1) is an
input parameter to the algorithm. The algorithm then performs
steepest-descent steps, Eq. (4), until the maximum force com-
ponent becomes less than �f , signifying the convergence to a
final local energy-minimum Rfin.

2.2. Concerted event generation by discrete linear
combination of atomistic events (LCAE)

The event generator in Section 2.1 defines a mapping, e ←
G(σ), from seed σ to event e. To systematically search for
events with low barrier energies, we introduce a discrete in-
dexing scheme, which allows the use of combinatorial search
techniques. For a specific example of the bond-length constraint
in Eq. (3), we first define a composite seed σ as a set of dis-
tinct atomic pairs, l(σ ) = {p1, . . . , pm(σ)}, along with the bond-
length constraints, Eq. (3), on the pairs. Here, the excitation
level m(σ) of seed σ is defined as the number of atomic pairs,
pi (i = 1, . . . ,m(σ )), which constitute the seed. An event seed
σ is thus indexed uniquely by a set l of distinct atomic pairs. For
example, {(15,783), (47,875), (175,811)} is a seed of excita-
tion level 3 consisting of atomic pairs (15,783), (47,875) and
(175,811), where the atoms are indexed by positive integers.
Similarly, an event e = G(σ) is indexed according to its seed
σ , from which it is generated. A population of events is stored
as an array of the event data type that consists of the atomic-pair
list of its seed, the triplet of its initial-, transition-, and final-state
energies, and other attributes such as the estimated and actual
barrier energies. In addition, the atomic configurations of the
transition and final states are stored in files.

The pathfinder algorithm in Table 2 generates progressively
more complex composite events, starting from a set of ele-
mentary event seeds, {σ(k) | k = 1, . . . ,Nseed}, which is an
input to the algorithm. An example of elementary event seeds
for the slow crack-growth problem is a set of bond-stretching
event seeds for all pairs of atoms that are within a cut-off
radius from a crack tip. The algorithm first generates Nseed

elementary events from the elementary seeds by calling al-
gorithm event_generator in Table 1: e(k) ← G(σ(k)) (k = 1,

. . . ,Nseed).
In order to construct concerted events from these elemen-

tary events, we construct composite event seeds as unions of
simpler seeds. Here, a union, σ = σ(k) ∪ σ(l), of a seed-
pair (σ (k), σ (l)) is defined as the union of their corresponding
atomic-pair sets, l(σ (k)) ∪ l(σ (l)), along with the bond-length
constraints, Eq. (3), on all constituent atomic pairs. The corre-
sponding composite event is generated as

(12)e = G(σ) = G
(
σ(k) ∪ σ(l)

)
.
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The pathfinder algorithm maintains a population of events,
S = {e(1), . . . , e(Nevent)}, where Nevent = |S| is the number of
events in the population. At the beginning of the algorithm,
Nevent = Nseed and all events are singly excited, i.e. m(σ(k)) =
1 (k = 1, . . . ,Nevent). The algorithm then loops over excitation
levels from 2 to Max_excitation, where the control parameter
Max_excitation specifies the maximum excitation level consid-
ered by the algorithm. At each excitation level, all pairs of the
events (or their seeds) in S are considered as candidates for
creating new composite events by the union operation. A com-
posite event (or its seed σ ) is counted as a new event, only if its
number of pairs m(σ) is equal to the excitation level under con-
sideration and its atomic-pair set l(σ ) is distinct from those of
all the events in S.

In order to prune the combinatorial search space, we first
define the estimated barrier energy of a composite event seed,
σ = σ(k)∪σ(l), as bestimate(σ ) = b(e(k))+ b(e(l)). After enu-
merating all new composite events (let the number of which
be Ncombination), we sort them in ascending order of bestimate.
To avoid combinatorial explosion of the number of events to
be considered, we retain only the Nadd_event lowest (estimated)
barrier-energy events out of Ncombination, where Nadd_event is
one of the control parameters of the algorithm. The pathfinder
algorithm calls Algorithm event_generator in Table 1 to gen-
erate events for the Nadd_event new seeds and to estimate their
actual barrier energies. We then increment the number of event
Nevent by Nadd_event and sort all the events in ascending order of
the actual barrier energy b. We retain only the Nelite lowest (ac-
tual) barrier-energy events for the next excitation level, where
Nelite is another control parameter.

3. Parallelization by hybrid task + spatial decompositions
(HTSD)

The pathfinder algorithm has been implemented on paral-
lel computers by first assigning different events to separate
processors (task decomposition) and then using spatial decom-
position within each task for further parallelization. The par-
allel program is written in Fortran 90 and message passing
interface (MPI) [28] languages, in which all processors con-
stitute an overall MPI communicator, MPI_COMM_WORLD,
and processors are grouped into different event groups by defin-
ing multiple MPI communicators as subsets of MPI_COMM_
WORLD. (The MPI communicator construct combines a pro-
cessor group and a context, in such a way that messages
with different contexts are not intermixed.) In our program,
each event calculation is assigned a dedicated communicator.
One advantage of the hybrid task + spatial decomposition ap-
proach [26,27] implemented with MPI communicators is that
the program can be easily converted to a hybrid Grid remote
procedure call (GridRPC) + MPI program to be run on a
Grid of distributed parallel computers, in which the number of
processors change dynamically on demand and resources are
allocated and tasks are migrated adaptively in response to un-
expected faults [29].

The total number of processors is given by P = Mc × Pc,
where Mc is the number of communicators and Pc is the num-
ber of processors in each communicator. The number of events
to be generated at each algorithmic step is typically larger than
the number of communicators Mc, and thus communicator c ∈
[0,Mc −1] is assigned a set of events {k | (k −1) mod Mc = c}.
In spatial decomposition within each task [35], the total volume
of the system is divided into Pc subsystems of equal volume,
and each subsystem is assigned to a processor in an array of
Pc processors. To calculate the force on an atom in a subsys-
tem, the coordinates of the atoms in the boundaries of neigh-
bor subsystems are “cached” from the corresponding proces-
sors. After updating the atomic positions due to a steepest-
descent/ascent procedure, some atoms may have moved out of
its subsystem. These atoms are “migrated” to the proper neigh-
bor processors. With the spatial decomposition, the computa-
tion scales as N/Pc, while communication scales in proportion
to (N/Pc)

2/3. Tree-based algorithms such as the fast multipole
method (FMM) [38] incur an O(logPc) overhead, which is neg-
ligible for coarse-grained (N/Pc � Pc) applications [39].

4. Numerical results

Scalability of the parallel pathfinder algorithm has been
tested on a cluster of dual-core, dual-processor AMD Opteron
(at clock speed 2 GHz) nodes with Myrinet interconnect, with
4 GB of memory per 4-core node. We define the speed of a
program as a product of the total number of atoms and search
steps executed per second. The speedup is the ratio between the
speed of P processors and that of one processor. The parallel
efficiency is the speedup divided by P .

First, we have performed a strong-scaling (or fixed problem-
size) test to measure the efficiency of task decomposition par-
allelism. Here, the system is a cracked Al2O3 crystal consist-
ing of 1920 atoms, and multiple communicators (Mc = 32,

. . . ,512) of size Pc = 1 explore a large search space. We choose
Max_excitation = 2 and Nadd_event = Nelite = 512. The test
uses all four cores per node. Fig. 1 shows the speedup of the par-
allel pathfinder program over that on 32 processors (we normal-
ize the speedup on 32 processors as 32). The measured speedup

Fig. 1. Strong-scaling (fixed problem-size) speedup of the parallel pathfinder
algorithm over 32 processors (normalized so that the speedup is 32 for P = 32)
as a function of the number of processors P for a 1920-atom cracked Al2O3
system on dual-core, dual-processor AMD Opteron nodes. The circles are mea-
sured speedups, whereas the solid line denotes the perfect speedup.
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on 512 processors is 463.0, and thus the parallel efficiency is
0.904. Although multiple events are generated independently
on multiple processors, the parallel algorithm involves sequen-
tial bottlenecks such as the sorting of events, and accordingly
the parallel efficiency degrades for a larger number of proces-
sors.

Next, we have performed a weak-scaling (or isogranular)
test to measure the efficiency of spatial decomposition paral-
lelism. In addition to exploring a large number of events for
a relatively small number of atoms, the pathfinder program
often uses a single communicator to evaluate the barrier en-
ergies of a few well-defined events for a larger system. This is
the case in multimillion-atom simulations of fracture [40], im-
pact [19], and indentation [20] of materials on a large number
of processors Pc. In the weak-scaling test, the number of atoms
is scaled linearly with the number of processors. Specifically,
we choose N = 14 400Pc, whereas the number of communi-
cators is fixed as Mc = 1. Here, we choose Max_excitation = 1
and Nadd_event = Nelite = 1. Fig. 2 shows the total execution and
communication times of the parallel pathfinder program on the

Fig. 2. Weak-scaling (isogranular) test of the parallel pathfinder algorithm on
dual-core, dual-processor AMD Opteron nodes. The total execution (circles)
and communication (squares) times are plotted as a function of the number of
processors P for 14 400P -atom Al2O3 systems.
Opteron cluster for the number of processors P = 1, . . . ,512.
(The largest number of atoms is 7 372 800 for P = 512.) All
four cores per dual-processor, dual-core node are used for the
test, except for P = 1, where only one core is used. The ex-
ecution time increases slightly for large P , and the parallel
efficiency is 0.764 on 512 processors.

The isogranular parallel efficiency is typically used for
very large simulations that are performed for a small num-
ber of steps. The large granularity, N/P , in such applications
makes the parallel efficiency nearly perfect (∼1). For exam-
ple, we have recently performed benchmark tests including
134 billion-atom space–time multiresolution molecular dynam-
ics (MD) [35], 1.06 billion-atom reactive force-field MD [36],
and 11.8 million-atom (1.04 trillion grid points) quantum-
mechanical MD in the framework of the divide-and-conquer
density functional theory on adaptive multigrids [37], with the
parallel efficiency as high as 0.998 on 65 536 dual-processor
BlueGene/L processors [41]. We expect the isogranular parallel
efficiency of the parallel pathfinder algorithm to become simi-
larly high for such large-scale applications.

To illustrate the use of pathfinder, we simulate a 1920-atom
α-crystalline Al2O3 with a crack propagating in the 〈21̄1̄0〉 di-
rection in the {011̄0} plane (Fig. 3). The initial state is prepared
by first imposing displacements to the atoms according to a
linear elastic crack solution corresponding to the stress inten-
sity factor of 1.25 MPa

√
m [3], and then relaxing the atomic

configuration to the local energy-minimum, while fixing the po-
sitions of the two outer atomic layers in the 〈21̄1̄0〉 and 〈011̄0〉
directions. The periodic boundary condition is applied in the
〈0001〉 direction. The simulation uses an interatomic poten-
tial consisting of two- and three-body terms, which is similar
to those used in previous simulations [19,20,40]. The set of
elementary event seeds consists of 43 bonds that are within
2.5 Å from the crack tip. We choose Max_excitation = 4 and
Nadd_event = Nelite = 128.

Fig. 3 shows the resulting events with 60 lowest barrier en-
ergies, which are a mixture of singly- to quadruply-excited
events. Such multiplicity of low activation-barrier events is
common in crack growth, which often involves complex events
Fig. 3. (Left) The initial state of the 1920-atom cracked Al2O3 system, where yellow and red spheres are Al and O atoms, respectively. The positions of the Al
(green) and O (grey) atoms at the outer layers are fixed according to a linear-elastic crack solution. (Right) Events with the lowest barrier energies and their excitation
levels.
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Algorithm Lanczos
Input:

R ∈ R
3N : a state

logical initialize: TRUE for the first call in each event generation; FALSE otherwise

Output:
λ1: the minimum eigenvalue of the Hessian matrix, H(R) = ∂2V/∂R2

V1 ∈ R
3N : the Hessian eigenvector corresponding to λ1

Steps:
if initialize

randomize � ∈ R
3N , such that it contains no translational motion

s ← 0
βs ← ‖�‖
Qs (∈ R

3N) ← 0
do

s ← s + 1
Qs ← �/βs−1

cfd ← maxiα{|qs
iα

| | i = 1, . . . ,N;α = x, y, z}/δfd

� ← cfd[−F(R + Qs/cfd) + F(R)] − βs−1Qs−1

αs ← QsT�

� ← � − αsQs

βs ← ‖�‖

diagonalize Ts =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

α1 β1
β1 α2 β2

. . .
. . .

. . .

βs−2 αs−1 βs−1

βs−1 αs

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, so that Q̃T
s TsQ̃s = diag(λ̃s

1, . . . , λ̃s
s )

*

while |(λ̃s
1 − λ̃s−1

1 )/λ̃s−1
1 | > �eigen

λ1 ← λ̃s
1

V1 ← ∑s
k=1 Qk q̃1

k

V1 ← V1/‖V1‖
* diag(λ̃s

1, . . . , λ̃s
s ) is an s by s diagonal matrix, with its diagonal elements given by λ̃s

1, . . . , λ̃s
s . Q̃s =

[q̃1, . . . , q̃s ] is an s by s orthogonal matrix, with q̃m ∈ R
s is the mth eigenvector of Ts .
other than individual bond breakings at the crack tip. An ex-
ample is nanovoid nucleation ahead of the crack tip in glasses,
which results from collective atomic motions and long-range
stress relaxation [40].

5. Summary

We have designed a search algorithm for escape paths with
low activation barriers starting from a local energy minimum
configuration of a many-atom system. The pathfinder algo-
rithm combines: (1) a steered eigenvector-following method to
generate an escape path tangentially to the eigenvector corre-
sponding to the lowest negative Hessian eigenvalue; (2) sys-
tematic combinatorial generation of concerted events as linear
combinations of atomistic events; (3) control of population dy-
namics of low activation-barrier events; and (4) hybrid task +
spatial decompositions to implement the algorithm on parallel
computers. We have observed reasonable constant problem-
size and isogranular parallel efficiencies. The program has been
used to study concerted bond-breaking events in the fracture of
alumina crystal. The pathfinder algorithm could be combined
with other event-population control schemes such as genetic
algorithms [21], which could then be used in kinetic Monte
Carlo simulations [42,43] that feature on-demand construction
of event lists during runtime to explore atomistic mechanisms
underlying long-time behavior of materials [44].
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Appendix A. Lanczos algorithm to obtain the minimal
Hessian eigenpair

The Lanczos algorithm is used to compute the minimum
eigenvalue λ1 and the corresponding eigenvector V1 of the
Hessian matrix, to be used in the steered eigenvector-following
event generator algorithm in Table 1.
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