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Abstract
In this review, we present our recent results for atomistic mechanisms of damage nucleation
and growth and dynamic fracture in silica glass. These results have been obtained with
multimillion-to-billion atom, parallel, molecular dynamics simulations of (1) the interaction
and coalescence of nanovoids in amorphous silica subjected to dilatational strain and (2) the
nucleation, growth and healing of wing cracks and damage nanocavities in silica glass under
impact loading. We also give an overview of our current efforts to perform dynamic fracture
simulations over microsecond time scales and multiscale simulations of stress corrosion
cracking in silica glass.

1. Introduction

Silica glass is often thought of as a prototype brittle material
[1]. The conventional view of failure in silica glass under
tensile loading is that a crack propagates by breaking Si–O
bonds. This failure scenario involving unzipping of chemical
bonds is quite different from the way metals fracture. In
metallic systems a crack may emit dislocations, and cavities
may form in the damage zone surrounding the crack tip.

About a decade ago, we performed molecular dynamics
(MD) simulations of fracture in a pre-cracked sample of
amorphous silica (a-SiO2) subjected to mode-I loading.
The simulations revealed damage nucleation in the form of
nanometre scale cavities in front of the pre-crack tip. On
increasing the load, we observed growth and coalescence of
nanocavities, crack extension and merging of damage cavities
with the advancing crack front causing failure. These results
raised a serious question: are the observed damage and failure
mechanisms in a-SiO2 caused by high strain rate deformation
in the MD simulation or will they also manifest themselves in
quasi-static fracture?

In 2003, Bouchaud and co-workers provided a definitive
answer to this question in a paper entitled ‘Glass breaks

like metal, but at the nanometer scale’ [2]. In their
stress corrosion cracking (SCC) experiment, they observed
damage nanocavities around the crack in silica glass with
an atomic force microscope (AFM). Just as in the dynamic
fracture simulations, the AFM experiment revealed growth
and coalescence not only among damage nanocavities but also
between the crack front and nanocavities.

In this review, we describe two additional MD simulations
that reveal atomistic mechanisms of (1) nanovoid growth
and the interaction and coalescence of nanovoids in a-SiO2

under tensile loading and (2) growth and healing of cracks
in silica glass under multiaxial compression. In section 2,
we describe the parallel MD approach used to perform these
multimillion-to-billion atom MD simulations. Section 2
also contains a description of the interatomic potential,
and its validation through comparison with experiments
and first-principles calculations. In section 3 we present
results of billion-atom MD simulations of interaction and
coalescence among nanovoids in a-SiO2 under hydrostatic
tension, followed by multimillion-atom simulations of wing
crack formation, growth and healing in a-SiO2. Section 4
provides an overview of the work in progress, which is
focused on two sets of simulations: (1) multimillion-atom MD

0022-3727/09/214011+12$30.00 1 © 2009 IOP Publishing Ltd Printed in the UK

http://dx.doi.org/10.1088/0022-3727/42/21/214011
http://stacks.iop.org/JPhysD/42/214011


J. Phys. D: Appl. Phys. 42 (2009) 214011 K Nomura et al

simulations over microsecond time scales to study the effect
of strain rate on deformation and fracture in a-SiO2 and (2)
hybrid quantum, classical MD and continuum simulations of
SCC in silica glass.

2. Parallel MD simulations

2.1. Interatomic potential

MD simulation approach provides the positions and velocities
of an ensemble of atoms through the solution of Newton’s
equations of motion. This information is used to calculate
structural, thermodynamic, mechanical and dynamical
properties [3–6]. The essential input needed to perform an
MD simulation is the potential through which atoms interact.
The interatomic potential for silica consists of two-body
and three-body terms [7]. The two-body potential includes
steric repulsion due to the Pauli exclusion principle, screened
Coulomb interaction arising from charge transfer between
silicon and oxygen and charge-dipole interaction due to atomic
polarizibilities:
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The three-body potential consists of bond-stretching and bond-
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The interaction potential is validated by comparing the
MD simulation results with measurements of structural
correlations, elastic moduli and phonon density of states
of a-SiO2. Amorphous silica is generated by the melt-
quench method [8]. Starting with an atomic configuration
of β-cristobalite, the system is heated to 3000 K, which
is well over the melting temperature. This molten system is
thermalized and cooled to room temperature. The system is
well equilibrated at various intermediate temperatures and also
at room temperature.

Figure 1(a) shows the comparison between neutron
scattering measurements and MD calculation of the static
structure factor, S(q) [9]. Figure 1(b) shows experimental
and MD results for the radial distribution function T (r) =
r2g(r), where g(r) is the pair-distribution function. The
simulation results for S(q) and T (r) are in excellent agreement
with experiments [10, 11]. The agreement between MD and
experimental measurements of T (r) is especially significant
because this function is more sensitive to medium-range
correlations in silica glass than g(r). The differences between

experimental and MD results for T (r) is less than 4% over the
entire range of distances.

MD simulations provide a detailed picture of connectivity
of atoms in a-SiO2. Figure 2 is a snapshot of an a-SiO2

network configuration at room temperature. In this network,
each Si atom is bonded with 4 O atoms in the form of a SiO4

tetrahedron and each O atom connects a pair of these tetrahedra
in a corner-sharing configuration. The Si–O bonds in corner-
sharing tetrahedra form –Si–O–Si–O– rings of various sizes
with the ring distribution peaking at 6-membered rings, i.e. 6
Si–O pairs connected in a ring configuration.

We have also calculated the elastic moduli and fracture
toughness to assess the validity of our interatomic potential
in describing the mechanical properties of a-SiO2. Table 1
shows a comparison between the MD results and experimental
values of elastic moduli in a-SiO2 [12]. The MD results are in
reasonable accord with experiments—the deviations are less
than 10%. The fracture toughness K1c calculated with MD
is 1 MPa m1/2, and the experimental values range between 0.8
and 1.2 MPa m1/2 [13–15].

First-principles quantum mechanical (QM) calculations
based on density functional theory (DFT) further validate our
interatomic potential for silica. We prepared a 192-atom
a-SiO2 system with MD simulation and relaxed it with the
DFT [16, 17] method using a plane-wave pseudopotentials
for the electron–ion interactions [18] and a parameter-
independent generalized gradient approximation for the
electron–electron exchange-correlation interactions [19]. The
excellent agreement between DFT and MD simulations with
regard to the network topology and short- and medium-range
correlations further confirms the high quality of the interatomic
potential for SiO2. The DFT calculations also show that the
forces on Si and O atoms deviate less than 4.5% and 6%,
respectively, from the MD simulation for the same a-SiO2

configuration.

2.2. Microcanonical, constant-temperature and
constant-pressure ensembles

The most commonly used ensemble for MD simulations is the
microcanonical ensemble, in which the total number of atoms
N , the energy E and the system volume V are kept constant.
Periodic boundary conditions (PBCs) are applied to minimize
surface effects. In MD, the equations of motion,

ṙi = ∂H

∂pi

, ṗi = −∂H

∂ri

, (3)

are integrated in time. In equation (3), H is the Hamiltonian
of the system:

H =
N∑

i=1

p2
i

2mi

+ φ ({ri}) . (4)

Nosé has developed a canonical ensemble MD method
(constant N , V , T ) by coupling the system to a thermostat,
which is modelled with an additional degree of freedom
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Figure 1. Comparison between MD simulation and experimental results for static structure factor and radial distribution function
T (r) = r2g(r).

Figure 2. Snapshot of Si–O bond network in a-SiO2. Yellow and
red spheres represent silicon and oxygen atoms, respectively.

Table 1. Comparison between the MD and experimental data for
elastic moduli of a-SiO2.

Bulk Properties of a-SiO2

MD Experiment

C11 (GPa) 75.9 76.52
C12 (GPa) 20.9 18.78
C44 (GPa) 27.5 28.7

in the Hamiltonian:

H =
N∑

i=1

p2
i

2mis2
+ φ ({ri}) +

p2
s

2Q
+ NfkBText ln(s). (5)

The first and second terms are the kinetic and potential energies
of the physical system and the third and fourth terms represent
those of the thermostat. kB is the Boltzmann constant; s, ps

andQ are the coordinate, momentum and effective ‘mass’ of
the thermostat, respectively. In Nosé dynamics, the time step
fluctuates due to the time evolution of the scaling factor s.
The real time and the so-called virtual time are related by
dt ′ = dt/s. Hoover has modified Nosé dynamics to avoid
the virtual time problem. The modified formulation, called
Nosé–Hoover dynamics, is widely used to control temperature.

Martyna et al have extended Nosé–Hoover dynamics
by introducing a layer of thermostats in the system.

The Hamiltonian of a Nosé–Hoover chain with M linked
thermostats is given as
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and the equations of motion are
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, (7)
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The choice of the effective masses of thermostats depends
solely on the system of interest. They are taken to be

Qs1 = 3NkBText

ω2
s

, Qsi
= kBText

ω2
s

, (13)

where ωs is the intrinsic thermal frequency of the system.
Andersen has developed a method to incorporate external

pressure (barostat) to study isotropic changes in volume. In
Andersen’s dynamics, the volume of a system becomes a
dynamic variable and the atomic positions are normalized
by V 1/3, where V is the system volume. Parrinello and
Rahman extended Andersen’s dynamics to study structural
phase transformation by including shape changes in the MD
box system. A 3 × 3 matrix, the so-called H -matrix, spanned
by three lattice vectors (h1, h2, h3), describes the dimensions
and shape of the MD box. The H -matrix becomes a dynamic
variable, relating atomic coordinates ri = (rix, riy, riz) to
scaled coordinates si = (six, siy, siz):

ri = si1h1 + si2h2 + si3h3 = Hsi , (14)
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where
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The volume of the system V is obtained from V = det(H).
The MD simulations are also performed at constant

pressure and constant temperature in the (NPT) ensemble. In
this isothermal–isobaric ensemble, the Hamiltonian is
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where, s, ps and Q are the same as in the Nosé–Hoover
dynamics; pe and W are the momentum and effective mass
of the barostat, respectively; Treq is the thermostat temperature
and Pext is the barostat pressure. The equations of motion are
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ṡ = ps

Q
, (19)
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The internal pressure Pin is defined as
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where d denotes the spatial dimensions of the systems. The
mass of the barostat is chosen to be

W = (3N + d)kBText

ω2
b

, (24)

where ωb is the intrinsic frequency at which the volume of the
MD box fluctuates.

2.3. Integration algorithms

Numerous integration algorithms have been proposed, and
each has advantages and disadvantages, e.g. numerical
accuracy, algorithmic simplicity or memory demand. The
most commonly used algorithm is the velocity-Verlet
algorithm, which is symplectic (phase-space conservation) and
time-reversible.

Tuckerman et al have developed a multiple time step
(MTS) integration algorithm, called reversible reference

system propagator algorithm (RESPA) [20]. Usually several
regimes requiring distinct time resolution exist for one
interatomic potential. Stiffer interactions with a steeper slope
need to be updated more frequently, while it is unnecessary
to frequently update softer interactions. The idea behind the
MTS method is to partition the potential energy function into
several parts according to their characteristic time scale, and
perform time integration with appropriate time resolution. Due
to its simplicity, stability and flexibility in algorithm design,
RESPA is a very powerful integration scheme.

Derivation of the velocity-Verlet algorithm based on
the RESPA is as follows. Let -(t) be a state {ri (t), pi (t)}
in the phase space at time t . According to Liouville’s theorem,
the phase space volume does not change with time. The time
variation of the state - can be expressed as

i
∂-

∂t
= −L-, (25)

where L, the Liouville operator, is defined as

i- = {..., H }. (26)

In equation (26), {. . . , . . .} is the Poisson bracket. With
the Hamiltonian given in equation (3), the Liouville operator
becomes
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]
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The formal solution of equation (26) may be written as

-(t) = eiLt-(0) ≡ U(t)-(0). (28)

Here, U(t) is a time evolution operator. According to the
Trotter decomposition, the following relation holds for non-
commutable operators:
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where δt = .t/M and M is an integer. Let the operators L1

and L2 be
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and M = 1. Substituting them into equations (29) and (30),

-(dt) = eiLdt-(0)

= eiL1dt/2eiL2dteiL1dt/2-(0) + O(dt3)

= e
(dt/2)

∑N
j=1 fj
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dt
∑N
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∂

∂rj e
(dt/2)

∑N
j=1 fj

∂
∂pj -(0)

+ O(dt3). (31)

When dt is small enough, equation (31) can be implemented as

-(0) : vi → vi +
fi

mi

(dt/2),

-(dt/2) : ri → ri + vidt, (32)

-(dt) : v → v +
fi

mi

(dt/2).

This is the velocity-Verlet algorithm.
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p

Figure 3. Schematic of a two-dimensional spatial decomposition.
To calculate force, the internode communication is required to cache
atomic coordinates from neighbour domains. After updating atomic
coordinates, atoms outside the resident domain are transferred via
message passing.

2.4. Parallel MD algorithms

In an MD simulation, the force on an atom i is determined by
the positions of neighbouring atoms within a finite interaction
range. For this reason, spatial decomposition is commonly
used to parallelize MD simulations [21]. Using the divide-and-
conquer strategy, the spatial decomposition technique divides
the simulation volume into P = Px ×Py ×Pz sub-domains of
equal volume, which are mapped onto processors in a parallel
computer. Atom i at position ri = (rix, riy, riz) belongs to the
spatial domain of processor p:

p = pxPyPz + pyPz + pz,

pα = 'riαPα/Lα(, (33)

where α denotes a Cartesian coordinate and Lα represent the
lengths of the MD box. Information about atomic positions
and velocities and atom types within the spatial sub-domain is
assigned to the processor p. The domain of every processor is
extended to access positions of atoms within a cutoff distance
from the boundaries of neighbouring processors, and the
subsequent force calculation is then local to the processor.
Figure 3 shows the ‘extended’ domain (red) of a processor p.
Atom information near the boundary of the neighbouring
processors is cached into p.

To minimize the communication time, each processor
is assigned a sufficiently large number of atoms so that
caching of atoms from neighbouring processors is negligible
compared with the local computation time. The internode
communication involves sending and receiving data from 26
neighbouring domains. In the ‘caching’ process, attributes of
the skin-layer atoms are sent to left, right, top, bottom, back
and front nearest neighbour processors consecutively. When
atoms move out of the domain of a processor after the position

updates, data attributes of those atoms are transferred to the
neighbouring processor. The Message passing interface (MPI)
library [22] is used to communicate between processors.

Linked-cell list and neighbour-list methods are also
used in our MD simulations. The linked-cell list
method decomposes the subsystem into smaller cells whose
dimensions are slightly larger than the potential cutoff, rc + δ,
where δ is the ‘skin’. To calculate the force on an atom, one
simply needs to calculate the contributions from atoms in the
same cell and from atoms in the 13 nearest neighbour cells
(with the use of Newton’s third law).

2.5. Performance of parallel MD algorithms

Shared-memory and distributed-memory systems are available
for parallel computations. In a shared-memory system, more
than one processor can access the same memory. The
size of the memory assigned to the processor is limited.
Multi-processor computers, where each processor runs tasks
independently of other processors, belong to this category.
Processors in one node have the advantage of fast data
communication speed.

In a distributed-memory machine, each processor has its
own private memory and inter-processor communication is
done via the interconnect. The data communication scheme in
such a machine is implemented by the end user using a parallel
programming library, such as message passing interface (MPI).
This architecture has the scalability advantage. A Beowulf
cluster is an example of a distributed-memory system.

A hybrid distributed-shared memory system is a
combination of the above two architectures. It consists
of linked computing nodes, where each node is a multi-
processor machine. The 6,120-processor Linux cluster at
the High Performance Computing Center (HPCC) at USC
and the 2,048-processor Linux clusters in our Collaboratory
for Advanced Computing and Simulations (CACS) use this
architecture.

The efficiency, E, is an important measure of parallel
algorithm. It is defined as

E =
Sp

p
=

WpT (W, 1)

PW1T (Wp, p)
. (34)

Sp is the speedup of the program on p processors:

Sp = S(W, p)

S(W, 1)
=

WpT (W, 1)

W1T (W, p)
, (35)

where T (W, 1) and T (W, p) are the total execution times
on 1 and p processors, respectively. In an ideal situation, a
simulation on p processors should be p times faster than on a
single processor with the same workload. Therefore, an ideal
algorithm has an efficiency of 1.

Figure 4 shows benchmark results for isogranular
(constant amount of computation per processor) scalability
on 212,992-processor BlueGene/L at the Lawrence Livermore
National Laboratory and 131,072-processor BlueGene/P at
the Argonne National Laboratory. In both cases the parallel
efficiency exceeds 0.97, showing excellent parallel scalability
of the divide-and-conquer scheme for MD simulations.
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Figure 4. Isognranular scalability of parallel MD algorithm on
BlueGene/L&P. The number of atoms per processor N/P is
2 044 416.

3. Results

3.1. Interaction and coalescence of voids and nanoductility
in silica glass

We have performed billion-atom MD simulations to study
the effect of dilatational strain on an ensemble of spherical
nanovoids in silica glass [6]. Two sets of initial configurations
of voids are considered; (i) voids in a regular configuration
and (ii) random, non-overlapping distribution of voids. The
void diameter is 3 nm and the minimum void–void separation
(centre-to-centre) in both systems is 6 nm. In total, 500 voids
are placed at the centre of the specimen, about 100 nm from
the boundaries in the x and y directions and 60 nm from the
boundaries in the z direction (the area enclosed by the red-
dotted line in figure 5). The system size is 319.5 × 296.7 ×
179.7 nm3.

To examine the growth of and the interaction between a
pair of voids, we have also performed simulations of 1 million
and 15 million atoms with various void sizes and initial inter-
void separations. The dimension of the 1 million-atom system
is (25.6 nm)3 and of the 15 million atoms system (62.8 nm)3.
We apply PBCs in the x, y and z directions. The simulations
are performed at constant strain rates of 108 or 109 s−1. The
strain is applied using the Parrinello–Rahman approach.

All silica glass specimens were prepared by the melt-
quench method and well thermalized at room temperature.
After creating spherical voids by removing atoms, the
conjugate gradient method is used to relax the system.
Then the systems are gradually heated to room temperature
and thermalized again. The total simulation times are 550 ps
for the 1 million-atom and 15 million-atom systems and 120 ps
for the billion-atom systems.

The snapshot in figure 6(a) shows the growth of two voids
in a million-atom system. The strain rate is 108 s−1, the initial
void diameter is 3 nm and the initial centre-to-centre distance
between the voids is 6 nm. Up to a strain of ε = 4%, the
voids grow independently as their diameters increase from 3 to

Figure 5. Schematic of the setup for the 500 void simulations.
Red-dotted lines indicate the region in which voids are initially
located either in a regular or random array.

3.5 nm. Further increase in the strain nucleates damage cavities
in the inter-void ligament region. To distinguish the effect of
inter-void interaction from individual void growth, we have
performed million-atom simulations for a single void under
exactly the same conditions. Figure 6(b) shows the ratio of the
porosity per void in the two-void system, φ2 to the porosity of
the single-void system, φ1, at small strains. Above ε = 7%, the
ratio φ2/φ1 is large and nanocracks appear on the void surface
in the two voids system. In addition, damage nanocavities
nucleate and grow in the inter-void ligament region. Finally
at ε = 8%, the ligament fractures when cavities coalesce. We
find that the relation between inter-void ligament distance and
initial void size in silica glass agrees qualitatively with Brown–
Embury criterion for ductile materials.

Significant structural changes occur in the ligament
region due to void–void interaction prior to ligament fracture.
Figures 6(c) and (d) show Si–O pair correlation function,
gSi–O(r), and Si–O–Si bond angle distribution, PSi–O–Si(θ),
before and after the strain is applied. At ε = 8%, the
height of the first peak in gSi–O(r) decreases significantly
from the unstrained case. This is caused by Si–O bond
breaking and a decrease in the atomic coordination. The
height of the second peak in gSi–O(r) also drops, indicating
structural changes in –Si–O–Si–O–Si– rings.

Our simulations reveal a novel damage cavity nucleation
mechanism via strain-enhanced defect transport; see
figures 7(a)–(c). In silica glass, each silicon atom has
four nearest neighbour oxygen atoms forming a SiO4

tetrahedron and oxygen atoms are bonded with two silicon
atoms connecting SiO4 tetrahedra at the corners. This
structure provides short-to-middle range order consisting
of nanometre size –Si–O–Si–O–Si–O– rings. Figure 7(a)

displays a snapshot of the unstrained Si–O bond network of
Si (yellow) and O (red) atoms in the inter-void ligament. The
blue, green and grey shaded areas highlight regions enclosed by
a 7-, 6- and 5-membered –O–Si–O–Si– rings, respectively. The

6



J. Phys. D: Appl. Phys. 42 (2009) 214011 K Nomura et al

( )

Figure 6. (a) Snapshot of voids and nanocavities at a strain rate of 108 s−1. (b) Strain dependence of the average porosity per void in the
two-void system, φ2, relative to the porosity of the single-void system φ1. (c) Si–O pair distribution functions and (d) Si–O–Si bond angle
distributions in the middle of the inter-void ligament in the unstrained and strained systems.

Figure 7. Bond switching mechanism involving non-bridging O atoms is shown in (a) and (b) by red and white dashed lines between blue
and white atoms. In (c), the white dashed line indicates bond switching between white and green O atoms.

blue sphere shows an initially undercoordinated O (only one Si
as a neighbour atom) that belongs to the 7-memberd ring. The
green and white spheres are O atoms with normal coordination
(2) at the beginning. Later on, these atoms play a pivotal
role in the nucleation and growth of a nanocavity. Increasing
the strain to 1%, the undercoordinated O (blue) acquires
normal coordination by bonding with a Si that was one of the
neighbours of O (white) (see figure 7)). This O (white) atom
ruptures a bond with the Si and becomes undercoordinated. As
a result, the 5-membered ring (grey) becomes a 12-membered
ring (increasing the volume of open space) and the 7-membered
ring (blue) shrinks to a 5-membered ring. Similarly at a strain
of 4%, one of the Si atoms connected with an O (green) breaks
its bond and forms a new bond with O (white) (see figure 7(c)).
Bond switching from Si–O (green) to Si–O (white) results in
11-membered (grey) and 10-membered (green) rings. Due to
two consecutive bond switching events, an undercoordinated O
effectively migrates. The transport of non-bridging O is driven
by stress gradients. This mechanism nucleates nanometre

size voids. We have observed the same mechanisms for the
nucleation and growth of damage nanocavities and inter-void
ligament failure in the 15 million-atom SiO2 glass at a strain
rate of 109 s−1.

Figures 8(a)–(f ) show the growth and coalescence of
voids when they are arranged in a regular array or distributed
randomly. These are the results of billion-atom simulations
in which the systems are subjected to a dilatational strain
rate of 109 s−1. In the case of a regular array of voids
(figures 8(a)–(c)), sheets of nanocavities nucleate in inter-void
ligaments and small cracks appear on void surfaces at ε =
4.5%. Nanocavity nucleation begins in ligaments bridging
the nearest and second nearest neighbour voids (diagonal
ligaments). The voids and nanocavities in ligaments continue
to grow until the strain reaches 9%, and then a number of
ligaments fracture at the corner boundaries of the regular array
(figure 8(a)). Figure 8(b) shows coalescence of multiple
voids at slightly larger strain ε = 10.5%. These fractures
of inter-void ligaments locally release strains, and as a result
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Figure 8. Growth of voids and void coalescence in a billion-atom
system under dilatational strain. The strain rate is 109 s−1. Panels
(a)–(c) show damage in a regular array of voids; and panels (d)–(f )
show damage in a random distribution of voids. For clarity, a slice
of the entire system is shown; (a) crack nucleation on void surfaces
at ε = 9%; (b) and (c) show void coalescence and inter-void
ligament failure at ε = 10.5% and ε = 12%, respectively. (d) a
snapshot of randomly distributed voids; (e) onset of void
coalescence and ligament failure at ε = 8% and (f ) formation of a
few large cavities at ε = 10%.

voids shrink and cracks on the void surfaces begin to heal.
At ε = 12%, many voids coalesce into a few large cavities
(figure 8(c)). Figures 8(d)–(f ) show snapshots of randomly
distributed voids at ε = 0%, 7% and 10%, respectively.
Overall the void growth and coalescence are similar to the
case of a regular array of voids. As the strain increases,
the voids first grow independently without any significant
damage around them. However, surface cracking and void
coalescence start at a strain of ∼8%. The void–void interaction
and eventual coalescence are again mediated by the nucleation
and growth of nanocavities in inter-void ligament regions.

We have performed percolation analysis to investigate the
porosity as a function of the applied strain. Figures 9(a)–(c)
show the spatial distribution of connected empty volumes in
the randomly distributed voids at ε = 5%, 8% and 10%,
respectively. At small strain, the size of each void is nearly
identical. Many voids merge into a few large cavities at
ε = 8%, where a sharp kink appears in the porosity–strain
curve (see figure 9(d)). Figure 9(c) shows a mosaic of cracks
resulting from the percolation of voids through the system at a
strain of 10%.

Figure 9. (a)–(c) Volumes of coalesced cavities in the random void
array system at ε = 5%, 8% and 10%, respectively. (d) Porosities
versus strain in billion-atom systems containing 500 identical voids
distributed regularly and randomly.

3.2. Dynamics of wing cracks and nanoscale damage in
silica glass

Figure 10(a) schematically shows the wing-crack simulation
setup. We first prepared a bulk a-SiO2 system with dimensions
120 × 120 × 15 (nm3) starting with an ideal β-cristobalite
crystal and using the melt-quench method. Next, PBCs are
removed in the x and y directions and a 40 nm long pre-crack is
inserted. Subsequently, the system is relaxed and quenched to
0 K. After applying the conjugate gradient method, the system
is thermalized at 10 K and confined by purely repulsive walls.
A rigid indenter applies an impulse load to the upper half of
the sample, but the lower half is not subjected to an external
load. The indenter speed is kept constant, either at 150 m s−1

or 375 m s−1, which are 5% and 12.5% of the Rayleigh wave
speed VR (∼ 3000 m s−1) in silica glass, respectively.

The crack morphology is examined using percolation
analysis (see figure 10(b)). We partition the simulation system
into small voxels, and each voxel is assigned a flag indicating
that the voxel is ‘filled’ if it contains an atom or otherwise
‘empty’. The voxel dimensions are (4.5 Å)3, which is the
second nearest neighbour Si–O distance. Breadth-first search
algorithm gives the shape of the crack for any given atomic
configuration. Any set of connected ‘empty’ is considered a
damage cavity if those voxels are disconnected from the pre-
crack.

In addition to the analyses of crack and void morphologies,
we monitor stress distributions around the pre-crack [5].
Atomistic-level stresses for distances greater than 10 nm from
the pre-crack tip show good agreement with mode II stress
distributions in linear elastic fracture mechanics (LEFM).
However, the stress distributions in the MD simulation differ
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Figure 10. Setup of the wing crack simulation. A yellow rectangular plate represents a rigid indenter and the blue parallelepiped is the
pre-cracked silica glass. The pre-crack length is 40 nm. The silica sample is confined in the x and y directions and PBC is applied in the
z direction. Inset shows a close-up view of the pre-crack tip and resolved coordinates x ′ and y ′ used for stress calculation. (b) Schematic of
the crack-morphology analysis. The system is divided into small cells and connected cells are identified by breadth-first search. The blue
cells represent the pre-crack and cracks emanating from there. Red, yellow and green cells indicate damage nanocavities.

Figure 11. (a) Snapshot of the pre-crack tip showing silicon (purple) and oxygen (light blue) atoms, and the nucleation of nanocavities
(black) due to frictional sliding of the crack surfaces; (b) atomistic view of kinks formed by nanocavities (black); (c) resolved tensile stress
σy′y′ , along the crack front (z) as a function of the distance, x ′, from the pre-crack tip. The resolved coordinates are obtained by rotating
x and y axes 70◦ around the z axis. The impact speed is 0.05vR, where vR is the Rayleigh wave speed.

significantly from the LEFM results for distances less than
10 nm from the pre-crack tip because of the discrete nature of
the material at such short distances.

When the compression wave generated by the indenter
pushing the upper half of the silica specimen (above the pre-
crack from left to right in figure 10(a)) reaches the pre-crack
tip, the top surface of the pre-crack begins to slide relative to
the bottom surface. This sliding motion nucleates damage
nanocavities at the pre-crack tip. Figures 11(a)–(b) show
atomic views of the nanocavity nucleations (black) and kinking
of the crack. Figure 11(c) is a plot of the stress component
σy ′y ′ , which is perpendicular to the kink direction, x ′, of the
pre-crack. The damage nanocavities grow and the crack bends
70◦ from the pre-crack in the direction of the maximum mode
I tension. This MD result agrees well not only with the
LEFM but also with macroscopic quasi-static and dynamic
compression experiments on brittle materials.

MD simulations also reveal that nanocavities coalesce to
form crack nanocolumns. Figure 12 shows the formation
and growth of a wing crack at (a) 19 ps and (b) 21 ps
after the load is applied. Nanocavities (red, yellow, orange,
green and dark blue) grow around the pre-crack and merge
into nanocolumns. A couple of picoseconds later, these
nanocavities and nanocolums join to form a wing crack.
Nanocavitation is observed in the tensile stress region ahead
of the moving crack tip. After reaching a length of 9 nm, the
wing crack encounters a compression wave reflected from the
right end of the system (see figure 10(a)). This makes the wing
crack recede in the next 7 ps at an average speed of 1300 m s−1.

Figure 12. Wing crack formation and growth, and damage cavities
(red, yellow, green, dark blue and orange).

We observe that the pre-crack grows when the wing crack
is healing and vice-versa. During the first healing of the wing
crack, the pre-crack length increases by 5 nm over 11 ps via
nucleation and coalescence of nanocavities formed in front
of the pre-crack. After that, the pre-crack starts receding
and is partially healed while the wing crack reemerges and
propagates at an average speed of 1500 m s−1. Figure 13 shows
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Figure 13. Second healing of the wing crack. (Right) Snapshot of
the wing crack and pre-crack right before the wing crack recedes.
The wing crack tip splits into two columns creating a few damage
cavities (green and red) near the tip. (Middle) In the next 4 ps the
wing crack recedes considerably and leaves damage cavities (red,
yellow, green and blue) behind. (Left) Snapshot of the wing crack
and cavities after healing. White arrows indicate positions of the
wing crack tip.

three snapshots of the wing crack during the second retreat at
72 ps (right), 76 ps (middle) and 80 ps (left), respectively. The
right snapshot shows that after reaching a maximum length of
27 nm the wing crack encounters compression waves from the
confining walls. Two large nanocativies (green and read) and a
few small cavities appear ahead of the wing crack and around
the pre-crack tip. The middle snapshot (at 76 ps) shows that
the wing crack recedes significantly leaving behind large (blue
and green) and small (red and yellow) nanocavities. The wing
crack stops receding and leaves behind damage nanocativies
(see the left snapshot at 80 ps). The average speed of the
receding wing crack is about 800 m s−1 and the residual length
of the wing crack is 13 nm. The wing crack propagates and
retreats repeatedly, and this kind of ‘initiation, growth and
arrest’ of wing cracks under lateral confinement have also been
observed in dynamic compression experiments on a ceramic
glass [23].

At the higher impact loading speed, vi = 0.125vR,
we observe similar mechanisms for wing crack formation
via the nucleation, growth and coalescence of nanocavities
and nanocolumns. The pre-crack tip again kinks towards
maximum mode I tension (70◦ around the z axis) and grows to
a length of 21 nm over 17.5 ps. Over the next 10 ps, the wing
crack propagates in the direction of maximum compression at
one-third the speed of Rayleigh waves. This change in the
direction of the wing crack propagation towards maximum
compression is always observed in quasi-static and dynamic
compression experiments.

We find significant differences in the healing of the wing
crack and resulting damage nanocavities from those at the
lower impact loading speed. In figure 14, the right snapshot
(at 40 ps) shows the wing crack and nanocavities right after
the crack reaches a maximum length of 31 nm. At 45 ps, the
wing crack splits off and leaves behind a 20 nm long cavity
(red) due to the arrival of compression wave reflected from the

Figure 14. Snapshots of the wing crack and nanocavities at
0.125vR, where vR is the Rayleigh wave speed in silica glass.
(Right) snapshot shows the wing crack turned in the loading
direction; (middle) a large cavity (red) splits off the wing crack;
(left) after 4 ps the cavity merges with the wing crack. A secondary
wing crack appears behind the main wing crack.

sidewalls. The crack continues to heal and the cavity rejoins
the crack shortly after the passage of compression wave. A
secondary wing crack nucleates and residual damage cavities
remain ahead of the retreating crack (at 56 ps). On running
the simulation longer, we again observe repeated growth-and-
retreat sequence of the wing crack.

4. Work in progress

Currently we are investigating (1) the effect of strain rate in
MD simulations on deformation and fracture in silica glass
and (2) SCC of a-SiO2 in the presence of water using a hybrid,
multiscale approach. We are performing multimillion-atom
simulations of damage evolution during crack propagation in
silica glass over microsecond time scales. In this simulation,
the strain rate is several orders of magnitude less than those in
the simulations presented in sections 3.1 and 3.2.

SCC is a challenging simulation problem [24, 25]. To do
meaningful SCC simulations, multiple size domains need to
be considered and each of these domains requires a different
computational approach. The domains need to be nested,
as regions far from process zones do not need the detailed
description necessary for accurate prediction near the crack tip.

Near the crack tip, QM simulations based on DFT
are performed. Usually, the QM region is surrounded by
an effective force field (EFF) MD. The QM/EFF boundary
has been the subject of many studies over the last few
years, and although this has resulted in several reasonably
successful hybrid simulation schemes, a straightforward,
material-independent communication strategy between these
methods still remains elusive. The problem at the QM/EFF
interface lies in the fact that the charge flow and bond breaking
events at the QM electronic scale are difficult to translate
into the regime of rigid bonding/fixed point charges usually
employed at the EFF-level.

To facilitate a smooth transition between QM and EFF, it
is necessary to insert a computational method that shares many
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common features with both approaches. It must have the ability
to dissociate and create chemical bonds and handle charge
flow by employing a chemical-environment dependent charge
model. Goddard and co-workers have developed the first-
principles based reactive force fields (ReaxFF) [26] to interface
QM and EFF-methods. ReaxFF studies have already been
reported for a wide range of materials, including ceramics,
metals and metal oxides.

Our effort to simulate SCC in silica glass builds
upon our recent work on multiscale QM/MD/finite element
(FE) simulations, including ReaxFF-MD studies of reactive
materials. We have performed a hybrid MD/DFT simulation
study of the reaction of water at a crack tip in silicon [27].
The simulation shows significant dependence of the reaction
between H2O molecules and the crack on the stress intensity
factor.

We have also performed hybrid MD/FE simulation on
a silicon/silicon-nitride nanopixel [28], which is commonly
used in microelectronics. The hybrid approach involves
MD simulation near the Si/Si3N4 interface and FE modelling
deep into the Si substrate, thereby significantly increasing the
accessible length scales and greatly reducing the computational
cost. Displacement fields of the full MD and the hybrid MD/FE
simulations are in excellent agreement with each other. The
MD/FE results for residual stresses in the nanopixel are also
in agreement with the full MD calculation.

Recently we have successfully demonstrated a tightly
coupled, hybrid QM/MD simulation of SIMOX (separation
by implanted oxygen) technique [29]. The simulation
ran on six supercomputers in the US (National Center for
Supercomputing Applications, Pittsburgh Supercomputing
Center, University of Southern California) and Japan
(Advanced Industrial Science and Technology, Tokyo Institute
of Technology and University of Tokyo) using a reservation-
based sustainable adaptive Grid supercomputing paradigm.

Our latest effort in hybrid simulation algorithms involves
the development of an atomistic/continuum simulation scheme
for solid–liquid interfaces. We have coupled MD with
the mesoscopic lattice-Boltzmann (LB) method using the
Schwartz alternating method, which iteratively finds a
consistent solution in the atomistic and continuum domains by
implicitly imposing flux continuity but without direct exchange
of fluxes. In our implementation, PBC is not invoked but the
density in the MD region is kept constant by applying a mean
boundary force and by using specular walls and an efficient
particle insertion scheme.

In the continuum domain, we use the LB method to
solve a minimal form of the Boltzmann kinetic equation
ignoring all details of molecular motion except those needed
to recover hydrodynamic behaviour at the macroscopic scale.
For hierarchical fluid flow simulations, we have developed
an extensible LB computational framework for tera-to-
petascale parallel/distributed platforms. The LB framework
includes scalable algorithms and tools as well as capabilities
for handling, analysing and visualizing petabyte simulation
datasets. It allows collaborative construction and execution
of complex, multi-component, computationally demanding
hybrid numerical simulations of fluid flow. We have

Figure 15. Snapshot of fluid flow in fractured silica performed on
the PlayStation3 cluster. Here the magnitude of the fluid velocity is
colour-coded.

achieved scalability beyond 105 processors through linear-
scaling algorithms and performance-optimization techniques.
Recently, we have performed the LB simulations of fluid flow
through a network of cracks in amorphous silica on a cluster
of cell processors using PlayStation3 consoles [30, 31]; see
figure 15.
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