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Abstract

A suite of scalable atomistic simulation programs has been developed for materials research based on space-time
multiresolution algorithms.  Design and analysis of parallel algorithms are presented for molecular dynamics (MD)
simulations and quantum-mechanical (QM) calculations based on the density functional theory.  Performance tests
have been carried out on 1,088-processor Cray T3E and 1,280-processor IBM SP3 computers.  The linear-scaling
algorithms have enabled 6.44-billion-atom MD and 111,000-atom QM calculations on 1,024 SP3 processors with
parallel efficiency well over 90%.  The production-quality programs also feature wavelet-based computational-space
decomposition for adaptive load balancing, spacefilling-curve-based adaptive data compression with user-defined error
bound for scalable I/O, and octree-based fast visibility culling for immersive and interactive visualization of massive
simulation data.
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1 Introduction

Modern design of high-performance materials and devices focuses on controlling structures at diverse length scales
from atomic to macroscopic [28].  Rich variety of atomistic simulation methods ranging from empirical molecular-
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dynamics (MD) simulations to ab initio quantum-mechanical (QM) calculations are expected to play an important
role in scaling down engineering concepts to nanometer scales.  Recent advances in computational methodologies
and massively parallel computers have made it possible to carry out 10-100 million atom simulations of real
materials and devices typically on 10-100 processors [1, 10, 38].

This paper describes our efforts to enable very large-scale atomistic simulations involving multibillion atoms by
designing scalable and portable simulation algorithms [16].  In the next section, we describe linear-scaling parallel
algorithms for MD and QM calculations.  Section 3 discusses software tools to support billion-atom simulations.
Results of benchmark tests are given in Sec. 4, and Sec. 5 contains conclusions.

2 Parallel atomistic simulation algorithms

We have developed a suite of scalable MD and QM algorithms for materials simulations.  The linear-scaling
algorithms encompass a wide spectrum of physical reality: i) classical MD based on a many-body interatomic
potential model; ii) environment-dependent, variable-charge MD; and iii) self-consistent QM calculation based on
the density functional theory (DFT).

2.1 Multiresolution molecular dynamics algorithm
In the MD approach, one obtains the phase-space trajectories of the system (positions and velocities of all atoms at
all time) [31].  Atomic force laws for describing how atoms interact with each other is mathematically encoded in
the interatomic potential energy, EMD(rN), which is a function of the positions of all N atoms, rN = {r1, r2, ..., rN}, in
the system.  In our many-body interatomic potential scheme, EM D(rN) is expressed as an analytic function that
depends on relative positions of atomic pairs and triples [38].  Time evolution of rN is governed by a set of coupled
ordinary differential equations.  For interatomic potentials with finite ranges, the computational cost can be made
O(N) using a linked-cell-list approach [31].  Our multiresolution molecular dynamics (MRMD) algorithm [25] also
uses an approach called the multiple time-scale (MTS) method [21, 23, 37], which uses different force-update
schedules for different force components to reduce the number of force evaluations.

For parallelization of MD simulations, we use spatial decomposition [25, 31].  The total volume of the system is
divided into P subsystems of equal volume, and each subsystem is assigned to a processor in an array of P
processors.  To calculate the force on an atom in a subsystem, the coordinates of the atoms in the boundaries of
neighbor subsystems are cached  from the corresponding processors.  After updating the atomic positions due to a
time-stepping procedure, some atoms may have moved out of its subsystem.  These atoms are migrated  to the
proper neighbor processors.  With the spatial decomposition, the computation scales as N/P while communication
scales in proportion to (N/P)2/3 for an N-atom system.

2.2 Variable-charge molecular dynamics
Physical realism of MD simulations is greatly enhanced by incorporating variable atomic charges that dynamically
adapt to the local environment [4, 35].  However, the increased realism of this variable-charge molecular dynamics
(VCMD) is accompanied by increased computational complexity, O(N3), for solving a linear system to determine
atomic charges at every MD step.  We have reduced this complexity to O(N) [20] by combining the fast multipole
method (FMM) [12, 25] and an iterative minimization approach.  In the FMM, the space is recursively divided into
subsystems to form an octree data structure and the electrostatic field is computed recursively on the octree with
O(N) operations.  To further accelerate the convergence, we have developed a multilevel preconditioned conjugate-
gradient (MPCG) method [20] by splitting the Coulomb-interaction matrix into short- and long-range components
and using the sparse short-range matrix as a preconditioner.

Tree-based algorithms such as the FMM have been used extensively to perform massively parallel computer
simulations of gravitational systems in astrophysics [39].  The FMM has also been used in conjunction with the
MTS in parallel MD simulations of materials [25] and biomolecular systems [15, 32].  Although these space-time
multiresolution algorithms deal with O(N2) problems, their basic algorithmic structures can be reused for the O(N3)
VCMD.  For example, the computational cost of our VCMD code is amortized by reusing a doubly nested loop with
associated neighbor-list construction for both the MTS method for time-stepping and multilevel preconditioning for
determining charges [20].
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2.3 Linear-scaling quantum-mechanical calculation based on the density functional theory
Empirical interatomic potentials used in MD simulations fail to describe chemical processes.  Instead, interatomic
interaction in reactive regions needs to be calculated by a QM method that can describe breaking and formation of
bonds.  An atom consists of a nucleus and surrounding electrons, and quantum mechanics explicitly treats the
electronic degrees-of-freedom.  The density functional theory (DFT) reduces the exponentially complex quantum
problem to a self-consistent matrix eigenvalue problem,* which can be solved with O(M3) operations (M  is the
number of independent wave functions and is on the order of N) [13, 18, 27].  The DFT can be formulated as a
minimization of the energy, EQM(rN, ψM), with respect to electron wave functions, ψM(r) = {ψ1(r), ψ2(r), ..., ψM(r)},
subject to orthonormalization constraints.

Efficient parallel implementation of DFT is possible with real-space approaches based on higher-order finite
differencing [6] and multigrid acceleration [3, 9].  We include electron-ion interactions using norm-conserving
pseudopotentials [36] and the exchange-correlation energy in a generalized gradient approximation [29].  For larger
systems (M > 1,000), however, the O(M3) orthonormalization becomes the bottleneck.

For scalable DFT calculations, linear-scaling algorithms are essential [11].  We have implemented an O(M)
algorithm [34] based on unconstrained minimization of a modified energy functional and a localized-basis
approximation [19].  In the parallel linear-scaling density functional theory (LSDFT) algorithm, the computation
time scales as O(M/P) on P processors, whereas the communication scales as O((M/P)2/3).  This is in contrast to the
O(M(M/P)2/3) communication in the conventional parallel real-space DFT algorithm.  Global communication for
calculating overlap integrals of the wave functions (which scales as M2logP in the conventional DFT algorithm) is
unnecessary in the linear-scaling algorithm.

3 Software tools
Practical simulations involving multibillion atoms are associated with a number of computational challenges, which
have been addressed by a number of software tools.

3.1 Wavelet-based adaptive computational-space decomposition for load balancing
Many MD simulations are characterized by irregular atomic distribution and associated load imbalance.  We have
developed a computational-space-decomposition approach to load balancing [22, 24].  This scheme partitions the
system in a computational space, which is related to the physical space by a curvilinear coordinate transformation.
(The computational space shrinks where the workload density is high and expands where the density is low, so that
the workload is uniformly distributed.)  The optimal coordinate system is determined to minimize the load-
imbalance and communication costs.  We have found that wavelet representation leads to compact representation of
curved partition boundaries, and accordingly to fast convergence of the minimization procedure [22].

3.2 Spacefilling-curve-based adaptive data compression for scalable I/O
A 1.5-billion-atom MD simulation we are currently performing produces 150 GB of data per frame (or per minute),
including atomic species, positions, velocities, and stresses.  For scalable input/output (I/O) of such large datasets,
we have designed a data compression algorithm [26].  It uses octree indexing and sorts atoms accordingly on the
resulting spacefilling curve.  By storing differences between successive atomic coordinates, the I/O requirement for
the same error tolerance level reduces from O(NlogN) to O(N).  An adaptive, variable-length encoding scheme is
used to make the scheme tolerant to outliers and optimized dynamically.  An order-of-magnitude improvement in
the I/O performance was achieved [26] for actual MD data with user-controlled error bound [40].

Another important issue in data management is the analysis of simulation results.†  For atomistic simulations of
materials, a challenge is to extract topological defects such as dislocations from massive data with large thermal
noises.  Graph data structures have played an important role in analyzing atomistic data [2, 7, 14], where vertices
and edges represent atoms and bonds, respectively.  Recently, we have used a shortest-path ring analysis to study
intermediate-range orders in amorphous materials [8] and an edge-based indexing to detect grain boundaries in
semiconductors nanocrystals [17].

                                                  
*Walter Kohn received a 1998 Nobel chemistry prize for the development of the DFT.
†For an extensive list of analysis tools for MD simulations, see http://www.ks.uiuc.edu/Research/MMTools.
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3.3 Octree-based fast visibility culling for immersive and interactive visualization
Interactive exploration of large-scale atomistic simulations is important for identifying and tracking atomic features
that are responsible for macroscopic phenomena, and an immersive and interactive virtual environment is an ideal
platform for such explorative visualization, see Fig. 1.

We have developed a scalable visualization system to allow the viewer to walk through multimillion atoms
[33].  The system uses fast visibility culling based on the octree data structure to reduce the number of atoms sent to
the graphics pipeline.  Multiresolution rendering is used to further speed up the rendering process.  The resulting
system renders a million-atom system at nearly interactive frame rates on a dual processor SGI Onyx2 with an
InfiniteReality2 graphics pipeline.  We are currently exploring the use of parallel preprocessing to achieve billion-
atom walkthrough.

Figure 1: A researcher investigating a fracture in a 1.5-billion-atom model of a ceramic fiber composite material
rendered in an ImmersaDesk virtual environment at our Concurrent Computing Laboratory for Materials
Simulations.

4 Performance tests

Benchmark tests of the three parallel algorithms MRMD, VCMD, and LSDFT have been performed on the Cray
T3E and the IBM SP3 computers at the U.S. Naval Oceanographic Office (NAVO) Major Shared Resource Center.
All the three programs are written using MPI (Message Passing Interface) for message passing.  The T3E at NAVO
at the time of the benchmark tests consisted of 1,088 Digital Alpha processors with clock speed 450 MHz and 256
GB memory.  The IBM SP3 at NAVO is configured with 375 MHz Power3 CPUs and has 334 nodes with 4 CPUs
and 4 GB of memory per node.

Figure 2 shows the execution time of the MRMD algorithm for silica material as a function of the number of
processors, P.  In this algorithm, the interatomic potential energy is split into the long-range and short-range
contributions, where the long-range contribution is computed after 10 steps.  We scale the system size linearly with
the number of processors, so that the number of atoms, N = 648,000 P.  On the T3E, execution time increases only
slightly as a function of P, and this signifies an excellent parallel efficiency.  On 1,024 processors, the parallel
efficiency is as high as 97%.  The computational time on the SP3 is significantly less than that on the T3E, but with
increased communication time.
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Figure 2: Wall-clock (circles) and communication (squares) times per time step of the MD algorithm with scaled
workloads 648,000 P atom silica systems on P processors (P = 1, ..., 1,024) of Cray T3E (open symbols) and IBM
SP3 (solid symbols).

Figure 3 shows the performance of the VCMD algorithm with scaled workloads 20,160 P-atom alumina
systems on P processors (P = 1, ..., 1,024).  Multipoles up to lp = 6 are taken and the largest number of leaf octree
cells is 86 (P = 1,024) in the FMM.  The wall-clock time increases only slightly as a function of P, and the memory-
bound parallel efficiency is 0.96 on 1,024 processors on the T3E.

Figure 3: Wall-clock (circles) and communication (squares) times for the VCMD algorithm with scaled
workloads 20,160 P atom alumina systems on P processors (P = 1, ..., 1,024) of Cray T3E (open symbols) and
IBM SP3 (solid symbols).

In the LSDFT calculations for gallium arsenide material, the localization region for the wave functions is
defined as a spherical space with radius 4.4 Å.  Figure 4 shows the wall-clock and communication times per CG
iteration on 1,024 T3E and SP3 processors.  The wall-clock time scales linearly with N above N ~ 10,000 (the
number of wave functions, M = 2N).  For the largest system (N = 110,592), the parallel efficiency is estimated to be
93%.  The interprocessor communication scales as O(N0.6) for N > 10,000.
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Figure 4: Wall-clock (circles) and communication (squares) times per CG step as a function of the number of atoms
for the parallel LSDFT algorithm on Cray T3E and IBM SP3 computers.  The system is gallium arsenide crystal in
the zinc-blende structure.  The number of processors is 1,024.

Major design parameters for MD simulations of materials include the number of atoms in the simulated system
and the methodologies to compute interatomic forces (classically in MRMD, semiempirically in VCMD, or
quantum-mechanically [5] in LSDFT).  Figure 5 shows a design-space diagram for classical and quantum-
mechanical MD simulations on 1,024 T3E and SP3 processors.  (For the LSDFT, one MD step involves 3 self-
consistent DFT iterations each consisting of 20 CG steps.)  The figure demonstrates linear scaling for all the three
algorithms, with prefactors spanning seven-orders-of-magnitude.  The largest benchmark tests in this study include
6.44-billion-atom MRMD and 111,000-atom LSDFT calculations on 1,024 SP3 processors.

Figure 5: Design-space diagram for MD and QM simulations on 1,024 Cray T3E processors (open symbols) and on
1,024 IBM SP3 processors (solid symbols).  The figure shows wall-clock time per MD step as a function of the
number of atoms for three linear-scaling algorithms: Classical MD (MRMD, circles); environment-dependant
variable-charge MD (VCMD, triangles); and, quantum-mechanical MD based on the DFT (LSDFT, squares).  Lines
show O(N) scaling.
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5 Conclusions

Modern MD simulations of materials started in 1964 when Aneesur Rahman simulated 864 argon atoms on a CDC
3600 computer [30].  Assuming a simple exponential growth, the number of atoms that can be simulated in classical
MD simulations has doubled every 19 months to reach 6.44 billion atoms in this study.  Similarly, the number of
atoms in DFT-based ab initio MD simulations (started by Roberto Car and Michelle Parrinello in 1985 for 8 Si
atoms [5]) has doubled every 12 months to 111,000 atoms in this study.  Petaflop computers anticipated to be built
in the next ten years will maintain the growth rates in these MD Moore’ s Laws , and we will be able to perform
1012-atom classical and 107-atom quantum MD simulations on such computers.  Multiresolution approaches used in
our algorithms, combined with cache-conscious techniques, will be essential to achieve scalability on petaflop
architectures.

Atomistic simulations have now reached a scale such that they must be performed in a metacomputing
environment of geographically-distributed multiple supercomputers.  Such efforts are underway on NASA’s
Information Power Grid (www.ipg.nasa.gov).
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