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ABSTRACT: Despite the growing success of machine learning for
predicting structure−property relationships in molecules and
materials, such as predicting the dielectric properties of polymers,
it is still in its infancy. We report on the effectiveness of solving
structure−property relationships for a computer-generated data-
base of dielectric polymers using recurrent neural network (RNN)
models. The implementation of a series of optimization strategies
was crucial to achieving high learning speeds and sufficient
accuracy: (1) binary and nonbinary representations of SMILES
(Simplified Molecular Input Line System) fingerprints and (2)
backpropagation with affine transformation of the input sequence
(ATransformedBP) and resilient backpropagation with initial
weight update parameter optimizations (iRPROP− optimized).
For the investigated database of polymers, the binary SMILES representation was found to be superior to the decimal representation
with respect to the training and prediction performance. All developed and optimized Elman-type RNN algorithms outperformed
nonoptimized RNN models in the efficient prediction of nonlinear structure−activity relationships. The average relative standard
deviation (RSD) remained well below 5%, and the maximum RSD did not exceed 30%. Moreover, we provide a C++ codebase as a
testbed for a new generation of open programming languages that target increasingly diverse computer architectures.

■ INTRODUCTION

In recent years, studies of structure−activity or structure−
property relationships have been a focus of life science,1−4

chemistry,5 and materials research.6,7 The computer-aided
molecular design represents a milestone in industrial evolution
and forces a shift from the time- and resource-intensive
combinatorial search to in silico high-throughput screening
sometimes in a matter of seconds.8 New methods for
digitalizing input data allowed the further design of computa-
tional tools to boost an evolution in the development of new
materials. The fourth industrial revolution accelerated the
digital transformation in material science, which is operating
more and more with computationally obtained rather than
experimental data.9,10 Computational methods enabled the
development of robust and reliable models that can predict the
properties of materials to directly benefit experimental
synthesis.11,12

Compared to the vast success of machine learning (ML) for
predicting structure−property relationships in molecular and
material research,7 predicting the dielectric properties of
polymers (i.e., dielectric polymer genome) is still in its
infancy.13−15 Recently, computationally synthesized polymer
databases have been created,16 which involved highly accurate
computation of dielectric constants based on the new

generation of first-principles-informed polarizable reactive
force field methods.17−19 These new computational databases
provide an ideal testing ground for the quantitative assessment
of ML models for the dielectric polymer genome within a well-
controllable environment.
While building training models to predict the physical

properties of new materials, various types of molecular
fingerprints need to be considered. Descriptor functions can
range from just a single atom to a net of algorithms expressing
electron charge distribution, considering functional groups
independently as well as other quantum mechanical features.
Additional input parameters can be introduced, which however
increase computational costs. Proposed by Wiswesser in 1952,
the SMILES (Simplified Molecular Input Line System)
representation remains one of the most commonly used and
low-space-complexity descriptors.20 SMILES is a linear string
input representation of molecular fingerprints for a specific
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structure. While being also a vector-type, the SMILES input
representation can be transformed into a digital sequence
notation, such as binary, decimal, or ASCII symbols.21,22

Different SMILES transformers have been reported, which
allow a high level of contextualized text-based symbol
extraction and encoding of chemical structures.23 Utilizing
SMILES for such molecular fingerprints became crucial in the
development of suitable mathematical methods to model
structure−property or structure−activity relationships.
Today, ML is considered the most versatile and convenient

approach for the construction of such relationship models. A
variety of ML methods have been used to predict the
properties of compounds to avoid the need for complex
molecular characterization.24 Artificial neural networks of
various architectures are a prominent platform for property
prediction as well as materials design. In multiple reports as
well as in our studies, it was shown that multilayer perceptron
(MLP),25 convolutional (CNN),26 and graph (GNN)27 neural
networks perform well in mapping the physicochemical
properties of complex polymeric systems. While deep neural
networks (DNN) generally exhibit advanced performance
compared to more classic ML models, a careful choice of the
input representation, as well as optimization of model
parameters, have shown the recurrent neural network
(RNN) to be an equally effective alternative for polymer
genome studies.28

In this work, we used the single-layer Elman RNN to
identify correlations between the structure of polymers of the
norbornene class and their permittivity while using the
SMILES notation in binary and decimal representations. We
compare two algorithms to implement RNN, the original
backpropagation (BP) and its modification (ATransfor-
medBP), developed herein with affine transformed input as
well as resilient propagation (RPROP) with an optimized
parameter of the initial weight update. The algorithms were
compared in terms of their learning effectiveness when
predicting dielectric parameters of complex polymeric
structures.
In addition, to establishing RNN on SMILES input as a

convenient but effective approach for the prediction of the
structure-permittivity relationship in a well-defined computa-
tional dielectric polymer database, we provide a C++ codebase
as a natural testbed for the new generation of open
programming languages on increasingly diverse computer
architectures. The most widely used ML software stack utilizes
Python as a user interface with the backend written in the
proprietary CUDA (Compute Unified Device Architecture)
language29 that runs exclusively on NVIDIA graphics
processing units (GPUs).30 To enable the universal use of
ML on increasingly diverse GPUs from other vendors like Intel
and AMD, there is a strong need for developing alternative ML
software stacks based on open programming languages, most
notably OpenCL,31 which itself is written in C++. Also, the
recently introduced data-parallel C++ (DPC++) language
provides a unified interface to not only GPUs but also field-
programmable gate arrays (FPGAs) and other heterogeneous
accelerators.32 Our customizable approach opens new venues
for a thorough and flexible prediction of nonlinear structure−
property relationships while effectively processing large
databases in the exponentially growing chemical space in
rapidly evolving programming environments.

■ METHODS
This section describes the learning algorithms used in this
work and affine transformation method for the SMILES input
that can be applied in the context of the NN optimization
strategy.

Methods for Input Data Normalization. Choice of the
learning algorithm determines the training efficiency of the
weight parameters in an artificial neural network (ANN)
model. Backpropagation (BP) is the most commonly used
learning method. However, BP comes with several disadvan-
tages that negatively affect training efficiency, including
frequent trapping in local minima, ANN stagnation, and
sluggish convergence.33,34 A momentum term can be applied
to overcome the issue of local minima trapping by propor-
tionally changing the current weights.35 However, in practice
the identification of a suitable momentum term is challenging,
especially when used in combination with other learning
parameters.36 Alternative methods are batch-size variations,37

examination of diverse activation functions,38 optimization of
learning rates,39 and initial weight parameters,40 as well as
input normalization.41 We have addressed this challenge in our
structure−property relationship model by means of a SMILES
input affine transformation (AT).42 The effectiveness of AT for
input sequence scaling in ML has been demonstrated recently
for multilayer perceptron (MLP),43 convolutional neural
networks (CNN),44,45 and deep recurrent neural network
architectures, such as long short-term memory (LSTM)46 and
fast−slow RNN (FS-RNN).47 Our work identifies the optimal
value of the scaling factor of AT, which significantly enhances
the accuracy and efficiency of the parent BP algorithm
(ATransformedBP). Due to ambiguity in the domain input,
we validated AT for SMILES data in both binary and decimal
formats.37 The search for the optimal scaling factor was
directly dependent on the initial values of the learning rate and
weight parameters in a particular NN model. The working
principle of the ATransformedBP algorithm can be described
as follows:

Step 1: Random initialization of the weight parameters,
followed by an iterative search for the AT factor α
for the identification of a minimum in the loss function

Step 2: Performing learning and prognosis studies using the
optimized AT factor α in Step 1.

Ready-to-Use vs Self-Developed Programming
Frameworks. Riedmiller and Braun proposed modifications
of the BP algorithm, i.e., resilient backpropagation (RPROP),
to address the problem of convergence and local minima
stacking. Comparative studies of the loss function and the
duration of the learning process have proven RPROP to
outperform its parent BP.48−51 These results were partly
confirmed by our investigations. Specifically, the superiority of
the iRPROP− variant (a modification of RPROP with
improved weight backtracking)49,52 has been confirmed for
the prediction of dielectric constants for computationally
synthesized amorphous polymers. Also, iRPROP− and
optimized ATransformedBP algorithms were found to perform
nearly identically in the training and testing phases, particularly
in the case of a binary format SMILES representation.
These somewhat unexpected observations demonstrate the

benefit of the C++ codebase that accompanies this work,53

which allows the in-depth investigation and analysis of such
algorithm effectiveness when varying parameters of interest.54

When using these easy-to-access programming tools, research-

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://doi.org/10.1021/acs.jcim.0c01366
J. Chem. Inf. Model. 2021, 61, 2175−2186

2176

pubs.acs.org/jcim?ref=pdf
https://doi.org/10.1021/acs.jcim.0c01366?rel=cite-as&ref=PDF&jav=VoR


ers are not restricted by the plug-and-play functionality of
ready-to-use NN frameworks (e.g., PyTortch55 and Tensor-
Flow56).
Motivation for Using RNN Algorithm. Data-driven

approaches have spanned the field of drug discovery,57

ligand−protein interaction studies,58 and new materials design,
when predicting properties of potential explosives,59 super-
conductors,60 superalloys,61 and dielectric polymers.62,63

Conventional ML techniques have been effective for molecular
representation learning, with deep learning (DL) models
outperforming in the nascent field of polymer informatics.15,64

Multiple ML frameworks have been used as a key driver for
structure−property studies of polymeric sequences, especially
recurrent neural networks (RNN) that have become a popular
technique in drug and peptide design due to an ability of
training on pattern recognition.65,66 RNN has considerable
potential for prognosis studies, yet is under-represented in the
polymer genome development.15,67 In the current work, the
effectiveness of recursive frameworks was found highly
dependent on the format of the given input. Indeed, the
learning set of the polymeric motifs consisted of several
clusters of similar SMILES corresponding to the same range of
dielectric constants. While employing a group of same-class
polymeric structures possessing at least one repetitive frame-
work moiety (identical SMILES fragment), we expect RNN to
be a useful learning strategy. A similar type of related data was
shown to be well treated by RNN when solving problems of
speech recognition,68 language translation,69 and processing of
the time-dependent sequential data.70

Computational Framework and Data Set Generation.
Norbornene polynomial scaffolds have recently gained interest
in optical, electronic, and theragnostic applications due to an
ability to retain low scattering loss while possessing high glass
transition temperatures, adhesion, and low values of dielectric
constants.71,72 The glass transition temperature (Tg) and
dielectric constant (ε) are crucial parameters dictating a
polymer’s physical and chemical properties in dielectric
polymer applications. The dielectric constant determines the
permittivity characteristics of a polymer and can be changed
significantly upon the incorporation of various functional
groups. For instance, the introduction of siloxane groups leads
to increased mechanical flexibility and gas permeability, while
carboxylic acid esters alter the hydrophobicity and thermal
stability of polymeric structures.73,74 Cross-linking with
electronically saturated aliphatic scaffolds allows polymers
with increased thermal stability and solubility. On the basis of
these features, a diverse library of 1200 oligomeric structures
with unknown chirality was computationally generated and
structurally characterized, using the valence-aware polarizable
reactive force field (ReaxPQ-v) methoda recently intro-
duced variant of the polarizable reactive force field (ReaxPQ)
method.17,75−77 Modifications on the polymeric subset were
made to ensure covering a broad range of variable
functionalities. The building blocks included organic fragments
having electron-withdrawing (e.g., CF3-, Cl-, F-), electron-
donating (e.g., OMe-, tBu-, Me-), amide-type group sub-
stituents (NH−R−CO), sterically hindered groups, and
unsaturated methylene moieties. Together with the amide
group mentioned above, structural motifs also included
oxygen, sulfur, and halogen atoms. The training data consisted
of the unique SMILES representations (with unspecified
chirality) and computed dielectric constants (ε). The pool of
SMILES fingerprints of the current set showed identical

structural fragments like repetitive fused heterocycles or
cycloalkane motifs since they belong to the same polymeric
class. Electronically diverse substituents and sterically hindered
functionalities were incorporated to capture all potential
features that cause changes in ε.

General Architecture of RNN. In RNN, the output
signals of the current layer are synaptically correlated with the
outcome of the previous layer, thus being time (or sequence)
dependent. Thus, the transformation of time-dependent inputs
of the current node into an output that is later fed to the next
node is defined as a time step. RNNs can be classified based on
the connectivity between hidden, context, and output layers. In
the Elman type of RNN, the output signal from the hidden
layer is united with the neurons of the context layer (Scheme
1). The summator Sj (t) of the hidden layer is determined as

= ⃗ ⃗ + ⃗ ⃗ − + ≤ ≤W WS t x t p t T j m( ) ( ) ( 1) , 1j j
p

j
T T

j
1( ) ( ) (1)

(1)

where x ⃗T (t) is input column vector with dimension n, p⃗T (t −
1) is a column vector with dimension m from the activation
function of a hidden layer, W⃗j

(1) is a hidden-layer row vector
with dimension n, W⃗j

(p) is a context unit row vector with
dimension m, and Tj

(1) is a bias for the neuron j of a hidden
layer. In general, m ≠ n.
The output pj(t) from the activation function f(x) is

determined as

= ≤ ≤p t f S t j m( ) ( ( )), 1j j (2)

The RNN output is expressed as

= ⃗ ⃗ +Wy t p t T( ) ( )T
1

2( )
1
(2)

(3)

where p⃗T (t) is a column vector of m dimension with elements
pj(t), W⃗1

(2) is a row vector with dimension m for the output
layer, and T1

(2) is a bias for the output layer.
In this work, we developed and tested one layer Elman-type

RNN architectures using binary and decimal representation of
the generated SMILES input x(⃗t) (Scheme 1).

Data Set Preparation. The effectiveness of the proposed
RNN architectures was evaluated by performing studies on two
types of polymeric data sets. The prognoses (testing) data set

Scheme 1. Single-Layer Elman RNN Architecturea

az−1 is a memory registry defining the context unit application for a
one-time step delay.
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was composed of 5% of the network answers by taking every
20th sample from the original set of 1200 polymers. The
learning (training) data set is composed of the remaining 1140
polymers. We applied both binary and decimal transformations
on the SMILES data in the string input format. For the
creation of fingerprints via the “modified binary” type
representation, each SMILE notation was encoded as the
sequence of 1 and −1 (zeroes were replaced with −1). The
longest binary representation was used to define the size of the
entire training set (fixed size), where zero padding was applied
to shorter sequences. After the zero-padding procedure, the
binary representation was transformed into a matrix with 1200
rows (number of samples) and 1136 columns (number of
input neurons). For the decimal numerical representation of
the SMILES input, a conversion of the string variables
according to the ASCII decimal code was performed. In this
case, the maximum length of the SMILES representation upon
zero padding was 142 (eight binary digits were combined for
corresponding decimal value). Figure 1 shows the SMILES
representation of the polynomial training set before and after
the transformation.
Activation Functions for RNNs. As activation functions

f(S) for RNNs, we considered hyperbolic tangent (Tanh),
Sigmoid, and rectified linear unit functions (RELU)

=f S S( ) Tanh( ) (4)

= + −f S( ) 1/(1 e )S
(5)

=
≤
>

l
moo
noo

f S
S

S S
( )

0, 0

, 0 (6)

where S is the output for each node of a hidden layer.
Normalized Backpropagation and Resilient Back-

propagation Learning Algorithms. One of the most
efficient learning algorithms is considered backpropagation,
which is based on the iterative gradient refinement of the
weighting parameters ω(t+1) for the (t + 1)th tact in row-
vectors W⃗j

(2) and W⃗j
(p) and for biases T in Tj

(1) and T1
(2)78

ω ω γ
ε

ω
= − ·

∂ ⃗ ⃗
∂

+ L y x x( ( ), ( ))t t i i( 1) ( )
(7)

γ
ε

= − ·
∂ ⃗ ⃗

∂
+T T

L y x x
T

( ( ), ( ))t t i i( 1) ( )
(8)

where γ is the convergence parameter of learning (the
recommended value is 0.01). In eqs 7 and 8

ε ε⃗ ⃗ = ⃗ − ⃗ = ···L y x x y x x i N( ( ), ( )) ( ( ) ( )) ( 1, 2, , )i i i i
2

(9)

is the objective function that is equivalent to the Euclidean
metric, where N is the length of the training set pool, ε is the
ground-truth dielectric constant, and y is predicted. The value
of i is assigned randomly when computing eqs 7 and 8.
The following equations are applicable for the single-layer

Elman RNN model using the standard backpropagation
approach79

ε
ω

ε
∂ ⃗ ⃗

∂
= ⃗ − ⃗

L y x x
y x x p

( ( ), ( ))
( ( ) ( ))i i

j
i i j(2)

(10)

ε
ω

ε ω
∂ ⃗ ⃗

∂
= ⃗ − ⃗ ′

L y x x
y x x f S x

( ( ), ( ))
( ( ) ( )) ( )i i

jl
i i j j l(1)

(2)

(11)

ε
ε ω

∂ ⃗ ⃗
∂

= ⃗ − ⃗ ′
L y x x

T
y x x f S

( ( ), ( ))
( ( ) ( )) ( )i i

j
i i j j(1)

(2)

(12)

ε
ω

ε ω
∂ ⃗ ⃗

∂
= ⃗ − ⃗ ′

L y x x
y x x f S p

( ( ), ( ))
( ( ) ( )) ( )i i

j
p i i j j j( )

(2)

(13)

ε
ε

∂ ⃗ ⃗
∂

= ⃗ − ⃗
L y x x

T
y x x

( ( ), ( ))
( ( ) ( ))i i

i i
1
(2)

(14)

Here, 1 ≤ j ≤ m, 1 ≤ l ≤ n (Scheme 1).
In case of backpropagated recurrent networks, weights are

usually updated by sample batch. Weighting parameters and
biases are initialized randomly in the range [− +n n1/ , 1/
].
The disadvantage of the BP learning algorithm is the time-

consuming calculation of the iterative system of eqs 10−14 and
potentially only reaching a local root-mean-square error
(RMSE) minimum of the ⟨L(y(xi⃗), ε(xi⃗))⟩ function, where
⟨ ⟩ represents averaging over the entire training set. This
demands the pursuit of a more efficient and improved solution.
For this purpose, we used the normalized backpropagation
approach (ATransformedBP) with input size rationing, which
significantly increases the convergence rate of the learning,
while avoiding local minima. The developed ATransformedBP
approach is based on the preprocessing of the SMILES input xi⃗
(in either binary or decimal representation) according to the
rule

α⃗′ = · ⃗ − ⃗ ≤ ≤x x x i N( ), 1i i i (15)

where α is the AT factor.
The optimal value of α is determined to minimize the

objective function

Figure 1. Flowchart of our RNN-based polymeric dielectric constant prediction. Batch-trained affine transformed BP (ATransformedBP) and
epoch-trained resilient propagation (iRPROP−) learning algorithms form the basis of the RNN developed in this work.
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α ε= ⟨ ⃗ ⃗ ⟩
α

L y x xmin ( ( ), ( ))i iopt (16)

with respect to the initial values of weights and biases. The
initial weighting parameters of the hidden layer ωjl

(1) (1 ≤ j ≤
m, 1 ≤ l ≤ n) remain fixed when varying α and can be
expressed as

ω α= · −n/ (0.5 RAND()/RANDMAX)jl
(1)

(17)

where RAND() is a random-number generator in the range [0,
RAND_MAX] in the cstdlib.h library of the C++ program-
ming language. Consequently, the initial values of ωjl

(1) are in

the range − α α
Ä
Ç
ÅÅÅÅÅÅ

É
Ö
ÑÑÑÑÑÑ,

n n2 2
. The same initialization procedure is

applied to the remaining weighting parameters of the context
units ωjk

(p) (1 ≤ k ≤ m, 1 ≤ j ≤ m) output layer ω1j
(2) and biases

Tj
(1) and T1

(2) of the input and output layers, respectively.
The results obtained using ATransformedBP were compared

with those using resilient propagation learning algorithms
(RPROP).80 The basic difference of supervised learning
approaches with different types of the RPROP (RPROP+,
RPROP−, iRPROP+, iRPROP−) is the utilization of the sign of

the gradient
ω

∂
∂

L t

t

( )

( )
for the tth time step, where L(t) =

⟨L(t)(y(xi⃗),ε(xi⃗))⟩. Thus, the function L(t) is calculated as the
mean value for the entire training set per one learning cycle,
i.e., an epoch averaged.
In our developed RNN model, the iRPROP− algorithm was

found to be most effective in solving the complex nonlinear
problem of polymeric structure−property relationships. The
iRPROP− algorithm is based on the fulfillment of the following
“triple-step” conditions for the tth time step:

Step 1 condition: If · >
ω ω

∂
∂

∂
∂

−

− 0L Lt

t

t

t

( 1)

( 1)

( )

( ) then

η
ω

Δ = Δ Δ Δ = ∂
∂

− + R
L

min( , ),t t t
t

t
( ) ( 1)
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( )

( )

( ) (18)

Step 2 condition: If · <
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∂
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∂
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η
ω
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=− − R
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( )

( )
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ω ω
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∂
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∂
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The weights updates are defined through
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where η+ = 1.2, η− = 0.5, Δmax = 50, and Δmin = 10−6 are
recommended literature values.80

Δ(0) parameters in eqs 18−21 are initialized as Δ(0) = Δ0.
The optimal value Δ0(opt) of the initial weight update should
satisfy the following condition

εΔ = ⟨ ⃗ ⃗ ⟩
Δ

L y x xmin ( ( ), ( ))opt i i0,
0 (22)

Table 1. RNN Models Internal Parameters

RNN internal parameters ATransformedBP iRPROP−

Format of the SMILES input Training set pool binary, decimal 1140 binary, decimal 1140
Testing set pool 60 60
Input nodes 142, 1136 142, 1136
Hidden nodes 142, 1136 142, 1136
Hidden layers 1 1
Context units layer 1 1
Activation function Tanh, Sigmoid, and RELU Tanh, Sigmoid, and RELU
Weight updates by mini-batch by epoch
Sample selection random sequential
Optimized parameters α Δ0

Figure 2. RMSE plots for the variation of (A) affine transform factor α in ATransformedBP learning algorithm and (B) initial weight update Δ0 in
iRPROP− learning algorithm.
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■ RESULTS AND DISCUSSION

Software Used for Comparing RNN Models. The
single-layer Elman type RNN models were written in C++, and
a schematic representation of the implementation is depicted
in Scheme 1. The learning efficiency as well as the prediction
performance of the developed models were statistically
analyzed using the RMSE and the relative standard deviation
(RSD) parameters. The averaged (eq 23) and maximum (eq
24) forms of the RSD parameter were defined as

ε
=

∑ −=
⎯→⎯ ⎯→⎯

y x x

n
RSD(av)

( ( ) ( ))i
n

i i0
(23)

ε= −
⎯→⎯ ⎯→⎯

y x xRSD(max) max( ( ) ( ))
i

i i (24)

For the RNN model using the ATransformedBP learning
algorithm, a random pattern selection was utilized for training
and prediction. Using the iRPROP− learning protocol, the
samples were selected consistently from the learning set to
accomplish epoch averaging. Details of the developed RNN
models and their parameters are given in Table 1.
Determination of Optimized Parameters: Affine

Transformation Factor α and Initial Weight Update
Parameter Δ0. Modeling studies were performed to find the
optimal parameters for α (ATransformedBP) and Δ0
(iRPROP−). The results were obtained by using a learning

sample pool (training data set) which was trained for 100
epochs.
Figure 2 shows the dependency of the RMSE on α in case of

ATransformedBP learning or the initial weight update Δ0 in
case of the iRPROP− algorithm. The corresponding optimal
values of α or Δ0 representing a minimal RMSE are given in
Table 2. The lowest RMSE value in the Sigmoid activation
function was determined to be at αopt = 160 (ATransfor-
medBP) or at Δ0,opt = 0.015 (iRPROP−).
Similar plots were made for decimal SMILE input format

(142 nodes) using the most effective activation function
Tanh (the RELU and Sigmoid activations demonstrated
significantly higher values in the loss function) (Figure S1 in
Supporting Information). The optimal values of αopt and Δ0,opt

for all studied learning procedures are given in Table 3. The
use of the binary SMILES notation was identified to be more
effective compared to the decimal format in terms of RMSE for
the training and testing pools using the ATransformedBP
algorithm. However, in the case of iRPROP− learning, in the
RMSE using the decimal and binary SMILES representations
showed a close resemblance during the testing phase. Also,
ATransformedBP and iRPROP− were nearly equivalent for the
testing set pools using the decimal notation of the SMILE
input, yet iRPROP− performed marginally better.
One notable observation is that the RMSE levels for both

learning algorithms do not drop below a value of 0.150 in the
training sets. The values of the learning rate Δ0 and affine

Table 2. Optimized Parameters α and Δ0 for ATransformedBP and iRPROP− Learning Algorithms, Respectivelya

ATransformedBP

SMILES format decimal (n = 142) binary (n = 1136)

Activation function Tanh Tanh RELU Sigmoid

αopt RMSE αopt RMSE αopt RMSE αopt RMSE

Training set pool 1.0 0.104 70.0 0.00073 25.0 0.0187 160.0 0.0031
Testing set pool 1.0 0.201 70.0 0.164 25.0 0.167 160.0 0.154

iRPROP−

SMILES format decimal (n = 142) binary (n = 1136)

Activation function Tanh Tanh Sigmoid

Δ0,opt RMSE Δ0,opt RMSE Δ0,opt RMSE

Training set pool 0.002 0.078 0.007 0.00074 0.015 0.0103
Testing set pool 0.002 0.198 0.007 0.165 0.015 0.181

aRMSE parameters for training and testing sets.

Table 3. Statistical Analysis of RNN Based on ATransformedBP and iRPROP− Algorithmsa

ATransformedBP

SMILES format decimal (n = 142) binary (n = 1136)

Activation function Tanh Tanh RELU Sigmoid

αopt up to 10% of RSD αopt up to 10% of RSD αopt up to 10% of RSD αopt up to 10% of RSD

Training set 1.0 96% 70.0 100% 25.0 100% 160.0 100%
Testing set 1.0 80% 70.0 85% 25.0 90% 160.0 91%

iRPROP−

SMILES format decimal (n = 142) binary (n = 1136)

Activation function Tanh Tanh Sigmoid

Δ0,opt up to 10% of RSD Δ0,opt up to 10% of RSD Δ0,opt up to 10% of RSD

Training set 0.002 99% 0.007 100% 0.015 100%
Testing set 0.002 85% 0.007 88% 0.015 88%

aRelative volumes of training and predicted sampling sets do not exceed the 10% limit of statistical fluctuation.
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transformation factor α are crucial in the RNN model
development. Figure 3 illustrates that an optimal αopt allows

the convergence of learning to reach a zero level when using a
binary SMILES input format. When applying the BP algorithm
under nonoptimized conditions, the RMSE saturates at 0.23,
thereby prohibiting reaching the global minimum.
Examination of Prognostic Capabilities of RNN

Architectures with Optimization. Using the optimized
values of the learning parameters, the prediction pattern was
extracted for the Elman RNN with ATransformedBP and
iRPROP− learning algorithms (Figures 4−7). The training
sampling pool consisted of 95% of an original database (1140
units). The remaining 5% (60 examples) was used to study the
prediction capabilities of the obtained models. The results
were obtained for the learning and testing sample pools after
500 epochs. The optimized parameter of the trained and
predicted outputs dependent on the choice of the activation
function are given in Tables 2 and 3.
The RMSE evolution for the training and testing sample sets

for the binary SMILES representation using the designed
learning methods (1136 hidden nodes RNN architecture) are
shown as a function of the number of epochs in Figures 4(A)
and 5(A) for ATransformedBP and iRPROP− learning
algorithm, respectively. The training-dependent loss function
for iRPROP− learning converges (to zero) after about 120
epochs, while ATransformedBP learning converges only after a
larger number of epochs. In addition, the maximum RSD for
iRPROP− learning (Figure 5(B)) was six times greater than
that for ATransformed (Figure 4(B)). The predicted values of

the dielectric constants using ATransformedBP were in better
agreement with the original data than those derived using
iRPROP−. The average RSD, in this case, was less than 3%
(Figure 4(C)), whereas the maximum of RSD never exceeded
30%. On the contrary, for the iRPROP− learning strategy, the
average RSD was found to be 3.1%. Yet, the maximum RSD
parameter did not exceed 29% (Figure 5(C)). While activation
with the RELU function was applied only for ATransformed
BP algorithm, similar learning and prognostic results were
obtained for Tanh activation when comparing the performance
of the ATransformedBP and iRPROP− in the training and
testing phases (Figures S2−S5). These findings indicate
slightly superior prognosing capabilities of TransformedBP
compared to resilient iRPROP−.
It was found that resilient backpropagation iRPROP− with

optimized Δ0 and ATransformedBP exhibit similar prediction
trends for the decimal SMILES representation RNN model
(142 hidden nodes). As shown in Figures 6(A) and 7(A) for
ATransformedBP and iRPROP− learning algorithms, respec-
tively, iRPROP- learning leads to higher performance while
being noisier. Thus, the RMSE in the training phases differed
nearly 1.3-fold. The maximum RSD for ATransformedBP
learning was 25.4% (Figures 6(B)), which is nearly twice
greater than that for iRPROP− (Figure 7(B)). Taking into
account prognostic results, the average RSD in the case of
ATransformedBP was about 4.3% (Figure 6(C)) with a
maximum RSD of 28.6%. On the contrary, for the iRPROP−

learning strategy, the average RSD was found to be slightly
higher (4.85%), whereas the maximum RSD of 21.7% was
lower (Figure 7(C)).
These results demonstrated sufficient prediction capabilities

of RNN models with decimal SMILES notation (142 hidden
nodes), conceding to RNN with binary SMILES representa-
tion (1136 hidden nodes).
A detailed analysis of all polymers of interest revealed several

clusters grouped by SMILES similarity and, consequently,
certain ranges of values deviation of molecular weights as well
as dielectric constants. The individual clusters correlate only
moderately with each other, yet the values of ε within the
clusters are quite scattered. The prediction accuracy can be
further improved when the test sample is preliminarily assigned
from the appropriate cluster. The RMSE value of the testing
set consisting of samples corresponding to only one cluster
decreased almost 1.5 times in comparison to using the testing
set generated from samples of different clusters (Figure S4 in
Supporting Information). When considering training and

Figure 3. Backpropagation learning algorithm with α = 1.0 and
ATransformedBP with αopt = 70.0.

Figure 4. Single-layer Elman RNN prediction model with ATransformedBP learning algorithm for binary SMILES representation. Sigmoid
activation is used, and α = 160. (A) RMSE as a function of epoch for training and testing data sets. (B) Parity plot for the training set. (C) Parity
plot for the testing set.

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://doi.org/10.1021/acs.jcim.0c01366
J. Chem. Inf. Model. 2021, 61, 2175−2186

2181

http://pubs.acs.org/doi/suppl/10.1021/acs.jcim.0c01366/suppl_file/ci0c01366_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jcim.0c01366/suppl_file/ci0c01366_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.0c01366?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.0c01366?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.0c01366?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.0c01366?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.0c01366?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.0c01366?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.0c01366?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.0c01366?fig=fig4&ref=pdf
pubs.acs.org/jcim?ref=pdf
https://doi.org/10.1021/acs.jcim.0c01366?rel=cite-as&ref=PDF&jav=VoR


testing for the original data set with multiple clusters, the
accuracy was found to be satisfactory when using a 5% testing
set. The increase of the testing set size from 5% to 10% of the
original data set did not significantly influence the prediction
performance. Namely, in the case of the RNN model with
ATransformedBP learning, the maximum value of RSD(max)
for a 10% testing set was only 0.5% higher than that of a 5%
testing set (Figures S2 and S3 in Supporting Information).
To examine the error distribution of RNN prediction

models, error distributions for the training and testing sets
were calculated for ATransformedBP and iRPROP− learning
algorithms. Figure 8 shows the relative number of samples as a
function of RSD. We see that most samples have small RSD
values. As shown in Table 3, 85% of the prognostic results

indeed do not exceed 10% RSD using the binary SMILES
input representation (1136 hidden nodes). For the training
sampling pool, this parameter was close to 100% regardless of
the used activation function.

■ CONCLUSION

We have developed a simple, customizable, and user-friendly
RNN codebase for the prediction of material properties based
on nonlinear structure−property relationships. High-through-
put ML models were implemented for solving the problem of
molecular structure−property relationships. In particular, the
developed RNN models were verified with the example of the
dielectric property prediction of computationally created
polymeric sequences. A polymer genome is challenging due

Figure 5. Single-layer Elman RNN prediction model with iRPROP− learning algorithm for binary SMILES representation. Sigmoid activation was
used, and Δ0 = 0.015. (A) RMSE as a function of epoch for training and testing data sets. (B) Parity plot for the training set. (C) Parity plot for the
testing set.

Figure 6. Single-layer Elman RNN prediction model with ATransformedBP learning algorithm for decimal SMILES representation. Tanh
activation was used, and α = 1.0. (A) RMSE as a function of epoch for training and testing data sets. (B) Parity plot for the training set. (C) Parity
plot for the testing set.

Figure 7. Single-layer Elman RNN prediction model with iRPROP− learning algorithm for decimal SMILES representation. Tanh activation was
used, and Δ0 = 0.002. (A) RMSE as a function of epoch for training and testing data sets. (B) Parity plot for the training set. (C) Parity plot for the
testing set.
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to uncontrollable morphologies (e.g., amorphous vs semi-
crystalline) to which different properties are sensitive and
correlate differently. Our quantum-mechanically validated
computational data set for a specific property of a dielectric
constant in polymers with a well-controlled amorphous
morphology offers a much needed test bed,77 for which this
article presents ground optimizations of several advanced
algorithms as an open software to facilitate the development of
further algorithms using the well-controlled dielectric polymer
data set.
A detailed description of the developed backpropagation

algorithm with input affine transformation, ATransformedBP,
was provided. Optimization studies were performed for the
iRPROP− learning algorithm with respect to the initial weight
update parameter. The prediction accuracy of the dielectric
constant ε using the ATransformedBP algorithm was found to
be similar or in some instances slightly superior to resilient
propagation learning algorithms, specifically iRPROP−. The
decimal and binary numerical input formats of the SMILES
representation were implemented and tested. The binary
format of SMILES was found to be more informative
compared to the decimal format for the investigated polymers.
The average RSD parameter of the designed algorithms did not
exceed 5%, while the maximum RSD value was never higher
than 30%. This suggests a superior efficiency of the optimized
RNN models in utilizing the scrutiny of the structure−activity
nonlinear relationships. Apart from predicting the dielectric
permeability, a wide range of possible property prognoses will
likely benefit from the developed protocols. Ongoing efforts
include a comparison of RNN architectures with long short-
term memory (LSTM) and gated recurrent units (GRU)
neural networks.
While many researchers remain skeptical about whether to

rely on external frameworks or to come up with self-developed
software, the aspect of the time expenditure might bias toward
the ready-to-use option. In the current work, we demonstrated
that the workload of managing a custom-made program is well
worth it when being able to further develop or optimize an
available market solution.

■ DATA AND SOFTWARE AVAILABILITY
The following program and data files are available free of
charge a t ht tps ://zenodo .org/record/4280446# .
X7qBlM1KiUk: (1) RNN_ATransformedBP_opt_pol file:
RNN code using affine transformed backpropagation learning
algorithm. (2) RNN_iRPROP-_opt_pol file: RNN code using
resilient iRPROP− learning algorithm with optimization of the

parameter of initial weights update. (3) smiles_mod.dat and
eps.dat: Input files containing polymer structure information
(SMILES) and dielectric property values (ε).
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