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Abstract

A scalable parallel algorithm has been designed to perform multimillion-atom molecular dynamics (MD) simulations, in which first principles-
based reactive force fields (ReaxFF) describe chemical reactions. Environment-dependent bond orders associated with atomic pairs and their
derivatives are reused extensively with the aid of linked-list cells to minimize the computation associated with atomic n-tuple interactions (n � 4
explicitly and �6 due to chain-rule differentiation). These n-tuple computations are made modular, so that they can be reconfigured effectively
with a multiple time-step integrator to further reduce the computation time. Atomic charges are updated dynamically with an electronegativity
equalization method, by iteratively minimizing the electrostatic energy with the charge-neutrality constraint. The ReaxFF-MD simulation algo-
rithm has been implemented on parallel computers based on a spatial decomposition scheme combined with distributed n-tuple data structures.
The measured parallel efficiency of the parallel ReaxFF-MD algorithm is 0.998 on 131,072 IBM BlueGene/L processors for a 1.01 billion-atom
RDX system.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Molecular dynamics (MD) is an atomistic simulation method for studying a wide class of materials, such as metals, ceramics, and
biomolecules under ambient as well as extreme conditions. Continuous efforts are being made to incorporate chemical reactions into
MD simulations, so that broad material processes such as catalysis, corrosion and detonation can be studied. Currently, a number
of software packages are available for first-principles MD simulations based on quantum mechanical (QM) calculations to describe
reactive events such as bond breaking and formation [1]. One of the longstanding problems in materials science is mechanically
induced chemical reaction such as stress corrosion cracking and shock-induced detonation [2,3], which may drastically change
material properties. A study of chemical reactions induced by mechanical loading is a challenging task, because they are often
inseparable from geometrical heterogeneity involving millions of atoms. Their understanding thus requires the combination of vast
spatial extent and accurate chemistry. Because of the intensive computational requirement and poor scalability, however, the system
size in QM simulations is usually limited to ∼102 atoms. One approach to tackle this problem is the hybridization of different
methodologies, such as QM/molecular mechanics (MM) schemes [4–8]. However, they require adaptive selection of reactive sites
and sophisticated treatment of QM/MM boundaries, which are nontrivial for complex mechanochemical processes.

An alternative approach is to fit essential chemical reactions by semi-empirical force fields [9–11], in which parameterized in-
teratomic potentials are “trained” to reproduce datasets obtained with accurate QM calculations. Recent advances in reactive force
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fields (ReaxFF) [12–14] have opened up a possibility to study reactive processes in a wide range of materials such as hydrocar-
bons [12], silica [13], alumina [15], nitramines [14], catalysts [16], and polymers [17]. We have recently developed a scalable
implementation of ReaxFF MD on massively parallel computers, which provides us with the requisite coupling of quantum-
mechanically accurate description of chemical reactions and large length-scale mechanical processes to study mechanochemical
processes under extreme conditions. For example, our parallel ReaxFF algorithm has enabled million-to-billion atom MD simula-
tions on a large number (∼105) of processors to study shock-induced initiation of energetic materials, with focuses on the effects of
microstructures (e.g., voids and grain boundaries) and nanofluidics (e.g., nanojets) on chemical reactions [18,19]. In this paper, we
present the design and implementation of our parallel ReaxFF algorithm along with its scalability tests on various parallel comput-
ers. Section 2 describes the ReaxFF MD algorithm, and its parallel implementation is discussed in Section 3. Results of benchmark
tests are presented in Section 4, and Section 5 contains summary.

2. Reactive force field molecular dynamics algorithm

In the reactive force field (ReaxFF), interatomic interactions between N atoms comprise valence interactions described with
bond order (BO) as well as noncovalent interactions [16]:

EReaxFF
({rij }, {rijk}, {rijkl}, {qi}, {BOij }

) = Ebond + Elp + Eover + Eunder + Eval + Epen + Ecoa + Etors

(1)+ Econj + Ehbond + EvdWaals + ECoulomb,

in which the valence interactions include the bonding energy Ebond, lone-pair energy Elp, overcoordination energy Eover, underco-
ordination energy Eunder, valence-angle energy Eval, penalty energy Epen, 3-body conjugation energy Ecoa, torsion-angle energy
Etors, 4-body conjugation energy Econj, and hydrogen bonding energy Ehbond. In Eq. (1), the total energy is a function of relative
positions of atomic pairs, rij , triplets, rijk , and quadruplets, rijkl , as well as atomic charges qi and bond orders BOij between atomic
pairs. The noncovalent interactions comprise van der Waals energy EvdWaals and Coulomb energy ECoulomb, which are screened
by a taper function [12]. ReaxFF also incorporates a charge transfer mechanism to describe realistic chemical reaction pathways.
The environment-dependent charge distribution is described using the electronegativity equalization method (EEM) [20], in which
individual atomic charges vary in time. The analytical formulas for these energy terms are given in the following subsections.

2.1. Bond-order calculation

An essential building block of ReaxFF is the bond order that describes the nature of covalent bonds in terms of three exponential
functions corresponding to σ,π and double-π bonds. The bond order BOij is an attribute of atomic pair (i, j ), where i, j = 1, . . . ,N

with N being the number of atoms. The BO calculation in ReaxFF involves two steps. The first step computes raw BOs, BO′
ij , that

are simply functions of the interatomic distances of all pairs of atoms within single covalent-bond cutoff distance rcb (typically
3–4 Å). In the second step, each raw BO is corrected as a function of the valencies, Δ′

i and Δ′
j , of the atoms comprising the pair to

obtain the full bond order BOij . Many-body effects are implicitly included through the valency terms.
We first compute the raw bond order BO′

ij as a sum of σ,π and double-π bond contributions,

(2)BO′
ij = BO′σ

ij + BO′π
ij + BO′ππ

ij = exp

[
pbo1

(
rij

rσ
o

)pbo2
]

+ exp

[
pbo3

(
rij

rπ
o

)pbo4
]

+ exp

[
pbo5

(
rij

rππ
o

)pbo6
]
,

where rij = |rij | = |ri − rj | is the interatomic distance between ith and j th atoms (ri is the position of the ith atom). These raw
bond orders are subsequently corrected to produce correct atomic valences as

(3a)BOij = BOσ
ij + BOπ

ij + BOππ
ij ,

(3b)BOσ
ij = BO′σ

ij · f1
(
Δ′

i ,Δ
′
j

) · f4
(
Δ′

i ,BO′
ij

) · f5
(
Δ′

j ,BO′
ij

)
,

(3c)BOπ
ij = BO′π

ij · f1
(
Δ′

i ,Δ
′
j

) · f1
(
Δ′

i ,Δ
′
j

) · f4
(
Δ′

i ,BO′
ij

) · f5
(
Δ′

j ,BO′
ij

)
,

(3d)BOππ
ij = BO′ππ

ij · f1
(
Δ′

i ,Δ
′
j

) · f1
(
Δ′

i ,Δ
′
j

) · f4
(
Δ′

i ,BO′
ij

) · f5
(
Δ′

j ,BO′
ij

)
,

(3e)Δ′
i = −Vali +

∑
j∈n(i)

BO′
ij ,

(3f)f1(Δi,Δj ) = 1

2

( Vali + f2(Δ
′
i ,Δ

′
j )

Vali + f2(Δ
′
i ,Δ

′
j ) + f3(Δ

′
i ,Δ

′
j )

+ Valj + f2(Δ
′
i ,Δ

′
j )

Valj + f2(Δ
′
i ,Δ

′
j ) + f3(Δ

′
i ,Δ

′
j )

)
,

(3g)f2(Δ
′
i ,Δ

′
j ) = exp(−pboc1Δ

′
i ) + exp(−pboc1Δ

′
j ),

(3h)f3(Δ
′
i ,Δ

′
j ) = − 1

pboc2
ln

{
1

2

[
exp(−pboc2Δ

′
i ) + exp(−pboc2Δ

′
j )

]}
,
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Table 1
Bond-order calculation algorithm

Algorithm BO_calc
Input:

{ri |i = 1, . . . ,N} = set of atomic positions, where N is the number of atoms
{n(i)} = set of neighbor lists, where n(i) is the list of neighbor atoms of the ith atom

Output:
{BOij } = set of full bond orders
{Δi } = set of full valencies

Variables:
{BO′

ij
} = set of raw bond orders

{Δ′
i
} = set of raw valencies

Steps:
1 compute raw bond orders {BO′

ij
} and valencies {Δ′

i
}

for each atom ri

for each atom rj ∈ n(i)

BO′
ij

← BO′σ
ij

(rij ) + BO′π
ij

(rij ) + BO′ππ
ij

(rij ) // see Eq. (2)

Δ′
i
← −Vali // Vali is atomic valency in Eq. (3e)

for each atom ri

for each atom rj ∈ n(i)

Δ′
i
← Δ′

i
+ BO′

ij
// Eq. (3e)

2 compute full bond orders {BOij } and valencies {Δi }
for each atom ri

for each atom rj ∈ n(i)

BOij ← BO′
ij

× f1 × f4 × f5 // f1, f4 and f5 are BO correction functions in Eq. (3)

Δi ← −Vali
for each atom ri

for each atom rj ∈ n(i)

Δi ← Δi + BOij // Eq. (4)

(3i)f4(Δ
′
i ,BO′

ij ) = 1

1 + exp(−pboc3(pboc4BO′
ij BO′

ij − Δ′boc
i ) + pboc5)

,

(3j)f5(Δ
′
j ,BO′

ij ) = 1

1 + exp(−pboc3(pboc4BO′
ij BO′

ij − Δ′boc
j ) + pboc5)

,

(3k)Δ′boc
i = −Valboc

i +
∑

j∈n(i)

BO′
ij ,

where n(i) is the set of neighbor atoms that are within single covalent-bond cutoff distance rcb from the ith atom, and the parameters
in Eqs. (2) and (3) are listed in Table A.1 in Appendix A. After the bond orders BOij are computed for all pairs (i, j), the valency
of the ith atom is computed as

(4)Δi = −Vali +
∑

j∈n(i)

BOij .

Table 1 shows the BO calculation algorithm, BO_calc. The algorithm also computes full valencies Δi as a function of the
corrected bond orders BOij (Eq. (4)). To avoid repeated computation of BO derivative values in subsequent energy and force
calculations, we compute the derivative of BOs with respect to the raw BO and valency here and keep them until the atomic
coordinates are updated.

2.2. Energy and force calculations

The various interaction functions in Eq. (1) represent a variety of chemistries, which can be grouped according to 1) valence or
noncovalent type, 2) number of explicitly involved atoms, and 3) degree of the neighbor-atom effect. Here, the number of explicitly
involved atoms is the nesting level of summations that constitute each energy term (e.g., 3 for the triply nested summation in Eval in
Section 2.2.3 below). The degree of the neighbor-atom effect is defined as the number of implicitly involved loops through valency
terms in the energy functions. For example, the corrected valency term Δi is of second degree, since its evaluation includes doubly
nested sums:

(5)
∑
j

BOij (BO′
ij ,Δ

′
i ,Δ

′
j ) =

∑
j

BOij

(
BO′

ij ,Δ
′
i

(∑
m

BO′
im

)
,Δ′

j

(∑
n

BO′
jn

))
.
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Table 2
Classification of interaction functions

Number of explicit atoms Energy terms

1 Elp(2),Eover(3),Eunder(3)

2 Ebond(1),EvdWaals(0)a, ECoulomb(0)a

3 Eval(2),Epen(2),Ecoa(2),Ehbond(2)

4 Etors(2),Econj(2)

a Noncovalent interactions. The numbers in the parentheses are the greatest
degrees of the neighbor atom effect.

Fig. 1. Schematic of atomic configurations in energy terms: (a) 1-body, (b) 2-body, (c) 3-body, (d) 4-body, (e) hydrogen–bonding and (f) noncovalent interactions,
respectively. A gray sphere represents the position of the primary atom in each energy term. Open bars represent covalent bonds, while dotted lines are noncovalent
bonds.

In this subsection, we first explain the nature of interaction functions, which is essential to map them onto a parallel computer. We
then present actual algorithms.

Table 2 classifies the energy terms according to the number of explicitly involved atoms. The noncovalent interactions are pair-
wise 2-body functions with two explicit atoms, while valence terms involve up to four explicit atoms. Each explicit atom implicitly
involves effects from surrounding atoms through BO and valency terms. The implicit atoms require additional computations and
incur increased cutoff distances. For example, in force calculation, the corrected valency term Δi causes a doubly nested loop over
a neighbor list of the ith atom with the associated computational cost O(M2), where M is the average number of covalent bonds
per atom. The interaction cutoff length is accordingly increased to 2rcb. The level of neighbor list is thus regarded as the degree of
environment effect. The numbers in the parentheses in Table 2 shows the greatest degree of neighbor-atom effect among explicit
atoms.

Fig. 1 shows the configurations of atoms involved in the computation of 1-body, 2-body, 3-body, 4-body, hydrogen–bonding and
noncovalent energy functions, respectively. In the figure, a gray sphere represents the position of a primary atom scanned by the
outermost loop of each energy-term calculation. The primary atoms play a pivotal role on our parallel implementation in Section 3.

Note that the energy terms in ReaxFF share common computational structures. In addition to algorithms to compute individual
energy terms, we define two algorithms, force_BO and force_Δ, which constitute the kernel of energy and force calculations. The
force_BO and force_Δ algorithms are given in Tables 3 and 4, respectively. The algorithm force_BO in Table 3 computes force
components involved in single BO term, where the A1,A2 and A3 terms are the pre-computed derivatives of BOij with respect to
BO′

ij ,Δ
′
i and Δ′

j , respectively. The algorithm force_Δ in Table 4 computes the force contributions arising from the derivative with
respect to Δi , which is simply a wrapper function of force_BO looping over the neighbor list of the ith atom.

We now define six algorithms (5 valence and 1 noncovalent) for force calculations, each of which contains energy functions shar-
ing the same computational characteristics, in Sections 2.2.1–2.2.6. Combined with a multiple time-step integrator, this grouping
of the force components facilitates efficient time integration, which will be discussed in Section 2.4.

2.2.1. 1-body energies
Among the six force-calculation algorithms, force_1body is responsible for the 1-body energy calculations Elp,Eover and Eunder,

which contain one explicit atom, see Eqs. (6)–(8). Here, the valency term in the lone-pair function Δe
i , the number of lone pair

electrons nlp,i , the coordination effect Δ
lp
i , and the correction term Δ

lpcorr
i due to lone-pair electrons in the over/under coordination

energy function Eover and Eunder are defined in Eq. (9). The parameters in Eqs. (6)–(9) are listed in Table A.2 in Appendix A.

(6)Elp =
∑

i

plp2Δ
lp
i

1 + exp(−75Δ
lp
i )

,
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Table 3
Force calculation arising from the derivative of BOij

Algorithm force_BO
Input:

{ri } = set of atomic positions
n(i), n(j) = lists of neighbor atoms for the ith and j th atoms
CBO = ∂E/∂BOij

Output:
{fi } = set of updated atomic forces

Steps:
fi ← fi + CBO × A1 × rij // A1 = (∂BOij /∂BO′

ij
)(∂BO′

ij
/∂rij )

fj ← fj + CBO × A1 × rji

for each atom rk ∈ n(i)

fi ← fi + CBO × A2 × rik // A2 = (∂BOij /∂Δ′
i
)(∂Δ′

i
/∂rik)

fk ← fk + CBO × A2 × rki

for each atom rk ∈ n(j)

fj ← fj + CBO × A3 × rjk // A3 = (∂BOij /∂Δ′
j
)(∂Δ′

j
/∂rjk)

fk ← fk + CBO × A3 × rkj

Table 4
Force-calculation arising from the derivative of Δi

Algorithm force_Δ

Input:
{ri } = set of atomic positions
n(i) = list of neighbor atoms for the ith atom
CΔ = ∂E/∂Δi

Output:
{fi } = set of updated atomic forces

Steps:
for each atom rj ∈ n(i)

call force_BO(ri , rj ,CΔ)

(7)Eover =
∑

i

∑
j∈n(i) povun1D

σ
e BOij

Δ
lpcorr
i + Vali

Δ
lpcorr
i

[
1

1 + exp(povun2Δ
lpcorr
i )

]
,

(8)Eunder =
∑

i

(−povun5)
1 − exp(povun6Δ

lpcorr
i )

1 + exp(−povun2Δ
lpcorr
i )

1

1 + povun7 exp[povun8
∑

j∈n(i)(Δj − Δ
lp
j )(BOπ

ij + BOππ
ij )]

,

(9a)Δe
i = −Valei +

∑
j∈n(i)

BOij ,

(9b)nlp,i =
⌊

Δe
i

2

⌋
+ exp

⌊
−plp1

(
2 + Δe

i − 2

⌊
Δe

i

2

⌋)2⌋
,

(9c)Δ
lp
i = nlp-opt,i − nlp,i ,

(9d)Δ
lpcorr
i = Δi − Δ

lp
i

1 + povun3 exp(povun4
∑

j∈n(i)(Δj − Δ
lp
j )(BOπ

ij + BOππ
ij ))

.

Due to the triply nested neighbor-list loops in the summation of the valency Δ (see Table 5), force_1body requires the traversal
of a deep tree structure emanating from each primary atom in force computation with a relatively large interaction cutoff distance.
In Table 5, E1body denotes one of Elp,Eover and Eunder terms.

2.2.2. Bonding (2-body) energy
Ebond in Eq. (10) describes the covalent bond energy of atomic pairs, which includes energy contributions from the σ,π and

double-π bond terms. The parameters in the 2-body interactions are listed in Table A.3 in Appendix A.

(10)Ebond =
∑

i

∑
j

⌊−Dσ
e · BOσ

ij · exp
[
pbe1

(
1 − (

BOσ
ij

)pbe2
)] − Dπ

e · BOπ
ij − Dππ

e · BOππ
ij

⌋
.

Algorithm force_2body in Table 6 computes Ebond. Though Table 6 does not distinguish the σ,π and double-π sub-terms for
simplicity, they are handled simply by inputting different derivatives in algorithm force_BO. In Table 6, ID(i) denotes a sequential
index of the ith atom. (Our parallel MD algorithm maintains global sequential indices over all atoms across processors.)
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Table 5
1-body force calculation

Algorithm force_1body
Input:

{ri} = set of atomic positions
{n(i)} = set of neighbor lists, where n(i) is the list of neighbor atoms of the ith atom

Output:
{fi } = set of atomic forces

Variables:
C1 = ∂E1body/∂BOij ,C2 = ∂E1body/∂Δi

Steps:
for each atom ri

compute C1 and C2
for each atom rj ∈ n(i)

call force_BO(ri , rj ,C1)

call force_Δ(rj ,C2)

Table 6
2-body force calculation

Algorithm force_2body
Input:

{ri} = set of atomic positions
{n(i)} = set of neighbor lists, where n(i) is the list of neighbor atoms of ith atom

Output:
{fi } = set of atomic forces

Variables:
C3 = ∂Ebond/∂BOij

Steps:
for each atom ri

for each atom rj ∈ n(i)

if (ID(i) > ID(j)) then
compute C3
call force_BO(ri , rj ,C3)

2.2.3. 3-body energies
The 3-body interaction functions, Eval,Epen, and Ecoa in Eqs. (11)–(13), describe the stability of the valence angle Θijk and

covalent bonds between (i, j) and (j, k) atoms. In Eval, the function f7 in Eq. (11a) guarantees that the energy term goes to zero
as the two covalent bonds from the center atom dissociate. Eqs. (11c)–(11f) compute the equilibrium valence angle taking into
account π , double-π and lone pair electron effects. Epen is the penalty energy function in atomic triplets. Ecoa is the conjugation
energy among triplet atoms, for example an NO2 group in nitramines. The parameters in Eqs. (11)–(13) are listed in Table A.4
in Appendix A.

(11)Eval =
∑

i

∑
j

∑
k

f7(BOij )f7(BOjk)f8(Δj )
{
pval1 − pval1 exp

[−pval2
(
Θ0(SBOj ) − Θijk

)2]}
,

(11a)f7(BOij ) = 1 − exp
(−pval3BOpval4

ij

)
,

(11b)f8(Δj ) = pval5 − (pval5 − 1)
2 + exp(pval6Δ

angle
j )

1 + exp(pval6Δ
angle
j ) + exp(−pval7Δ

angle
j )

,

(11c)SBOj =
∑

m∈n(j)

(
BOπ

jm + BOππ
jm

) +
[

1 −
∏

m∈n(j)

exp
(−BO8

jm

)](−Δ
angle
j − pval8nlp,j

)
,

(11d)Δ
angle
j = −Valangle

j +
∑

m∈n(i)

BOjm,

(11e)SBO2 =

⎧⎪⎨
⎪⎩

0 (SBO � 0)

SBOpval9 (0 < SBO � 1)

2 − (2 − SBO)pval9 (1 < SBO � 2)

2 (SBO > 2)

,

(11f)Θ0(SBO) = π − Θ0,0
{
1 − exp

[−pval10(2 − SBO2)
]}

,
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Table 7
3-body force calculation

Algorithm force_3body
Input:

{ri} = set of atomic positions
{n(i)} = set of neighbor lists, where n(i) is the list of neighbor atoms of ith atom

Output:
{fi } = set of atomic forces

Variables:
C4ij = ∂E3body/∂BOij ,C4jk = ∂E3body/∂BOjk

C5i = ∂E3body/∂Δi,C5j = ∂E3body/∂Δj ,C5k = ∂E3body/∂Δk

Steps:
for each atom rj

for each atom ri ∈ n(j)

for each atom rk ∈ n(j)

if (ID(i) > ID(k)) then
compute C4 and C5
call force_BO(ri , rj ,C4ij )

call force_BO(rj , rk,C4jk)

call force_Δ(ri ,C5i )

call force_Δ(rj ,C5j )

call force_Δ(rk,C5k)

compute force components from 3-body angle derivatives

(12)Epen =
∑

i

∑
j

∑
k

ppen1f9(Δj ) exp
[−ppen2(BOij − 2)2] exp

[−ppen2(BOjk − 2)2],

(12a)f9(Δj ) = 2 + exp(−ppen3Δj)

1 + exp(−ppen3Δj) + exp(ppen4Δj)
,

Ecoa =
∑

i

∑
j

∑
k

pcoa1
1

1 + exp(pcoa2Δ
val
j )

exp

[
−pcoa3

(
−BOij +

∑
m∈n(i)

BOim

)2]

(13)× exp

[
−pcoa3

(
−BOjk +

∑
m∈n(k)

BOkm

)2]
exp

[−pcoa4(BOij − 1.5)2] exp
[−pcoa4(BOjk − 1.5)2].

Algorithm force_3body in Table 7 computes Eval,Epen and Ecoa energies, which have three explicit atoms (Eqs. (11)–(13)). In
force_3body (and also in force_4body described below), the force arising from angular derivatives needs to be computed separately
from BO derivatives, as is described elsewhere [21]. In Table 7, E3body denotes one of Eval,Epen and Ecoa.

2.2.4. 4-body energies and parameters
4-body dihedral angle energy Etors and 4-body conjugation energy Econj are described by Eqs. (14) and (15). The angles Θijk

and Θjkl are computed from atom triplets (i, j, k) and (j, k, l). The dihedral angle ωijkl is the angle between the two planes defined
by the two atom triplets. The parameters in the 4-body interactions are listed in Table A.5 in Appendix A.

Etors = 1

2

∑
i

∑
j

∑
k

∑
l

f10(BOij ,BOjk,BOkl) sinΘijk sinΘjkl

(14)× [
V1(1 + cosωijkl) + V2 exp

{
ptor1

(
2 − BOπ

jk − f11(Δj ,Δk)
)2}

(1 − cos 2ωijkl) + V3(1 + cos 3ωijkl)
]
,

(14a)f10(BOij ,BOjk,BOkl) = [
1 − exp(−ptor2BOij )

][
1 − exp(−ptor2BOjk)

][
1 − exp(−ptor2BOkl)

]
,

(14b)f11(Δj ,Δk) = 2 + exp[−ptor3(Δ
angle
j + Δ

angle
k )]

1 + exp[−ptor3(Δ
angle
j + Δ

angle
k )] + exp[ptor4(Δ

angle
j + Δ

angle
k )]

,

(15)Econj =
∑

i

∑
j

∑
k

∑
l

pcot1f12(BOij ,BOjk,BOkl)
[
1 + (

cos2 ωijkl − 1
)

sinΘijk sinΘjkl

]
,

(15a)f12(BOij ,BOjk,BOkl) = exp
[−pcot2(BOij − 1.5)2] exp

[−pcot2(BOjk − 1.5)2] exp
[−pcot2(BOkl − 1.5)2].
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Table 8
4-body force calculation

Algorithm force_4body
Input:

{ri} = set of atomic positions
{n(i)} = set of neighbor lists, where n(i) is the list of neighbor atoms of ith atom

Output:
{fi } = set of atomic forces

Variables:
C6ij = ∂E4body/∂BOij , C6jk = ∂E4body/∂BOjk , C6kl = ∂E4body/∂BOkl

C7j = ∂E4body/∂Δj , C7k = ∂E4body/∂Δk

Steps:
for each atom rj

for each atom rk ∈ n(j)

if (ID(j) > ID(k)) then
for each atom ri ∈ n(j)

if (ID(i) �= ID(k)) then
for each atom rl ∈ n(k)

if (ID(i) �= ID(k) and ID(i) �= ID(l) and ID(j) �= ID(l)) then
compute C6 and C7
call force_BO(ri , rj ,C6ij )

call force_BO(rj , rk,C6jk)

call force_BO(rk, rl ,C6kl )

call force_Δ(rj ,C7j )

call force_Δ(rk,C7k)

compute force components from 4-body angle derivatives

Algorithm force_4body in Table 8 computes Etors and Econj energies that involve four explicit atoms (Eqs. (14) and (15)).
force_4body consumes large amount of computation time to handle atomic quadruplets at every MD step, which can be reduced by
the multiple time-step scheme described in Section 2.4. In Table 8, E4body denotes either Econj or Etors.

2.2.5. Hydrogen–bonding energy and parameters
The hydrogen–bonding energy function Ehbond in Eq. (16) takes a 3-body interaction form, i.e., as a function of the (i, j) and

(j, k) bonds as well as the angle Θijk . The Ehbond term thus consists of three explicit atoms, where the j th atom is hydrogen,
the ith atom is chosen from atom j ’s neighbor list, and the kth atom is selected within the noncovalent interaction cutoff radius
rcnb(∼10 Å) from atom i. The parameters in the hydrogen–bonding interactions are listed in Table A.6 in Appendix A.

(16)Ehbond =
∑

i

∑
j

∑
k

phb1
[
1 − exp(phb2BOij )

]
exp

[
phb3

(
ro

hb

rjk

+ rjk

ro
hb

− 2

)]
sin8

(
Θijk

2

)
.

To handle the unique form of Ehbond, we define a separate algorithm force_hbond in Table 9. Because of its asymmetric structure
consisting of valence and noncovalent bonds, it is necessary that atomic triplets (i, j, k) and (k, j, i) are dealt differently. Forces
arising from the derivative with respect to noncovalent atoms k are thus computed separately in Table 9.

Table 9
Hydrogen–bonding force calculation

Algorithm force_hbond
Input:

{ri} = set of atomic positions
{n(i)} = set of neighbor lists, where n(i) is the list of neighbor atoms of ith atom

Output:
{fi } = set of atomic forces

Variables:
C8 = ∂Ehbond/∂BOij

Steps:
for each atom rj

for each atom ri ∈ n(j)

for each atom rk ∈ {rk ||rik | � rcnb}
compute C8
call force_BO(ri , rj ,C8)

compute force components from 3-body angle derivatives
compute force components from noncovalent term



Author's personal copy

K.-i. Nomura et al. / Computer Physics Communications 178 (2008) 73–87 81

Table 10
Noncovalent force calculation

Algorithm force_noncov
Input:

{ri } = set of atomic positions
Output:

{fi } = set of atomic forces
Variables:

C9 = ∂Enoncov/∂rij
Steps:

for each atom ri

for each atom rj ∈ {rj ||rij | � rcnb}
if (ID(i) > ID(j)) then

compute C9
compute energy and force components

2.2.6. Noncovalent energies and parameters
The noncovalent interactions consist of EvdWaals (Eq. (17)) and ECoulomb (Eq. (18)) terms. The functions are screened by a taper

function with a cutoff length rcnb in Eq. (17b), where the coefficients of the polynomial are Tap7 = 20, Tap6 = −70, Tap5 = 84,
Tap4 = −35, Tap3 = 0, Tap2 = 0, Tap1 = 0, and Tap0 = 1. Noncovalent energy functions in ReaxFF are all-atom interactions,
which do not require any exclusion rule [22] as in some other force fields.

(17)EvdWaals =
∑

i

∑
j

Dij Tap(rij )

{
exp

[
αij

(
1 − f13(rij )

rvdW

)]
− 2 exp

[
1

2
αij

(
1 − f13(rij )

rvdW

)]}
,

(17a)f13(rij ) =
[
r
pvdW1
ij +

(
1

γw

)pvdW1
]1/pvdW1

,

(17b)Tap(rij ) =
7∑

α=0

Tapα

(
rij

rcnb

)α

,

(18)ECoulomb
({ri}, {qi}

) =
∑

i

χiqi + 1

2

∑
i

∑
j

qiH(rij )qj ,

H(rij ) = Jiδij + Tap(rij )

[r3
ij + (1/γij )3]1/3

(1 − δij ),

(18a)δij =
{

1 (i = j)

0 (i �= j)

where χi is the electronegativity, Ji is the self Coulomb repulsion coefficient, and γij is a parameter for the smeared Coulombic
function.

Algorithm force_noncov in Table 10 computes van der Waals energy EvdWaals and Coulomb energy ECoulomb, which are functions
of interatomic distance with the cutoff distance rcnb (Eqs. (17) and (18)). We use potential tables to compute the noncovalent
interactions in order to reduce the number of floating-point operations. In Table 10, Enoncov denotes either EvdWaals or ECoulomb.
Since the noncovalent interactions are functions of interatomic distance, precomputing the function values along with a proper
interpolation scheme significantly reduce the computation time.

2.3. Electronegativity-equalization scheme

In ReaxFF, atomic charges qi are variables that change dynamically in time. Whenever after atom coordinates are updated,
the EEM subroutine updates the charge distribution {qi} by minimizing the Coulomb energy ECoulomb under the charge-neutrality
constraint,

∑
i qi = 0. With the Lagrange-multiplier method, the constrained energy minimization is equivalent to solving the

electronegativity equalization problem [20,23–25],

(19)gi ≡ −∂ECoulomb

∂qi

= −μ,

where μ is the electronegativity. We solve the constrained minimization problem using the conjugate-gradient method [26,27]
in Table 11, in which the gradient vector gi is orthogonalized to the uniform shift vector ei = 1(i = 1, . . . ,N). Because of the
electronegativity equalization condition, Eq. (19), the force contribution from ECoulomb({ri}, {qi}),

(20)−∂ECoulomb

∂ri

−
N∑

k=1

∂ECoulomb

∂qk

∂qk

∂ri

= −∂ECoulomb

∂ri

− μ
∂

∂ri

N∑
k=1

qk = −∂ECoulomb

∂ri

,
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Table 11
Electronegativity-equalization computation

Algorithm EEM
Input:

{ri} = set of atomic positions
Output:

{qi } = set of atomic charges
Variables:

{gi } = {−∂ECoulomb/∂qi } = gradient vector
{hi} = conjugate-gradient vector

Steps:
compute the initial gradient vector {g0

i
}

n ← 0
do

if (n = 1) then
h0
i

= g0
i

(i = 1 to N )
else

hn
i

← gn−1
i

+ gn−1
i

·gn−1
i

gn−2
i

·gn−2
i

hn−1
i

(i = 1 to N )

qn
i

← qn−1
i

+ gn−1
i

·gn−1
i

hn
i
·Hij ·hn

j
hn
i

(i = 1 to N )

gn
i

← gn−1
i

+ gn−1
i

·gn−1
i

hn
i
·Hij ·hn

j
Hij hn

j
(i = 1 to N )

n ← n + 1
until the energy is converged

does not contain chain-rule terms associated with variables qk , and thus the noncovalent force calculation described in Section 2.2.6
remains valid (the last equality in Eq. (20) results from the charge-neutrality condition,

∑
k qk = 0). It is also noteworthy that the

Hessian H(rij ) in Eq. (18) is a constant until atom coordinates are updated. Thus, reusing pre-computed H(rij ) during the EEM
loop in Table 11 significantly reduces the total computation time.

2.4. Time integrator

Our parallel ReaxFF algorithm employs the rRESPA time integrator [28–30], which is a time-reversible algorithm based on
symmetric Trotter decomposition of the time-propagation operator. It allows decomposing the energy functions into groups with
distinct characteristic time scales. Accordingly, the forces fi are decomposed into stiff force components fstiff,i , which need to be
updated with higher frequency, and soft and slowly varying force components fsoft,i :

(21)fi = fsoft,i + fstiff,i .

Table 12 shows the rRESPA algorithm comprising of a doubly nested time integration loop. The compute intensive force calcu-
lation (i.e., fsoft,i ) is performed only once per outer loop with a large time step Δt (typically Δt ∼ 1 fs). The atomic velocities are
updated according to fsoft,i at the beginning and the end of the outer loop. The inner loop updates the atomic positions and velocities
with a finer time resolution δt = Δt/Nmts using the stiff force components fstiff,i (typically Nmts ∼ 5).

It is often the case that the soft force components fsoft,i are computationally intensive [28]. Thus proper force decomposition
significantly reduces the total computation time. For example, in dense covalently bonded materials, the 4-body force calculation
is most time consuming. In test calculations on a diamond, the 4-body force calculation accounts for nearly half of the total
computation time. We have reduced the total simulation time by 30% with the number of multiple time step Nmts = 5 (see Table 12)
by separating out the 4-body force terms into fsoft,i , i.e., by performing the time-consuming 4-body force calculation only once in
5 MD steps.

3. Parallelization

To design a scalable ReaxFF-MD simulation algorithm on massively parallel computers, we employ spatial decomposition
[31] combined with linked-list cell and Verlet neighbor-list methods [21]. In spatial decomposition, the simulation space (with
lengths Lx,Ly and Lz in the x, y and z directions, respectively) is decomposed into P = Px × Py × Pz rectangular sub-domains,
Ω0 − ΩP−1, of equal volume, which are then mapped to P processors in a parallel computer. Specifically atom i at position
ri = (rix, riy, riz) is assigned to processor p ∈ [0,P − 1], where

(22)

{
p = pxPyPz + pyPz + pz,

pα = 	riαPα/Lα
 (α = x, y, z).
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Table 12
Multiple time-step algorithm

Algorithm multiple_time_step
Input:

{ri (t)} = set of atomic positions at time t

{vi (t)} = set of atomic velocities at time t

Nstep = number of total MD steps
Nmts = number of multiple time steps
Δt = Nmtsδt = time discretization unit

Output:
{ri (t + Nstepδt)} = set of atomic coordinates at t + Nstepδt

{vi (t + Nstepδt)} = set of atomic velocities at t + Nstepδt

Variables:
{fi } = set of atomic forces

Steps:
compute soft force components {fsoft,i }
for outer = 1 to Nstep/Nmts

vi ← vi + (Δt/2mi)fsoft,i // mi is the mass of the ith atom
compute stiff force components {fstiff,i }
for inner = 1 to Nmts

vi ← vi + (δt/2mi)fstiff,i
ri ← ri + δtvi

compute stiff force components {fstiff,i }
vi ← vi + (δt/2mi)fstiff,i

compute soft force components {fsoft,i }
vi ← vi + (Δt/2mi)fsoft,i

Each processor stores the coordinates ri , velocities vi , and types σi (e.g., hydrogen, carbon, nitrogen, or oxygen) of all atoms that
are assigned to it, and is also in charge of updating the coordinates and velocities by numerically integrating the Newton’s equation
of motion.

In the linked-list cell method, each domain is further decomposed into smaller rectangular cells. The atom information (ri ,
vi , σi ) in each cell is organized using a linked list, which reduces the computational cost of neighbor-list calculation to O(N/P ),
where N is the total number of atoms. We define the dimension of a linked-list cell Lc to be no less than the single covalent-bond
cutoff rcb. The rcb is determined as the interatomic distance at which any type of BO becomes negligible. We use a criterion,
∀BO′

ij (rcb) < 10−4.
At the domain boundaries, it is necessary to copy sufficient atom information from neighbor domains to compute forces. In

3D simulation space, each domain has 26 adjacent domains, from which atom information needs to be cached into buffer layers
that surround the domain (shown as a shaded area in Fig. 2). The requisite thickness of the buffer layer Lb is determined by the
greatest cutoff distance among all interaction functions. Specifically, Lb = max(rcnb, lmaxrcb), where lmax is the deepest level of
covalently bonded trees with the primary atom as a root (see Fig. 2B). The caching operation is implemented as the exchange of

Fig. 2. (A) Schematic of the spatial decomposition consists of sub-domains Ω0–Ω3. On the sub-domain Ω0 atom information from neighbor domains (Ω1, Ω2 and
Ω3 are stored in the buffer layer with the thickness Lb shown as shaded area surrounding Ω0. The primary atoms in each cluster (gray spheres) must be in Ω0,
while other atoms (white spheres) may be copied from neighbor domains. (B) An example of 4-body atom configuration on a domain boundary. The explicit atoms
are shown with solid-line spheres and bonds (i, j, k, and l), and so are implicit atoms with dotted-line spheres and bonds (m1–m5). Here j th atom is the primary of
the cluster. In this example, the deepest level from the primary atom is lmax = 3.
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messages between processors, where the messages contain the information of atoms that lie within Lb from the domain boundary.
After caching, processor p has the information of a set of atoms,

(23)S = Sresident ∪ Scached = {i | ri ∈ Ωp} ∪ {
i | ri /∈ Ωp ∧ ‖ri − ∂Ωp‖ < Lb

}
,

where ∂Ωp is the outer-boundary surface of domain Ωp and ‖ri − ∂Ωp‖ is the shortest distance between atom i and ∂Ωp . This
allows each processor to compute the forces on its resident atoms, i ∈ Sresident, without time-consuming interprocessor communi-
cations.

Our parallel ReaxFF algorithm attempts to minimize the total computation time by avoiding duplicated energy/force calculations
among processors. For this purpose, care needs to be taken for the cached atoms stored in the buffer layer. Here, we illustrate the
energy/force calculations in the parallel MD framework. Fig. 2B shows a sample case of 4-body calculation that involves four
explicit atoms (denoted as i, j, k, and l) and five implicit atoms m1–m5. At the beginning of the energy/force calculation on
domain Ω0, atoms l,m1, and m2 are cached from domain Ω1 to Ω0 via communication network. We require that the primary
atom j is a resident atom of domain Ω0. The computed potential energy of the atomic cluster is stored in the domain of the
primary atom. At the end of energy/force calculation, the reaction forces on the cached atoms are transferred back to the original
atoms in domain Ω1. Subsequently, atom coordinates are updated according to the time integration algorithm in Table 12. Resident
atoms migrate to new domains if they have moved out of the current domain. All inter-domain communications follow a 6-way
communication method [32]. The amount of communication is proportional to the number of atoms on domain surface, which is
O((N/P )2/3).

The parallel ReaxFF program is written in the Fortran 90 language with the message passing interface (MPI) library [33] for
communications.

4. Performance test

The scalability of parallel ReaxFF program has been tested on various high-end supercomputers, including the 131,072-processor
IBM BlueGene/L at the Lawrence Livermore National Laboratory (LLNL), the 10,240-processor SGI Altix 3000 at the NASA Ames
Research Center, and an AMD dual-core Opteron cluster at the High Performance Computing Center (HPCC) of the University of
Southern California (USC). The parallel ReaxFF algorithm maximally utilizes data locality regardless of actual physical architec-
ture, and accordingly no performance degradation has been observed on any of these architectures. Description of each platform
and computational resources used for each benchmark are given below.

BlueGene/L

The BlueGene/L system at the LLNL comprises of 65,536 computational node (CN) chips, each of which has two PowerPC
400 processors (131,072 processors in total) with 700 MHz clock speed. On single CN, the two processors share 512 MB memory.
Each processor has a 32 KB instruction/data cache, a 2 MB L2 cache, and a 4 MB L3 cache. The theoretical peak performance is
2.8 Gflops per processor. Two types of interconnection (3-D torus and tree topologies) are designed for distinct purposes. The 3-D
torus network is used mostly for common (e.g., point-to-point) communications, while the tree network is optimized for collective
communications. The interconnection bandwidths are 175 MB/s and 350 MB/s per link, respectively.

Altix 3000

The SGI Altix 3000 system named Columbia at NASA-Ames consists of 20 of SGI Altix model 3700 boxes, each consisting of
512 Intel 1.5 GHz Itanium2 processors. Each processor has 128 floating-point registers, a 32 KB L1 cache, a 256 KB L2 cache, and
a 6 MB L3 cache, and its theoretical peak performance is 6 Gflops. The SGI NUMAlink4 interconnection provides 1TB memory
globally shared among cluster nodes within an Altix box. We have used up to four Altix boxes (up to 1920 processors) for our
benchmark.

Opteron

USC-HPCC operates 1,824-node Linux cluster with 15.8 Tflops Linpack performance. We have used up to 512 nodes of
dual-CPU dual-core AMD 2 GHz Opteron processors (2,048 processors in total). Each node has 4 GB memory, and Myrinet
interconnection provides 256 MB/s bandwidth. Single Opteron core has 64 KB instruction/data caches and 1 MB L2 cache.

Fig. 3 shows the parallel efficiency of the parallel ReaxFF algorithm on the three architectures. Here, the isogranular parallel
efficiency is defined as the total execution time divided by that on P = 1, where the grain size (i.e., the number of atoms per
processor) is kept constant—N/P = 10,752 on the BlueGene/L, 36,288 on Columbia, and 107,520 on the Opteron cluster. In
all performance tests, we simulate energetic molecular crystal, RDX (1,3,5-trinitro-1,3,5-triazine, C3N6O6H6) [14]. Overall, the
parallel ReaxFF algorithm achieves nearly perfect (∼1) efficiency. On 131,072 BlueGene/L processors, the parallel efficiency
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Fig. 3. Isogranular parallel efficiency of the parallel ReaxFF algorithm as a function of the number of processors on (A) IBM Blue Gene/L with the number of atoms
per processor N/P = 10,752, (B) SGI Altix 3000 with N/P = 36,288, and (C) AMD dual-core Opteron cluster with N/P = 107,520.

Fig. 4. Execution time of the parallel ReaxFF program as a function of the number of atoms on 131,072-processor IBM Blue Gene/L, 1920-processor SGI Altix
3000, and 2048-core AMD Opteron.

is 0.998. Only exception is the sudden drop in the parallel efficiency on the Opteron cluster, which is likely due to the non-dedicated
testing environment, in which other users’ processes share the same network.

Fig. 4 shows the execution time as a function of the number of atoms, while the total number of processors is fixed. We use
131,072 IBM BlueGene/L processors, 1920 Itenium2 processors of SGI Altix 3000, and 2048 AMD Opteron cores. The largest
number of atoms is 1,056,964,608 on the BlueGene/L. The parallel ReaxFF algorithm exhibits perfect linear scalability as a function
of the problem size.

5. Summary

For chemically-reactive molecular dynamics simulations, we have designed a scalable parallel algorithm that maximally ex-
poses data locality. The parallel ReaxFF algorithm incorporates spatial decomposition and multiple time-stepping for efficient
valence/noncovalent force calculations. Environment-dependent variable charges are incorporated with an electronegativity equal-
ization method. Benchmark tests have exhibited high scalability (parallel efficiency is 0.998 on 131,072 BlueGene/L processors) as
well as good performance portability. The parallel ReaxFF algorithm enables unprecedented scales of chemically reactive simula-
tions, which pave a way to study longstanding scientific problems such as mechanically induced chemical reactions.
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Appendix A. ReaxFF parameters

Appendix A contains Tables A.1–A.7.

Table A.1
The parameters in the bond-order functions

pbo1–pbo6 bond parameters
rσ
o , rπ

o , rππ
o bond radius parameters

Vali ,Valboc
i

valencies of atom i

pboc1,pboc2 overcoordination parameters
pboc3–pboc5 1–3 bond order corrections

Table A.2
The parameters in the 1-body energy

Vale
i

valency of atom i

nlp-opt,i the number of lone pair electrons at normal condition
plp1 lone pair parameter
plp2 lone pair energy parameter
povun1–povun4 overcoordination parameters
povun5 undercoordination energy parameter
povun6–povun8 undercoordination parameters

Table A.3
The parameters in the Ebond

Dσ
e ,Dπ

e ,Dππ
e σ,π , and double π bond energy parameters

pbe1,pbe2 bonding energy parameters

Table A.4
The parameters in the 3-body energy

pval1 valence angle energy parameter
pval2–pval7 valence angle parameters
pval8 valency/lone pair parameter
pval9,pval10 valence angle parameters
Θ0,0 equilibrium valence angle

Val
angle
i

atom valency
ppen1 penalty energy parameter
ppen2 double bond/angle parameter
ppen3,ppen4 double bond/angle parameters for overcoordination
pcoa1 3-body conjugation energy parameter
pcoa2–pcoa4 valency angle conjugation parameters

Table A.5
The parameters in the 4-body energy

V1–V3 torsion energy parameters
ptor1 torsion parameter
ptor2 torsion/BO parameter
ptor3,ptor4 torsion overcoordination parameters
pcot1 4-body conjugation energy parameter
pcot2 4-body conjugation parameter

Table A.6
The parameters in the hydrogen–bonding energy

phb1 hydrogen bond energy parameter
phb2,phb3 hydrogen bond parameters
ro
hb hydrogen bond radius
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Table A.7
The parameters in the noncovalent energy

Dij van der Waals energy parameter
αij van der Waals parameter
rvdW van der Waals parameter
pvdW1 van der Waals shielding
γw van der Waals parameter
γij Coulomb parameter
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