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We have developed a parallel computing framework for large spatiotemporal-scale atomistic
simulations of materials, which is expected to scale on emerging multipetaflops architectures.
The framework consists of: (1) an embedded divide-and-conquer (EDC) framework to de-
sign linear-scaling algorithms for high complexity problems; (2) a space-time-ensemble paral-
lel (STEP) approach to predict long-time dynamics while introducing multiple parallelization
axes; and (3) a tunable hierarchical cellular decomposition (HCD) parallelization framework
to map theseO(N) algorithms onto a multicore cluster. The EDC-STEP-HCD framework
has achieved: (1) inter-node parallel efficiency well over 0.95 for 218 billion-atom molecular-
dynamics (MD) and 1.68 trillion electronic-degrees-of-freedom density functional theory-based
quantum-mechanical simulations on 212,992 IBM BlueGene/Lprocessors; (2) high intra-node,
multithreading and single-instruction multiple-data parallel efficiency; and (3) nearly perfect
time/ensemble parallel efficiency. The spatiotemporal scale covered by MD simulation on a
sustained petaflops computer per day (i.e. petaflops•day of computing) is estimated asNT

= 2.14 (e.g.N = 2.14 million atoms forT = 1 microseconds). Results of multimillion-atom
reactive MD simulations on nano-mechano-chemistry revealvarious atomistic mechanisms for
enhanced reaction in nanoenergetic materials: (1) a concerted metal-oxygen flip mechanism at
the metal/oxide interface in thermites; (2) a crossover of oxidation mechanisms in passivated
aluminum nanoparticles from thermal diffusion to ballistic transport at elevated temperatures;
and (3) nanojet-catalyzed reactions in a defected energetic crystal.

1 Introduction

Fundamental understanding of complex system-level dynamics of many-atom systems is
hindered by the lack of validated simulation methods to describe large spatiotemporal-
scale atomistic processes. The ever-increasing capability of high-end computing platforms
is enabling unprecedented scales of first-principles basedsimulations to predict system-
level behavior of complex systems.1 An example is large-scale molecular-dynamics (MD)
simulation involving multibillion atoms, in which interatomic forces are computed quan-
tum mechanically to accurately describe chemical reactions.2 Such simulations can couple
chemical reactions at the atomistic scale and mechanical processes at the mesoscopic scale
to solve broad mechano-chemistry problems such as nanoenergetic reactions, in which re-
active nanojets catalyze chemical reactions that do not occur otherwise.3 An even harder
problem is to predict long-time dynamics, because the sequential bottleneck of time pre-
cludes efficient parallelization.4, 5
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The hardware environment is becoming challenging as well. Emerging sustained
petaflops computers involve multicore processors,6 while the computer industry is facing
a historical shift, in which Moore’s law due to ever increasing clock speeds has been sub-
sumed by increasing numbers of cores in microchips.7 The multicore revolution will mark
the end of the free-ride era (i.e., legacy software will run faster on newer chips), resulting
in a dichotomy—subsiding speedup of conventional softwareand exponential speedup of
scalable parallel applications.

To address these challenges, we have developed key technologies for parallel comput-
ing with portable scalability. These include an embedded divide-and-conquer (EDC) algo-
rithmic framework to design linear-scaling algorithms forbroad scientific and engineering
applications (e.g. equation solvers, constrained optimization, search, visualization, and
graphs involving massive data) based on spatial locality principles.8 This, combined with
a space-time-ensemble parallel (STEP) approach9 to predict long-time dynamics based on
temporal locality10 and a tunable hierarchical cellular decomposition (HCD) parallelization
framework, maximally exposes concurrency and data locality, thereby achieving reusable
”design once, scale on new architectures” (or metascalable) applications.11, 12 It is expected
that such metascalable algorithms will continue to scale onfuture multicore architectures.
The ”seven dwarfs” (a dwarf is an algorithmic method that captures a pattern of computa-
tion and communication) have been used widely to develop scalable parallel programming
models and architectures.6 We expect that the EDC-STEP-HCD framework will serve as
a ”metascalable dwarf” to represent broad large-scale scientific and engineering applica-
tions.12

We apply the EDC-STEP-HCD framework to a hierarchy of atomistic simulation
methods. In MD simulation, the system is represented by a setof N point atoms whose
trajectories are followed to study material properties.4, 13, 14 Quantum mechanical (QM)
simulation further treats electronic wave functions explicitly to describe chemical reac-
tions.15–17 To seamlessly couple MD and QM simulations, we have found it beneficial to
introduce an intermediate layer, a first principles-based reactive force field (ReaxFF) ap-
proach,18, 19 in which interatomic interaction adapts dynamically to thelocal environment
to describe chemical reactions. The ReaxFF is trained by performing thousands of small
QM calculations.

The metascalable simulation framework is enabling the study of a number of exciting
problems, in particular, how atomistic processes determine material properties. Exam-
ples include the mechanical properties of nanocomposite materials and nanoindentation on
them,20 oxidation of nanoenergetic materials,21 hypervelocity impact damage,22 and frac-
ture.23, 24 We also study both colloidal25 and epitaxial26 quantum dots, and their interface
with biological systems. It is noteworthy that experimentalists can now observe these phe-
nomena at the same resolution as our simulations. For example, experimentalists perform
nano-shock experiments using focused laser beams27 and nano-fracture measurements us-
ing atomic force microscopy.28 This lecture note focuses on one application related to
nano-mechano-chemistry, i.e., enhanced reaction mechanisms in nanostructured energetic
materials.

The lecture note is organized as follows. Section 2 describes our metascalable comput-
ing framework for large spatiotemporal-scale simulationsof chemical reactions based on
spatiotemporal data-locality principles. Results of nano-mechano-chemistry simulations
are given in section 3, and section 4 contains conclusions.
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2 A Metascalable Dwarf

2.1 Embedded Divide-and-Conquer (EDC) Algorithmic Framework

In the embedded divide-and-conquer (EDC) algorithms, the physical system is divided into
spatially localized computational cells.2 These cells are embedded in a global field that is
computed efficiently with tree-based algorithms (Fig. 1).

Figure 1. Schematic of embedded divide-and-conquer (EDC) algorithms. The physical space is subdivided into
spatially localized cells, with local atoms constituting subproblems, which are embedded in a global field solved
with tree-based algorithms.

Within the EDC framework, we have designed a number ofO(N) algorithms (N is
the number of atoms). For example, we have designed a space-time multiresolution MD
(MRMD) algorithm to reduce theO(N2) complexity of theN -body problem toO(N).13

MD simulation follows the trajectories ofN point atoms by numerically integrating cou-
pled ordinary differential equations. The hardest computation in MD simulation is the
evaluation of the long-range electrostatic potential atN atomic positions. Since each eval-
uation involves contributions fromN −1 sources, direct summation requiresO(N2) oper-
ations. The MRMD algorithm uses the octree-based fast multipole method (FMM)29, 30 to
reduce the computational complexity toO(N) based on spatial locality. We also use mul-
tiresolution in time, where temporal locality is utilized by computing forces from further
atoms with less frequency.31

We have also designed a fast ReaxFF (F-ReaxFF) algorithm to solve theO(N3) vari-
ableN -charge problem in chemically reactive MD inO(N) time.19 To describe chemical
bond breakage and formation, the ReaxFF potential energy isa function of the positions of
atomic pairs, triplets and quadruplets as well as the chemical bond orders of all constituent
atomic pairs.18 To describe charge transfer, ReaxFF uses a charge-equilibration scheme, in
which atomic charges are determined at every MD step to minimize the electrostatic energy
with the charge-neutrality constraint. This variableN -charge problem amounts to solving
a dense linear system of equations, which requiresO(N3) operations. The F-ReaxFF algo-
rithm uses the FMM to perform the matrix-vector multiplications withO(N) operations. It
further utilizes the temporal locality of the solutions to reduce the amortized computational
cost averaged over simulation steps toO(N). To further speed up the solution, we use a
multilevel preconditioned conjugate gradient (MPCG) method.21, 32 This method splits the
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Coulomb interaction matrix into far-field and near-field matrices and uses the sparse near-
field matrix as a preconditioner. The extensive use of the sparse preconditioner enhances
the data locality, thereby increasing the parallel efficiency.

To approximately solve the exponentially complex quantumN -body problem inO(N)
time,33, 34 we use an EDC density functional theory (EDC-DFT) algorithm.17, 35 The DFT
reduces the exponential complexity toO(N3), by solvingNel one-electron problems self-
consistently instead of oneNel-electron problem (the number of electrons,Nel, is on the
order ofN ). The DFT problem can be formulated as a minimization of an energy func-
tional with respect to electronic wave functions. In the EDC-DFT algorithm, the physical
space is a union of overlapping domains,Ω =

∑

α Ωα (Fig. 1), and physical proper-
ties are computed as linear combinations of domain properties that in turn are computed
from local electronic wave functions. For example, the electronic densityρ(r) is calcu-
lated asρ(r) =

∑

α p
α(r)

∑

n f(ǫαn)|ψα
n (r)|2, where the support functionpα(r) vanishes

outside domainΩαand satisfies the sum rule,
∑

α p
α(r) = 1, andf(ǫαn) is the Fermi dis-

tribution function corresponding to the energyǫαn of then-th electronic wave function (or
Kohn-Sham orbital)ψα

n(r) in Ωα . For DFT calculation within each domain, we use a
real-space approach based on high-order finite differencing,36 where iterative solutions are
accelerated using the multigrid preconditioning.37 The multigrid is augmented with high-
resolution grids that are adaptively generated near the atoms to accurately operate atomic
pseudopotentials.17 The numerical core of EDC-DFT thus represents a high-order stencil
computation.38, 39

2.2 Space-Time-Ensemble Parallelism (STEP) for Predicting Long-Time Dynamics

A challenging problem is to predict long-time dynamics because of the sequential bottle-
neck of time.4, 5 Due to temporal locality, however, the system stays near local minimum-
energy configurations most of the time, except for rare transitions between them. In such
cases, the transition state theory (TST) allows the reformulation of the sequential long-time
dynamics as computationally more efficient parallel searchfor low activation-barrier tran-
sition events.10, 40 We also introduce a discrete abstraction based on graph datastructures,
so that combinatorial techniques can be used for the search.40 We have developed a direc-
tionally heated nudged elastic band (DH-NEB) method,9 in which a NEB consisting of a
sequence ofS states,41

Rs ∈ ℜ3N (s = 0, ..., S − 1,ℜ is the set of real numbers, andN is
the number of atoms), at different temperatures searches for transition events (Fig. 2(a)):

M
d2

dt2
Rs = Fs − Mγs

d

dt
Rs (1)

whereM ∈ ℜ3N×3N is the diagonal mass matrix andγs is a friction coefficient. Here, the
forces are defined as

Fs =

{

− ∂V
∂Rs

|⊥ + F
spr
s |‖

− ∂V
∂Rs

(2)

whereV (R) is the interatomic potential energy,F
spr
s are spring forces that keep the states

equidistance, and⊥ and ‖ denote respectively the projections of a 3N -element vector
perpendicular and parallel to the tangential vector connecting the consecutive states.
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We use an ensemble consisting ofB bands to perform long-time simulation—
molecular kinetics (MK) simulation–in the framework of kinetic Monte Carlo simulation.9

Here, our space-time-ensemble parallel (STEP) approach combines a hierarchy of
concurrency, i.e., the number of processors is

P = BSD : (3)

(1) spatial decomposition within each state (D is the number of spatial subsystems, see
section 2.3); (2) temporal parallelism acrossS states within each band; and (3) ensemble
parallelism overB bands (Fig. 2(b)).

Figure 2. Schematic of the space-time-ensemble parallel (STEP) approach. (a) A nudged elastic band consists of
a sequence ofS states (gray parallelograms),Rs (s = 0,...,S − 1), where each state consists ofN atoms (white
spheres),i = 1,...,N . Corresponding atoms in consecutive states interact via harmonic forces represented by wavy
lines. (b) Tree-structured processor organization in the STEP approach. An ensemble consists ofB bands, each
consisting ofS states; each state in turn containsD spatial domains.

2.3 Tunable Hierarchical Cellular Decomposition (HCD) for Algorithm-Hardware
Mapping

To map theO(N) EDC-STEP algorithms onto parallel computers, we have developed a
tunable hierarchical cellular decomposition (HCD) framework.

Massively distributed scalability via message passing—Superscalability: Our par-
allelization in space is based on spatial decomposition, inwhich each spatial subsystem
is assigned to a compute node in a parallel computer. For large granularity (the num-
ber of atoms per spatial subsystem,N/D > 102), simple spatial decomposition (i.e.,
each node is responsible for the computation of the forces onthe atoms within its sub-
system) suffices, whereas for finer granularity (N/D ∼ 1), neutral-territory5, 42 or other
hybrid decomposition schemes4, 43–45can be incorporated into the framework. Our paral-
lelization framework also includes load-balancing capability. For irregular data structures,
the number of atoms assigned to each processor varies significantly, and this load imbal-
ance degrades the parallel efficiency. Load balancing can bestated as an optimization
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problem.46–48 We minimize the load-imbalance cost as well the size and the number of
messages. Our topology-preserving spatial decompositionallows message passing to be
performed in a structured way in only 6 steps, so that the number of messages is mini-
mized. To minimize the load imbalance cost and the size of messages, we have developed
a computational-space decomposition scheme.49 The main idea is that the computational
space shrinks in a region with high workload density, so thatthe workload is uniformly dis-
tributed. The sum of load-imbalance and communication costs is minimized as a functional
of the computational space using simulated annealing. We have found that wavelets allow
compact representation of curved partition boundaries andthus speed up the optimization
procedure.50

Multicore scalability via multithreading—Nanoscalablit y: In addition to the mas-
sive inter-node scalability, ”there is plenty of room at thebottom,” as Richard Feynman
noted. At the finest level, EDC algorithms consist of a large number of computational cells
(Fig. 1), such as linked-list cells in MD13 and domains in EDC-DFT,17 which are readily
amenable to parallelization. On a multicore compute node, ablock of cells is assigned to
each thread for intra-node parallelization. Our EDC algorithms are thus implemented as
hybrid message passing + multithreading programs. Here, weuse the POSIX thread stan-
dard, which is supported across broad architectures and operating systems. In addition, our
framework2 includes the optimization of data and computation layouts,51, 52 in which the
computational cells are traversed along various spacefilling curves53 (e.g. Hilbert or Mor-
ton curve). To achieve high efficiency, special care must be taken also to make the mul-
tithreading free of critical sections. For example, we havedesigned a critical section-free
algorithm to make all interatomic force computations in MRMD independent by reorgani-
zation of summation of atomic pair and triplet summations.12 Our multithreading is based
on a master/worker model, in which a master thread coordinates worker threads that actu-
ally perform force computations. We use POSIX semaphores tosignal between the master
and worker threads to avoid the overhead of thread creation and joining in each MD step.
There are two check points at each MD time step, where all worker threads wait a signal
from the master thread: (1) before the two-body force calculation loop, which also con-
structs the neighbor-lists, after atomic coordinates are updated; and (2) before three-body
force calculation, after having all atoms complete neighbor-list construction. We have also
combined multithreading with single-instruction multiple-data (SIMD) parallelism based
on various code transformations.39 Our SIMD transformations include translocated state-
ment fusion, vector composition via shuffle, and vectorizeddata layout reordering (e.g.
matrix transpose), which are combined with traditional optimization techniques such as
loop unrolling.

Long-time scalability via space-time-ensemble parallelism (STEP)—Eon-
scalability: With the spatial decomposition, the computational cost scales asN/D,
while communication scales in proportion to(N/D)2/3.13 For long-range interatomic
potentials used in MD simulations, tree-based algorithms such as the fast multipole
method (FMM)29, 30 incur anO(logD) overhead, which is negligible for coarse grained
(N/D ≫ D) applications.30 The communication cost of the temporal decomposition is
O(N/D) for copying nearest-neighbor images along the temporal axis, but the prefactor
is negligible compared with the computation. Ensemble decomposition duplicates the
band calculation, each involvingSD processors,B times onP = BSD processors.
It involves O((N/D) log(BS)) overhead to multicast the new initial state among the
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processors assigned the same spatial domain, i.e., those with the samep modD.9 Here,
p = bSD + sD + d is the sequential processor ID, where processorp is assigned thed-th
spatial subsystem of thes-th state in theb-th band. The multicast cost at the beginning of
each molecular-kinetics (MK) simulation step is greatly amortized over103 − 104 MD
steps performed for the DH-NEB method per MK iteration.9

Intelligent tuning: The hierarchy of computational cells provides an efficient mecha-
nism for performance optimization as well we make both the layout and size of the cells
as tunable parameters that are optimized on each computing platform.2 Our EDC-STEP
algorithms are implemented as hybrid message-passing + multithreading programs in the
tunable HCD framework, in which the numbers of message passing interface (MPI) pro-
cesses and POSIX threads are also tunable parameters. The HCD framework thus maxi-
mally exposes data locality and concurrency. We are currently collaborating with compiler
and artificial intelligence (AI) research groups to use: (1)knowledge-representation tech-
niques for expressing the exposed concurrency; and (2) machine-learning techniques for
optimally mapping the expressed concurrency to hardware.54

2.4 Scalability Tests

The scalability of our EDC-STEP-HCD applications has been tested on various high-end
computing platforms including 212,992 IBM BlueGene/L processors at the Lawrence Liv-
ermore National Laboratory and 131,072 IBM BlueGene/P processors at the Argonne Na-
tional Laboratory.

Inter-node (message-passing) spatial scalability:Figure 3 shows the execution and
communication times of the MRMD, F-ReaxFF and EDC-DFT algorithms as a function of
the number of processorsP on the IBM BlueGene/L and P. Figure 3(a) shows the execution
time of the MRMD algorithm for silica material as a function of P . We scale the problem
size linearly with the number of processors, so that the number of atomsN = 2,044,416P .
In the MRMD algorithm, the interatomic potential energy is split into the long- and short-
range contributions, and the long-range contribution is computed every 10 MD time steps.
The execution time increases only slightly as a function ofP on both BlueGene/L and P,
and this signifies an excellent parallel efficiency. We definethe speed of an MD program
as a product of the total number of atoms and time steps executed per second. The isogran-
ular speedup is the ratio between the speed ofP processors and that of one processor. The
weak-scaling parallel efficiency is the speedup divided byP , and it is 0.975 on 131,072
BlueGene/P processors. The measured weak-scaling parallel efficiency on 212,992 Blue-
Gene/L processors is 0.985 based on the speedup over 4,096 processors. Figure 3(a) also
shows that the algorithm involves very small communicationtime. Figure 3(b) shows the
execution time of the F-ReaxFF MD algorithm for RDX materialas a function ofP , where
the number of atoms isN = 16,128P . The computation time includes 3 conjugate gradient
(CG) iterations to solve the electronegativity equalization problem for determining atomic
charges at each MD time step. On 212,992 BlueGene/L processors, the isogranular paral-
lel efficiency of the F-ReaxFF algorithm is 0.996. Figure 3(c) shows the performance of
the EDC-DFT based MD algorithm for 180P atom alumina systems. The execution time
includes 3 self-consistent (SC) iterations to determine the electronic wave functions and
the Kohn-Sham potential, with 3 CG iterations per SC cycle torefine each wave function
iteratively. On 212,992 BlueGene/L processors, the isogranular parallel efficiency of the
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EDC-DFT algorithm is 0.998 (based on the speedup over 4,096 processors). Our largest
benchmark tests include 217,722,126,336-atom MRMD, 1,717,567,488-atom F-ReaxFF,
and 19,169,280-atom (1,683,216,138,240 electronic degrees-of-freedom) EDC-DFT cal-
culations on 212,992 BlueGene/L processors.

Figure 3. Total execution (circles) and communication (squares) times per MD time step as a function of the
number of processorsP of BlueGene/L (open symbols) and BlueGene/P (solid symbols) for three MD simulation
algorithms: (a) MRMD for 2,044,416P atom silica systems; (b) F-ReaxFF MD for 16,128P atom RDX systems;
and (c) EDC-DFT MD for 180P atom alumina systems.

Intra-node (multithreading) spatial scalability: We have tested the multithreading
scalability of MRMD on a dual Intel Xeon quadcore platform. Figure 4 shows the speedup
of the multithreaded code over the single-thread counterpart as a function of the number
of worker threads. In addition to the speedup of the total program, Fig. 4 also shows the
speedups of the code segments for two-body and three-body force calculations separately.
We see that the code scales quite well up to 8 threads on the 8-core platform. We define
the multithreading efficiency as the speedup divided by the number of threads. The effi-
ciency of two-body force calculation is 0.927, while that for three-body force calculation
is 0.436, for 8 threads. The low efficiency of the three-body force calculation may be due
to the redundant computations introduced to eliminate critical sections. Nevertheless, the
efficiency of the total program is rather high (0.811), sincethe fraction of the three-body
calculation is about one third of the two-body force calculation. This result shows that the
semaphore-based signaling between master and worker threads is highly effective. In a test
calculation for a 12,228-atom silica system, the running time is 13.6 milliseconds per MD
time step.

Time/ensemble scalabilityScalability of the STEP-MRMD algorithm (note that the
STEP approach can be combined with any of the MRMD, F-ReaxFF and EDC-DFT al-
gorithms to compute interatomic forces) is tested on a cluster of dual-core, dual-processor
AMD Opteron (at clock frequency 2 GHz) nodes with Myrinet interconnect. We define the
speed of a program as a product of the total number of atoms andMK simulation steps ex-
ecuted per second. The speedup is the ratio between the speedof P processors and that of
one processor. The parallel efficiency is the speedup divided byP . We first test the scala-
bility of temporal decomposition, where we fix the number of bandsB = 1 and the number
of domains per stateD = 1. We vary the number of states per bandS = 4 to 1024. Here, the
simulated system is amorphous SiO2 consisting ofN = 192 atoms, and we perform 600
MD steps per MK simulation step. The test uses all four cores per node. Figure 5(a) shows
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Figure 4. Speedup of the multithreaded MRMD algorithm over asingle-threaded counterpart for the total pro-
gram (circles), the two-body force calculation (diamonds), and three-body force calculation (squares). The solid
line shows the ideal speedup.

the speedup of the STEP-MRMD program (we normalize the speedup on 4 processors as
4). The measured speedup on 1,024 processors is 980.2, and thus the parallel efficiency is
0.957. Next, we test the scalability of ensemble decomposition, where we fix the number
of states per bandS = 4 and the number of spatial domains per stateD = 1. The number of
bands per ensemble is varied fromB = 1 to 256. The simulated system is amorphous SiO2

consisting ofN = 192 atoms. Although multiple events are generated independently by
different processor groups, the parallel algorithm involves sequential bottlenecks such as
the selection of an event that occurs, and accordingly the parallel efficiency does degrade
for a larger number of processors. Figure 5(b) shows the speedup of the STEP-MRMD
program on the Opteron cluster as a function of the number of processors (normalized to
be 4 on 4 processors). On 1,024 processors, the measured speedup is 989.2, and thus the
parallel efficiency of ensemble decomposition is 0.966, which is slightly higher than that
of temporal decomposition on the same number of processors.

Figure 5. (a) Speedup of temporal decomposition in the STEP-MRMD algorithm (normalized so that the speedup
is 4 forP = 4) as a function of the number of processorsP (P = 4-1024) for a 192-atom amorphous SiO2 system
on dual-core, dual-processor AMD Opteron nodes, where we fixB = D = 1. The circles are measured speedups,
whereas the solid line denotes the perfect speedup. (b) Speedup of ensemble decomposition in the STEP-MRMD
algorithm as a function of the number of processorsP (= 4,...,1024) for silica material (N = 192 atoms). Here,
we fix the number of states per bandS = 4 and the number of spatial domains per stateD = 1, while the number
of bands is varied fromB = 1 to 256.
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3 Nano-Mechano-Chemistry Simulations

Recent advances in the integration of nanowires and nanoparticles of energetic ma-
terials into semiconducting electronic structures have opened up the possibility of
”nanoenergetics-on-a-chip (NOC)” technology, which has awide range of potential appli-
cations such as micropropulsion in space and nano-airbags to drive nanofluidics.55 Most
widely used energetic materials for device integration arethermites, which are composites
of metals and oxides. These materials have enormous energy release associated with the
highly exothermic reduction/oxidation (redox) reactionsto form more stable oxides. For
example, arrays of Fe2O3 and CuO nanowires embedded in an Al matrix have been de-
posited on solid surfaces.56 Another example of thermite nanostructures is self-assembly
of an ordered array of Al and Fe2O3 nanoparticles.57

The integration of nanoenergetic materials into electronic circuits requires fundamental
understanding and precise control of reaction rates and initiation time. The reactivity of
nanoenergetic materials is known to differ drastically from their micron-scale counterparts.
For example, experimental studies on the combustion of nanothermites, such as Al/Fe2O3,
have shown that flame propagation speeds approach km/s when the size of Al nanoparticles
is reduced to below 100 nm, in contrast to cm/s for traditional thermites.58 Another exam-
ple is the two-stage reaction of Al/CuO-nanowire thermite,in which the first reaction takes
place at 500◦C followed by the second reaction at 660◦C (i.e., Al melting temperature).56

Such peculiar reactive behaviors of nanothermites cannot be explained by conventional
mechanisms based on mass diffusion of reactants, and thus various alternative mechanisms
have been proposed. An example is a mechano-chemical mechanism that explains the fast
flame propagation based on dispersion of the molten metal core of each nanoparticle and
spallation of the oxide shell covering the metal core.59 Another mechanism is accelerated
mass transport of both oxygen and metal atoms due to the largepressure gradient between
the metal core and the oxide shell of each metal nanoparticle.21, 60 In addition, defect-
mediated giant diffusivity is important for fast reactionsat the nanometer scale.24, 61, 62

The above mechanisms are by no means exhaustive, and some unexpected ones could
operate in NOCs. It is therefore desirable to study the reaction of nanoenergetic materials
by first-principles simulations. However, this poses an enormous theoretical challenge,
where quantum-mechanical accuracy to describe chemical reactions must be combined
with large spatial scales to capture nanostructural effects. Recent developments in scalable
reactive MD simulations as described in the previous section have set the stage for such
large first-principles MD simulations.

We have performed embedded divide-and-conquer (EDC) density functional theory
(DFT) based MD simulations to study the thermite reaction atan Al/Fe2O3 interface (Fig.
6).63 The results reveal a concerted metal-oxygen flip mechanism that significantly en-
hances the rate of redox reactions. This mechanism leads to two-stage reactions—rapid
initial reaction due to collective metal-oxygen flips followed by slower reaction based on
uncorrelated diffusive motions, which may explain recent experimental observation in ther-
mite nanowire arrays.56

Here, we simulate a stack of Al and Fe2O3 layers involving 1,152 (144 Fe2O3 + 432
Al) atoms with periodic boundary conditions. The hematite (Fe2O3) crystal, cut along
(0001) planes to expose Fe planes, is placed in the supercellwith the (0001) direction par-
allel to the z direction (Fig. 6(a)). The Fe planes of the hematite are attached to (111)
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Figure 6. (a) Atomic configuration of Al/Fe2O3 interface. The green, red and grey spheres show the positions
of Fe, O and Al atoms, respectively. Yellow meshes show the non-overlapping cores used by the EDC-DFT
method. (b) Enhanced diffusion at the metal-oxide interface. Mean square displacements of O atoms along the
z direction are plotted as a function of time. The solid and dashed curves are for O atoms in the interfacial and
Fe-side regions, respectively. (c) Concerted metal-oxygen flip at the Al/Fe2O3 interface. (d) Negative correlation
associated with concerted Al and O motions at the interface.Correlation functions between displacements of O
and Al atoms along thez direction are shown as a function of time. The solid and dashed curves are obtained in
the interfacial and Al-side regions.

planes of the face-centered cubic Al crystal at the two interfaces. Simulation results show
enhanced mass diffusivity at the metal/oxide interface (Fig. 6(b)). To understand the mech-
anism of the enhanced diffusivity at the interface, we have examined the time evolution of
the atomic configuration in the interfacial region and founda concerted metal-oxygen flip
mechanism (Fig. 6(c)). That is, O atoms switch their positions with neighboring Al atoms
while diffusing in the z direction. Careful bond-overlap population analysis shows that the
switching motion between O and Al atoms at the interface is triggered by the change of
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chemical bonding associated with these atoms. To quantify the collective switching motion
between O and Al atoms, we calculate the correlation function between the displacements
of atoms along the z direction. The results in Fig. 6(d) (solid curve) reveal negative cor-
relation fort > 0.5 ps, which reflects the collective switching motion between O and Al
atoms at the interface as shown in Fig. 6(c). Such negative correlation does not exist on
the Al side (the dashed curve in Fig. 6(d)), indicating independent diffusive motions of Al
and O atoms.

Reactivity of nanoenergetic materials is often enhanced drastically from their micron-
scale counterparts, which cannot be explained by conventional mechanisms based on mass
diffusion of reactants. We have studied atomistic mechanisms of oxidation of an aluminum
nanoparticle under extreme environment using multimillion atom reactive (ReaxFF) MD
simulations, where the aluminum nanoparticle is coated with crystalline alumina shell and
is ignited by heating the aluminum core to high temperatures, as is done in recent laser
flash-heating experiments (Fig. 7).27 The metallic aluminum and ceramic alumina are
modeled by embedded atom model and many-body ionic-covalent potential form, respec-
tively, which are interpolated with a bond-order based scheme validated quantum mechan-
ically.

Figure 7. (a) Time variation of kinetic energy per aluminum atom during explosion with different initial temper-
aturesT=3,000K (blue), 6,000K (green), and 9,000K (red), respectively. (b) Snapshot of nanoparticle at 100 ps
(T=3,000K). (c) Snapshot of nanoparticle at 100 ps (T=9,000K). Core Al atoms (yellow) jet out through holes
on the nanoparticle shell (red).

Simulation results reveal a transition of the reaction mechanism from thermody-
namic to mechano-chemical regime, resulting in faster oxidation reaction of the aluminum
nanoparticle, at elevated temperatures (Fig. 7(a)). The breakdown of the shell and the
change of shell’s morphology and composition during oxidation are found to play an im-
portant role for the transition. Specifically, we have identified three major changes of the
shell, which are related to three mechanisms of atom migration: Diffusion (Fig. 7(b)),
ballistic transport followed by diffusion, and ballistic transport followed by coalescing of
atoms into few-atom clusters (Fig. 7(c)).

Mechanical stimuli in energetic materials initiate chemical reactions at shock fronts
prior to detonation. Shock sensitivity measurements provide widely varying results, and
quantum mechanical calculations are unable to handle systems large enough to describe
shock structure. Recent developments in ReaxFF-MD combined with advances in parallel
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computing have paved the way to accurately simulate reaction pathways along with the
structure of shock fronts. Our multimillion-atom ReaxFF-MD simulations of 1,3,5-trinitro-
1,3,5-triazine (RDX) (Figs. 8(a) and (b)) reveal that detonation is preceded by a transition
from a diffuse shock front with well ordered molecular dipoles behind it to a disordered
dipole distribution behind a sharp front.3

Figure 8. (a) An RDX molecule with carbon (yellow), hydrogen(white), oxygen (red), and nitrogen (blue)
atoms. (b) The unit cell of an RDX crystal contains 8 RDX molecules, which are colored blue and red depending
on whether the NO2 groups faces away from (group1) or faces towards (group2) the shock plane. (c) Distribution
of molecular vibrational temperature around the void at a particle velocity of 3 km/s. A red dotted-line represents
the position of shock front. (d) Number of molecular fragments near the void surface. As the void collapses, two
distinct reaction regimes are observed. From the arrival ofthe shock wave until the void closure (∼ 2.6 ps), a
rapid production of NO2 is observed. Shortly after that, when molecules strike the downstream wall (2.6 – 3.9
ps), various chemical products such as N2, H2O and HONO are produced.

Nanofluidics of chemically reactive species has enormous technological potential and
computational challenge arising from coupling quantum-mechanical accuracy with large-
scale fluid phenomena. We have performed multimillion-atomReaxFF-MD simulation
of shock initiation of an RDX crystal with a nanometer-scalevoid (Fig. 8(c)).64 The
simulation reveals the formation of a nanojet that focuses into a narrow beam at the void.
This, combined with the excitation of vibrational modes through enhanced intermolecular
collisions by the free volume of the void, catalyzes chemical reactions that do not occur
otherwise (Fig. 8(d)). We also observe a pinning-depinningtransition of the shock wave
front at the void at increased particle velocity and the resulting localization-delocalization
transition of the vibrational energy. More recently, we have simulated nanoindentation
of the (100) crystal surface of RDX by a diamond indenter.65 Nanoindentation causes
significant heating of the RDX substrate in the proximity of the indenter, resulting in the
release of molecular fragments and subsequent ”walking” motion of these molecules on
the indenter surfaces.
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4 Conclusions

In summary, we have developed high-end reactive atomistic simulation programs to en-
compass large spatiotemporal scales with common algorithmic and computational frame-
works based on spatiotemporal data-locality principles. In fact, our ”metascalable dwarf”
extends far beyond atomistic simulations: Diverse applications, which encompass all of the
original seven dwarfs, can be reduced by common techniques of embedding and divide-
and-conquer to a highly scalable form. According to the scalability tests presented in this
lecture note, they are likely to scale on future architectures beyond petaflops. The sim-
ulation algorithms are already enabling million-to-billion atom simulations of mechano-
chemical processes, which have applications in broad areassuch as energy and environ-
ment.

Figure 9. Spatiotemporal scalesNT accessible by direct molecular-dynamics (white background) and approxi-
mate accelerated-dynamics (gray) simulations with a petaflops•day of computing. The lines are theNT achieved
per petaflopsday of computing for MD (MRMD), chemically reactive MD (F-ReaxFF), and quantum-mechanical
MD (EDC-DFT) simulations, respectively.

A critical issue, however, is the time scale studied by MD simulations. We define the
spatiotemporal scale,NT , of an MD simulation as the product of the number of atomsN
and the simulated time spanT . On petaflops computers, direct MD simulations can be per-
formed forNT = 1–10 atomseconds (i.e. multibillion-atom simulation forseveral nanosec-
onds or multimillion-atom simulation for several microseconds). More specifically, a day
of computing on a sustained petaflops computer (i.e. one petaflops•day of computing)
achievesNT = 2.14 (e.g. 1 million atoms for 2.14 microseconds) (Fig. 9),according to the
benchmark test in section 2 (i.e., extrapolated from the measured MRMD performance on
the BlueGene/L, which is rated as 0.478 petaflops according to the Linpack benchmark).12

Accelerated-dynamics simulations10 such as STEP molecular-kinetics simulations9 will
push the spatiotemporal envelope beyondNT = 10, but they need to be fully validated
against direct MD simulations atNT = 1–10. Such large spatiotemporal-scale atomistic
simulations are expected to advance scientific knowledge. This work was supported by
NSF-ITR/PetaApps/EMT, DOE-SciDAC/BES, ARO-MURI, DTRA, and Chevron-CiSoft.
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