
c

n parallel
sors due to
plicable to
slab and
tained by
million
P4.

or

RX
Computer Physics Communications 153 (2003) 445–461

www.elsevier.com/locate/cp

Scalable and portable implementation of the fast multipole
method on parallel computers✩

Shuji Ogataa, Timothy J. Campbellb, Rajiv K. Kaliac,d, Aiichiro Nakanoc,d,∗,
Priya Vashishtac,d, Satyavani Vemparalad

a Department of Applied Sciences, Yamaguchi University, Ube 755-8611, Japan
b Mississippi State University, Stennis Space Center, MS 39529, USA

c Collaboratory for Advanced Computing and Simulations, Department of Computer Science, Department of Material Science & Engineering,
Department of Physics & Astronomy, Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA

d Concurrent Computing Laboratory for Materials Simulations, Biological Computation and Visualization Center,
Department of Computer Science, Department of Physics & Astronomy, Louisiana State University, Baton Rouge, LA 70801, USA

Abstract

A scalable and portable Fortran code is developed to calculate Coulomb interaction potentials of charged particles o
computers, based on the fast multipole method. The code has a unique feature to calculate microscopic stress ten
the Coulomb interactions, which is useful in constant-pressure simulations and local stress analyses. The code is ap
various boundary conditions, including periodic boundary conditions in two and three dimensions, corresponding to
bulk systems, respectively. Numerical accuracy of the code is tested through comparison of its results with those ob
the Ewald summation method and by direct calculations. Scalability tests show the parallel efficiency of 0.98 for 512
charged particles on 512 IBM SP3 processors. The timing results on IBM SP3 are also compared with those on IBM S
 2003 Published by Elsevier B.V.

PACS: 02.60.-x; 02.70.-c

Keywords: Fast multipole method; Parallel computation; Stress calculation; Periodic boundary conditions; Coulomb interaction

PROGRAM SUMMARY

Title of program: FMMP

Catalogue identifier: ADRX

Program Summary URL: http://cpc.cs.qub.ac.uk/summaries/ADRX

Program obtainable from: CPC Program Library, Queen’s Univer-
sity of Belfast, N. Ireland

Operating systems or monitors under which the program has been
tested: LINUX with MPICH, IBM SP, SGI Origin

Programming language used: Fortran77, C language preprocess

Has the code been vectorized or parallelized: parallelized using
MPI Standard

No. of bytes in distributed program, including test data, etc.: 16 167

✩ This paper can be downloaded from the CPC Program Library under catalogue identifier: http://cpc.cs.qub.ac.uk/summaries/AD
* Corresponding author.

E-mail address: anakano@usc.edu (A. Nakano).
0010-4655/03/$ – see front matter 2003 Published by Elsevier B.V.
doi:10.1016/S0010-4655(03)00246-7

446 S. Ogata et al. / Computer Physics Communications 153 (2003) 445–461

nergies
ds,
of
ditions
ions on
lculation
alyses. It
ditions,
ulations,
tomic

acy and
include
mpilation
f FMMP

ize
Distribution format: tar gzip file

Nature of physical problem
Parallel computations of Coulomb potentials, forces, and stress ten-
sors for a collection of charged particles.

Method of solution
The fast multipole method.

Typical running time
Proportional to the number of charged points.

Unusual features of the program: None

LONG WRITE-UP

1. Introduction

The fast multipole method (FMM) developed by Greengard and Rokhlin [1] calculates electrostatic e
and forces for a collection ofN charged particles with O(N) operations and with predictable error boun
whereas the optimal Ewald method is an O(N3/2) algorithm [2]. The FMM enables atomistic simulations
realistic materials involving millions to billions of charged particles under various settings of boundary con
[3]. We have recently developed a scalable and portable FMM code named FMMP for materials simulat
parallel computers using the Message Passing Interface (MPI) standard [4]. The FMMP features the ca
of microscopic stress tensors, which is needed for pressure-controlled simulations and local stress an
also supports various boundary conditions, including two- and three-dimensional periodic-boundary con
which are used for slab and bulk systems, respectively. The FMMP has been used in various materials sim
including oxidation of aluminum nanoparticles [5] and sintering of titania nanoparticles [6] in which intera
interaction is modeled with variable-charge potentials [7,8].

In this paper, we describe technical details that are needed for using FMMP, and present accur
performance tests of FMMP. The FMMP code is composed of a Fortran program file fmmp.F and an
file fmmp_dim.h. The fmmp.F should be preprocessed by the C language preprocessor (CPP) before co
with Fortran77. Control macro-parameters for CPP are set in fmmp_dim.h. Present distribution package o
includes a sample driver program fmmptest.F that uses subprograms in fmmp.F.

2. Formulation of FMM

We consider a collection ofN particles with charges{qi | i = 1, . . . ,N} at positions{�ai | i = 1, . . . ,N};
�ai = (ai, θi, ϕi) with ai = |�ai| in polar coordinates. Greengard and Rokhlin [1] proposed an O(N) algorithm to
compute Coulomb potentials for all particles, i.e.

∑
j �=i qj/|�ai − �aj | (i = 1, . . . ,N). The direct calculations to

evaluate Coulomb potentials atN particle positions requires O(N2) operations. In this section, we summar
equations that are necessary to understand the present implementation of the FMM.

The electrostatic potential at position�r may be expressed as [9]

∑
i

qi

|�r − �ai | =
{ ∑∞

l=0
∑l

m=−l Mlm(�A)Llm(�r) for r > Amax,∑∞
l=0

∑l
m=−l Llm(�A)Mlm(�r) for r < Amin,

(1)

where

Mlm(�x) ≡ 1

(l + |m|)!x
lPlm(cosθ)exp(−imϕ), (2)

S. Ogata et al. / Computer Physics Communications 153 (2003) 445–461 447

e

r

Llm(�x) ≡ (l − |m|)!x−(l+1)Plm(cosθ)exp(imϕ), (3)

Mlm(�A) ≡
∑
i

qiMlm(�ai), (4)

Llm(�A) ≡
∑
i

qiLlm(�ai). (5)

Here,�x = (x, θ,ϕ) in polar coordinates,�A denotes a collective set,{�a}, of the positions,Amax(min) is the maximum
(minimum) value ofai , {Mlm(�A)} are the multipole moments [9] of the charges, and{Llm(�A)} are the local Taylor
expansion coefficients [9] of the Coulomb field at the origin.Plm(x) in Eqs. (2) and (3) are defined with th
associated Legendre polynomials

P
µ
l (x) ≡ (1− x2)µ/2 dµ

dxµ
Pl(x) (l �µ � 0)

as

Plm(x) =
{
(−1)mPm

l (x) for m � 0,

P
|m|
l (x) for m< 0.

(6)

The following recursion formulas are useful to calculatePlm(x)

Pmm(x)= (−1)m
[
(2m− 1)(2m− 3) · · ·1]

(1− x2)m/2 for m � 1,

P00(x) = 1,

Pm+1,m(x) = x(2m+ 1)Pmm(x) for m � 0,

(l −m)Plm(x) = x(2l − 1)Pl−1,m(x)− (l +m− 1)Pl−2,m(x) for m � 0,

Pl,−m(x) = (−1)mPlm(x) for m � 1.

(7)

We may use the following relations to speed up computations if values of charges are real numbers:

Ml,−m = (−1)mM∗
lm for m> 0,

Ll,−m = (−1)mL∗
lm for m> 0,

(8)

where∗ denotes the complex conjugate.
The above recursive relations can be used to derive transformation operators betweenMlm andLlm:∑

l

∑
m

Mlm(�A)Llm(�r) =
∑
l

∑
m

Mlm(�A− �b)Llm(�r − �b) (9)

with the condition of|�r − �b| > | �A− �b|,∑
l

∑
m

Mlm(�A− �b)Llm(�r − �b) =
∑
l

∑
m

Llm(�b′ − �A)Mlm(�b′ − �r) (10)

with the condition of|�b′ − �A| > |�b′ − �r|, and∑
l

∑
m

Llm(�b′ − �A)Mlm(�b′ − �r) =
∑
l

∑
m

Llm(�c − �A)Mlm(�c − �r) (11)

with the condition of|�c− �A| > |�c− �r|. In Eqs. (9)–(11),Mlm(�A− �b) andLlm(�b′ − �A) are short hand notations fo∑
i qiMlm(�ai − �b) and

∑
i qiLlm(�b′ − �ai), respectively.

448 S. Ogata et al. / Computer Physics Communications 153 (2003) 445–461

[1,2,9]:

lls

st cells
ltipole

ficients
t level
sion,

evel of
sing the

particle,

ions.

ly in a
mulation
ked list

If we
ss of
We then find the following three types of transformation operations [9]:

Mlm(�A− �b) =
l∑

j=0

j∑
k=−j

T MM
l−j,m−k(

�b)Mjk(�A), [multipole-to-multipole]

(12)

Llm(�b − �A) ∼
p∑

j=0

j∑
k=−j

T ML
j+l,k+m(

�b)Mjk(�A) (p = maximum ofl), [multipole-to-local] (13)

Llm(�c − �A) =
p∑

j=l

j∑
k=−j

T LL
j−l,k−m(

�b − �c)Ljk(�b − �A) (p = maximum ofl), [local-to-local] (14)

with the operators,

T MM
l−j,m−k(

�b) = Ml−j,m−k(−�b), (15)

T ML
j+l,k+m(

�b) = Lj+l,k+m(�b), (16)

T LL
j−l,k−m(

�b) = Mj−l,k−m(�b). (17)

The FMM calculates Coulomb potentials of charged particles contained in a simulation box in five steps

(i) The simulation box with dimensions(hx,hy,hz) is successively subdivided. Letlxbot, l
y

bot, and lzbot be the
prescribed numbers of recursive subdivisions along thex-, y-, andz-axes. At the finest subdivision levellbot =
max(lxbot, l

y

bot, l
z
bot), the simulation box is decomposed into cells with dimensions(hx/2lxbot, hy/2l

y
bot, hz/2lzbot).

The largest division is the simulation box itself at level 0. At levell, the simulation box is composed of ce
with dimension(hx/max(2lxbot+l−lbot,1), hy/max(2l

y

bot+l−lbot,1), hz/max(2lzbot+l−lbot,1)).
(ii) Compute multipole moments of all the cells at the finest level of subdivision. Sweep up from the smalle

to largest cell to obtain multipole moments of cells at all subdivision levels using the multipole-to-mu
transformation formula, Eq. (12).

(iii) Sweep down from the largest cell to cells at the next level of subdivision to obtain local expansion coef
in the smallest cells: First, transform local expansion coefficients of larger cell to cells at the nex
of subdivision using the local-to-local transformation formula for shifting the origin of a local expan
Eq. (14). Second, add to these local expansion coefficients contribution from cells at the next l
subdivision, which have not been included and are well-separated from the cell being considered, u
multipole-to-local transformation formula, Eq. (13).

(iv) Once the preceding step has reached the finest subdivision level, evaluate the potential for each
Eq. (1), using the local expansion coefficients,Llm(�A), of the smallest cell containing the particle.

(v) Add contributions from other charges in the same cell and the near neighbor cells by direct computat

The FMMP performs steps (i)–(iv). The direct computations in step (v) should be performed separate
subroutine supplied by the user. Such a separation in the FMM steps is appropriate since usual MD si
codes have a linked list [10] of neighboring particles for fast computations of short-range forces and the lin
can be exploited for the direct calculations in step (v).

In FMMP, the most time-consuming part is the multipole-to-local transformation operation in step (iii).
take terms only up to|j + l| � p in Eq. (13), the computation time becomes approximately half with some lo
accuracy [9].

Forces acting on particles are calculated by differentiating the potential, using the following formulas:

∂Mlm

∂x
= Mlm

[
lx

x2 + y2 + im
y

x2 + y2

]
−Ml−1,m

zx

x2 + y2 , (18)

S. Ogata et al. / Computer Physics Communications 153 (2003) 445–461 449

[]

D box

loped the

ation of
ain

e

s of
tress

ulation
method
ber of
reproduce
∂Mlm

∂y
= Mlm

ly

x2 + y2
− im

x

x2 + y2
−Ml−1,m

yz

x2 + y2
, (19)

∂Mlm

∂z
= Ml−1,m. (20)

3. Calculation of the microscopic stress-tensor

In MD simulations of realistic materials, microscopic stress tensors are often required to determine M
deformation and to investigate stress distribution in the material [3,10,11]. However no general O(N) method has
been found in the existing literature to calculate stress tensors due to Coulomb interactions. We have deve
complex-charge method (CCM) to calculate Coulomb contribution to the stress tensor field.

The Coulomb contribution to the microscopic stress tensor field at�r is defined as [10,11]

↔
π(�r) =

∑
i

qi
(�r − �ai)(�r − �ai)T

|�r − �ai |3 , (21)

where↔ denotes a matrix and T denotes the transposition of a vector. Apparently, Eq. (21) is a summ
a product [force due to particlei] × [distance from particlei]. In the naive usage of the FMM, one can obt
summation of forces acting at�r but not the summation of the product.

The idea in CCM is to attach information of the particle position to the charge. We first calculate

B(�r, �k) =
∑
i

qi
exp(i�k · �ai)

|�r − �ai | (22)

with �k = (#k,0,0), (0,#k,0), (0,0,#k), and (0,0,0) and #k � 1/L (L is the characteristic length of th
simulation box) using the FMM. Here the particle charge may be regarded as a complex number,qi exp(i�k · �ai). We
then calculate a complex force field�C(�r, �k) = d

d�r B(�r, �k) with the FMM. Theαβ-component of↔π(�x) is obtained

by differentiatingCα(�x, �k)exp(−i�k · �x) with respect tokβ at k = 0 and by taking its imaginary part:

παβ(�x) = lim
k→0

Im

[
∂

∂kβ

{
Cα(�x, �k)exp(−i�k · �x)}]

= lim
k→0

∑
i

qi
(xα − aiα)(xβ − aiβ)

|�x − �ai |3 cos
(
i�k · (�ai − �x))

=
∑
i

qi
(xα − aiα)(xβ − aiβ)

|�x − �ai|3 . (23)

The differentiation with respect to�k in Eq. (23) is performed through finite difference using the FMM value
Cα at different values of�k. The CCM is simple to implement, since no multipole translation operator for the s
tensor needs to be derived. In FMMP,#k is set to 10−3L.

4. Boundary conditions

The FMMP is applicable to systems of both isolated clusters of charges and periodically repeating sim
boxes. For the periodic boundary conditions, we previously implemented the reduced-cell multipole
(RCMM) [12]. In the RCMM, a well-separated image of a simulation box is represented by a small num
charged points; those positions are chosen at random and magnitudes of the charges are determined to

450 S. Ogata et al. / Computer Physics Communications 153 (2003) 445–461

lculate
that the

icles. In

omes a
ial energy
le term
pposite
term is
t instead

ns with
l
y taking
tion, the
al Ewald

eometry.
e three
for the
rical

ted
gy

e
2,
a

lower-order multipoles of the original simulation box [13]. The Ewald summation technique is used to ca
Coulomb potential energy between such periodically repeating, reduced-cell charges. However, we found
potential energy calculated with the RCMM is sensitive to the positions of representative reduced-cell part
the FMMP, we use a different method that resembles the macroscopic-multipole method [13,14].

It is known that Coulomb potential energy for increasing numbers of repeating simulation boxes bec
convergent series if aggregates of the boxes form, e.g., a spherical shape [10,13–16]. The Coulomb potent
of an aggregate of infinite boxes includes a term arising from the finite dipole moment of the box. This dipo
creates a discontinuity in the potential at the box boundaries, i.e. two translationally identical positions on o
sides of the box may have different potentials. In the Ewald summation method, this macroscopic dipole
neglected, and physically this corresponds to embedding the aggregate of boxes in a “metallic” environmen
of vacuum [10,13–16].

When we choose a periodic boundary condition in the FMMP, the code calculates the Coulomb interactio
the original simulation box wrapped by a lattice of boxes forming a sphere with radius∼7 boxes. Since the origina
MD box is represented by a finite number of multipoles, the computation time increases by small amounts b
such image boxes in the FMMP. To realize the metallic environment as in the case of the Ewald summa
user has to add dipole correction terms to the FMMP values. The potential energy in the three-dimension
summation method is then reproduced as

V 3D
Ewald= VFMM +#V 3D

dipole, (24)

where

#V 3D
dipole= − 2π

3Ω
| �P |2 (25)

with the volume of the simulation boxΩ and the dipole of the simulation box�P = ∑N
i=1 qi �ai . Corresponding

correction term to the force on particlei is −∂#V 3D
dipole/∂�ai . The correction term to the total stress tensor is

↔
Π3D

Ewald= ↔
ΠFMM + 4π

3Ω
�P �P T +#V 3D

dipole

↔
1. (26)

Recently there have been increasing interests in simulating surface and interfacial systems with a slab g
Conventional 3D Ewald summation formula cannot be used directly because of no periodicity in one of th
directions. A two-dimensional Ewald summation technique has been developed, giving explicit formulas
Coulomb energyV 2D

Ewald for the slab geometry [17–19]. Yeh and Berkowitz [20] performed a detailed nume
comparison betweenV 3D

Ewald andV 2D
Ewald and found an efficient way of calculatingV 2D

Ewald usingV 3D
Ewald.

Let us assume that the (neutral) slab system is periodic inx- andy-directions, and that an empty space is inser
with its length inz-direction greater than or equal to max(Lx,Ly). The 2D Ewald result for the Coulomb ener
of the system is reproduced as [20]

V 2D
Ewald= V 3D

Ewald+ 2π

V
P 2
z = VFMM +#V 3D

dipole+ 2π

V
P 2
z (27)

using the FMM valueVFMM in the 3D periodic-boundary condition.

5. Parallel computation

In the FMMP, the simulation box is spatially decomposed intonx × ny × nz subsystems, which ar
assigned to the same number of compute nodes. Here,nx, ny, andnz should be either 1 or a power of
i.e. 1,2,4,8, . . . , with constraints log2(nx) � lxbot, log2(ny) � l

y

bot, and log2(nz) � lzbot. Each node has
scalar indexmyid in the range[0,nx × ny × nz − 1]. The vector node-index (myx, myy, myz) satisfies the
relation myid = myx × ny × nz + myy × nz + myz, and it specifies the(x, y, z) position of the node in

S. Ogata et al. / Computer Physics Communications 153 (2003) 445–461 451

of

cells
al
level
I_Send

the

rd the

t level
sion.
level of
sing the

pansion

ions.

array
the logical 3D array of compute nodes. In the single-node case(nx= ny= nz= 1), for example,myid = 0
with (myx,myy,myz) = (0,0,0); in the two-node case (nx= 2, ny= nz= 1), two nodes aremyid= 0 with
(myx,myy,myz) = (0,0,0) andmyid= 1 with (myx,myy,myz) = (1,0,0). Each node is given a number
particlesNtotn in the corresponding subsystem, charges{chg(i); i = 1, . . . ,Ntotn}, normalized positions

{sr(1− 3,i); i= 1, . . . ,Ntotn}, the simulation-box tensor
↔
h = (hx(1− 3),hy(1− 3),hz(1− 3)). The

normalized position of particlei, sr(1− 3,i), in a node with the vector node-index(myx,myy,myz) satisfies
the following inequalities:myx/nx < sr(1,i) < (myx+ 1)/nx,myy/ny < sr(2,i) < (myy+ 1)/ny, and
myz/nz< sr(3,i) < (myz+ 1)/nz.

Parameters that control the accuracy of the FMMP are the maximum subdivision levels (lbotx, lboty,
lbotz), the maximum order of multipolesiptop, and the minimum separation between well-separated
normalized by the simulation boxiWS= 1 or 2 (see step (iii) in the FMM algorithm). Multipole and loc
expansion data at subdivision levell � lglim are global and stored in all nodes, whereas the data at
l > lglim are stored only in the corresponding node and transferred to different nodes through MP
and MPI_Receive calls when they are required. The value oflglim is lfit (for iWS= 1) or lfit+ 1 (for
iWS= 2) with lfit= log2[max(nx,ny,nz)]. Thelfit corresponds to the level at which the cell assumes
maximum size in a single node.

6. Selected subroutines in FMMP

The following summarizes important subroutines in the FMMP.

FMPmain: All the FMM calculations are performed in this subroutine.
Mpsetup: This subroutine sets up cell indices for upward and downward passes in the FMM.
MPup: This subroutine calculates the multipole moments for cells starting from the smallest cell towa

simulation box (level 0).
MPdown: This subroutine transforms the local expansion coefficients of a larger cell to cells at the nex

of subdivision using the local-to-local transformation formula for shifting the origin of a local expan
Then, the subroutine adds to these local expansion coefficients the contribution from cells at the next
subdivision, which have not been included and are well-separated from the cell being considered, u
multipole-to-local transformation formula.

GetPFS: This subroutine calculates potential, force, stress tensor fields felt by particles using the local ex
coefficients for the smallest cell containing the particle.

MDwrap3: This subroutine calculates the contribution of periodic images of simulation boxes in 3 dimens

7. Parameters, input, and output of the FMMP

The user should set the following CPP macros in the include file, fmmp_dim.h, to determine maximum
sizes used in FMMP:

DEBUG: Switch to write (= 1) debugging information.
INCLUDE_STRESS: Switch to include (= 1) arrays for stress calculation.
PFLM_PRECISION: Switch for single (1) or double (2) precision representation of multipoles.
Nsize_: maximum number of particles in each node.
iptop_: maximum order of multipoles.
msize_: maximum size for the cell index.msize> 1+ 8+ 82 + · · · + 8lbot with

lbot= max(lbotx,lboty,lbotz).
ibsize_: maximum buffer size for data transfer between the nodes.

452 S. Ogata et al. / Computer Physics Communications 153 (2003) 445–461

fmmp.F

te nodes

cells.

ed

ram.
We note that including stress calculations significantly increases required memory size of the program. The
should be preprocessed by CPP before compilation with Fortran77.

The FMM calculations are performed in subroutine FMPmain. The user has to set the number of compu
in each direction(nx,ny,nz), the scalar node-indexmyid, and the vector node-index(myx,myy,myz) in a

common blocknode_vec. Dimensions of the simulation box
↔
h = (hx(1− 3),hy(1− 3),hz(1− 3)) should

be set in a common blockMDbox. Charge and normalized coordinates of particles(chg(i),sr(1− 3,i)) and
the total number of particles in each nodeNtotn are set in a common blocknode_ptcl.

The following control parameters for FMMP are set in the common blockmpdat1.

lbotx(y,z): the finest level of subdivision inx(y, z) direction;2� lbotx(y,z)� 16.
iWS= 1 or 2: the minimum separation distance in units of the simulation box between well-separated
iTR= 0 or 1: If iTR= 1, the multipole-to-local translation is truncated.
iPBC= 0 or 1: If one setsiPBC= 0, free boundary condition is assumed. We note that the user is allow

to set different numbers for subdivision levels(lbotx,lboty,lbotz) only if iPBC= 0.
If one setsiPBC= 1, the simulation box is wrapped by a 3-dimensional lattice of boxes.

iST= 0 or 1: If the CPP macrosINCLUDE_STRESS= 1 andiST= 1,
microscopic stress-tensors are also calculated.

After the subroutine FMPmain terminates, the potential field(PF(i)), negative of the force field(FF(1− 3,i)),
and stress tensor field(ST(1− 6,i)) felt by each particlei are stored in the common blocknode_result.
Definitions of PF, FF, and SF are

PF(i)=
∑
j �=i

chg(j)

|�ai−�aj | , (28)

FF(1− 3,i) =∂PF(i)

∂�ai (29)

with the first index denotingx = “1”, y = “2”, z = “3” components, and

SF(1− 6,i) =
∑
j �=i

chg(j)
(�ai − �aj)(�ai − �aj)T

|�ai − �aj |3 , (30)

with the first index denotingxx = “1”, yy = “2”, zz = “3”, yz = “4”, xz = “5”, xy = “6” components. The
measured computation time for each FMM step explained in Section 2 is stored in the common blockfmm_time:

t_setup: setup time,

t_comm: total communication time,

t_up: time for upward pass,

t_down: time for downward pass,

t_wrap: time to take care PBC,

t_pfs: time to compute PF, FF, and ST.

Common block names used in the FMMP arenode_vec, MDbox, node_ptcl, node_result, mpdat1,
mpdat2,pseudoC,PBC3,fmm_time, andfmmparity. Those names should not be used in the main prog

S. Ogata et al. / Computer Physics Communications 153 (2003) 445–461 453

test its
cutable

inux and
]

those
code by
e.
ic

mposed

in
res
ith the
ng data.
aseTX-
e
er should
–10)

hose the
s
enter.
emory
e also
rcellus

, total of

re plotted
M

8. Sample program: accuracy and scalability

We have prepared a sample driver program, fmmptest.F, to illustrate the usage of the FMMP and
accuracy. The main module and the include file are listed in Appendices A and B, respectively. The exe
fmmptest is created with the make command. The present package contains a sample makefile for L
Compaq workstations with MPICH installed. The fmmptest is then run usingn nodes under MPI environment [4
asmpirun −np n fmmptest.

We perform two tests. The first test estimates the accuracy of the FMM by comparing its results with
of Ewald summations and direct calculations. In the second test, we demonstrate the scalability of the
executing it on different numbers of nodes and study the effect of system size on the scalability of the cod

In the first part of the test,N = 1000 particles (charge,+1 or −1) are scattered randomly in a cub
box (side length, 1) such that the overall charge neutrality is maintained. The simulation box is deco
into P = 8 nodes;(nx,ny,nz)= (2,2,2). The values of some of the parameters are:iWS= 1, iTR= 0,
lbotx= lboty= lbotz= 3, iST= 0, and iptop= 5. The results of the accuracy test are shown
Appendix C. This test was performed for bothiPBC= 0 andiPBC= 1 and, for both cases, the program compa
the FMM results of the potential fields felt by the particles (that include nearest neighbor contribution) w
direct calculation results. Averaged values of the relative errors are written to the standard output with timi
Outputs of FMMP produced with PGI Fortran77 and performed on a Linux PC cluster (8 nodes, 100B
connected PentiumIII/600 MHz) are listed in Appendix C. In the present case (iptop= 5), the averaged relativ
errors of the potential fields are on the order of 0.01%. When more accurate results are required, the us
set a large value foriptop and/or setiWS= 2. Averaged relative errors of the force (stress) field are 2–3 (5
times larger than that of the potential field.

The second set of the tests examines the scalability of the FMMP on massively parallel computers. We c
following parameters:iptop= 5, iWS= 1, iTR= 0, iST= 0, andiPBC= 1. We performed the calculation
on an IBM SP3, called “HABU”, at the U.S. Naval Oceanographic Office (NAVO) Major Shared Resource C
The HABU is configured with 375 MHz Power3 CPUs and has 334 nodes with 4 CPUs and 4 GB of m
per node, total of 1336 processors. It runs AIX 4.3 operating system and IBM XL Fortran 7.1 compiler. W
repeated the same calculations on another parallel computer, IBM SP4, called “Marcellus” at NAVO. The Ma
is configured with 1.3 GHz Power4 CPUs and has 148 nodes with 8 CPUs and 8 GB of memory per node
1184 processors.

Fig. 1. Timings as function of number of processors. (a) Total execution (solid symbols) and communication (open symbols) times a
for the number of particles per processor,N/P = 105 (squares), 5×105 (triangles), and 106 (circles) on IBM SP3. (b) The same as (a) on IB
SP4.

454 S. Ogata et al. / Computer Physics Communications 153 (2003) 445–461

lso
x C

a fixed
of
e
e IBM
in terms

e in
,

ases
e.
The compute nodes for this test were chosen as(nx,ny,nz) = (1,1,1), (2,2,2), (4,4,4), and(8,8,8) with
the number of particles in each node,N/P , fixed. We choseN/P = 100,000, 500,000, and 1,000,000. We a
varied the values oflbotx= lboty= lbotz from 4 to 7. The data and the results are shown in Appendi
and in Figs. 1–3.

Fig. 1(a) shows the results on the IBM SP3. We see that the total execution time of the FMMP code with
value ofN/P is nearly constant, when the total number of particles,N , is increased by varying the number
compute nodes,P . The parallel efficiency for the case ofP = 512 andN/P = 1,000,000 is as high as 0.98. Th
communication time is only a small fraction of the total execution time. Fig. 1(b) shows the results on th
SP4, which is almost 2.5 times faster than the IBM SP3 in terms of computation, and a slight improvement
of communication time.

We also observe in Fig. 1 that the total execution time is not proportional toN/P for a fixed value ofP , but is of
the forma + b(N/P), wherea � b. This is understood by analyzing the individual timing for each subroutin
the FMMP code. Fig. 2 shows the timing data for subroutines for three different cases ofN/P = 100,000, 500,000
and 1,000,000 withP = 512. We note that the dominant computation time is for the subroutineMPdown, which is
constant and does not change withN/P . The next two dominant computations are from the subroutinesGetPFS
andMPsetup, which increase withN/P . This is because the number of particles contained in a cell incre
in proportion toN/P . The other subroutinesMPup andMDwrap3 give very small contributions to the total tim
Combination of the increasing times forGetPFS andMPsetup and the constant time forMPdown explains the
observed behavior in the total execution time as a function ofN/P .

Fig. 2. Partial timing data for different subroutines forP = 512 forN/P = 105, 5× 105, and 106 on (a) SP3 and (b) SP4.

Fig. 3. Partial timing data for different subroutines forN/P = 106 onP = 64 and 512 processors on (a) SP3 and (b) SP4.

S. Ogata et al. / Computer Physics Communications 153 (2003) 445–461 455

e
n

ot only
objects
stems
l energy
the
assume
systems.

l error
e control
runs.

e work
RINT.
rojects.
Fig. 3 compares the timing data for various subroutines withN/P = 1,000,000 betweenP = 64 andP = 512.
We see that the timings for all the dominant subroutines,MPdown, GetPFS, andMPsetup are nearly the sam
between the two cases ofP . Only the communication time and the timing forMPup increase slightly as a functio
of P .

9. Concluding remarks

The present code, FMMP, is scalable and portable implementation of the FMM. It can be used n
in materials simulations but also in various fields of simulations including plasmas and astronomical
interacting through 1/r potential. The user, however, should be cautious in its application to highly ordered sy
such as a crystalline lattice of charged points. Depending on the lattice structures, values of the potentia
may vary considerably as a function ofiptop in the case of periodic boundary conditions. This results from
fact that many of the lower-order multipoles are zero or nearly zero and only some higher-order multipoles
non-zero values in such regular lattices. The user needs to set a rather higher order of multipoles for such

Accuracy and speed of the FMMP are controlled by the parameters(lbotx,lboty,lbotz,iptop,iWS,
iTR). Formulas for the error bound in the potential have been derived in Refs. [1,9]. However, actua
varies depend significantly on configurations, and it is not recommended to predetermine the values of th
parameters based on these formulas. Rather, the control parameters need to be determined through test

Acknowledgement

This work at Yamaguchi was partially supported by YU-VBL overseas scholarship and by ACT-JST. Th
at USC and LSU was partially supported by ARL, NSF, DOE, NASA, and USC-Berkeley-Princeton DU
Benchmark tests were performed at DoD Major Shared Resource Centers under CHSSI and Challenge p

Appendix A. Listing of the sample driver program fmmptest.F

c
c Sample program to use FMMP Ver. 2.1 : check accuracy and timings.
c

program main
implicit real*8(a-h,o-z)

#include "mpif.h"
c-----Maximum number of particles.

parameter(Ntotmax=1000)
c-----Charges and normalized positions of all particles.

real*8 chgg(Ntotmax),srg(3,Ntotmax)

#include "fmmp_dim.h"
parameter(Nsize=Nsize_)

c-----Common blocks for FMMP
common/node_vec/myid,myx,myy,myz,nx,ny,nz
common/MDbox/hx(3),hy(3),hz(3)
common/node_ptcl/chg(Nsize),sr(3,Nsize),Ntotn
common/mpdat1/iws,iTR,iPBC,iST,
& lbotx,lboty,lbotz,lbotdx,lbotdy,lbotdz,lbot,
& lfit,lglim,ncup(0:16),memswt(0:16)

#if INCLUDE_STRESS

456 S. Ogata et al. / Computer Physics Communications 153 (2003) 445–461
common/node_result/PF(Nsize),FF(3,Nsize),
& ST(6,Nsize)

#else
common/node_result/PF(Nsize),FF(3,Nsize)

#endif
common/fmm_time/t_setup,t_comm,t_up,t_down,
& t_wrap,t_pfs

c-----index to remember global particle-ID’s
integer*4 idg(Nsize)

call MPI_INIT(ierr)
call MPI_COMM_RANK(MPI_COMM_WORLD,myid,ierr)

c-----Computer-node layout
nx=2
ny=2
nz=2
nodes=nx*ny*nz
myx=myid/(ny*nz)
myy=mod(myid/nz,ny)
myz=mod(myid,nz)

c-----Setup control parameters for FMMP
iWS=1
iTR=0
lbotx=3
lboty=lbotx
lbotz=lbotx
iST=0
if(myid.eq.0)then

write(*,*)’iPBC=(0 or 1)?’
read(*,*)iPBC

endif
call MPI_BCAST(iPBC,1,MPI_INTEGER,0,MPI_COMM_WORLD,ierr)

c-----Setup simulation Box
hx(1)=1d0
hx(2)=0d0
hx(3)=0d0
hy(1)=0d0
hy(2)=1d0
hy(3)=0d0
hz(1)=0d0
hz(2)=0d0
hz(3)=1d0

c-----Spatial region of this node.
xmin_my=dble(myx)/nx
xmax_my=dble(myx+1)/nx
ymin_my=dble(myy)/ny
ymax_my=dble(myy+1)/ny

S. Ogata et al. / Computer Physics Communications 153 (2003) 445–461 457
zmin_my=dble(myz)/nz
zmax_my=dble(myz+1)/nz

dseed=12345
inc=0

c-----Total number of particles. Even number.
Ntot=1000

c-----Setup charged points at random positions
do i=1,Ntot

call myrnd(rndx,dseed)
call myrnd(rndy,dseed)
call myrnd(rndz,dseed)
chgg(i)=mod(i,2)*2-1
srg(1,i)=rndx
srg(2,i)=rndy
srg(3,i)=rndz

c-------Each node stores data of particles in the corresponding region.
if(rndx.ge.xmin_my .and. rndx.lt.xmax_my .and.

& rndy.ge.ymin_my .and. rndy.lt.ymax_my .and.
& rndz.ge.zmin_my .and. rndz.lt.zmax_my)then

inc=inc+1
idg(inc)=i
chg(inc)=chgg(i)
sr(1,inc)=srg(1,i)
sr(2,inc)=srg(2,i)
sr(3,inc)=srg(3,i)

endif
enddo

c-----Total number of particles in this node
Ntotn=inc

c-----FMM calculations
call FMPmain()

error=0d0
c-----Free boundary conditions
c-----Compare potential field with that obtained by direct calculations.

if(iPBC.eq.0)then
do node_id=0,nodes-1

c---------Each node writes the results
if(myid.eq.node_id)then
do i=1,Ntotn

c-------------Get global particle-ID
ig=idg(i)

c-------------Contribution from particles in near neighbor cells
call NNcont(ig,PFNN,chgg,srg,Ntot)

c-------------Direct calculations
call getDirect(ig,PFdirect,chgg,srg,Ntot)
error=error+abs((PF(i)+PFNN-PFdirect)/PFdirect)

enddo
endif

enddo

458 S. Ogata et al. / Computer Physics Communications 153 (2003) 445–461
c-----Periodic boundary conditions (3dim.)
c-----Compare potential field with that obtained by Ewald calculations.

elseif(iPBC.eq.1)then
call Ewaldini(chgg,srg,Ntot)
do node_id=0,nodes-1

c---------Each node writes the results
if(myid.eq.node_id)then
do i=1,Ntotn

c-------------Get global particle-ID
ig=idg(i)

c-------------Contribution from particles in near neighbor cells
call NNcont(ig,PFNN,chgg,srg,Ntot)

c-------------Ewald calculations
call PEewald(ig,PFewld)

c-------------Macroscopic-dipole correction to the FMM results
call dipole(ig,PFdipole)
error=error+abs((PF(i)+PFNN+PFdipole-PFewld)/PFewld)

enddo
endif

enddo
else

c-------check iPBC
write(*,*)’Not supported in this test program, iPBC=’,iPBC
stop

endif

c-----Sum up relative error. Normalize it by Ntot.
call MPI_ALLREDUCE(error,temp,1,MPI_DOUBLE_PRECISION,
& MPI_SUM,MPI_COMM_WORLD,ierr)
error=error/Ntot

c-----Write relative error
if(myid.eq.0)then

write(*,*)’averaged relative-error of PF =’,error
endif

c-----Write timings for FMM calculations
if(myid.eq.0)then

write(*,*)’t_setup, t_comm, t_up, t_down, t_wrap,’,
& ’ t_pfs(sec)=’

write(*,1100)t_setup,t_comm,t_up,t_down,t_wrap,t_pfs
1100 format(6(1pe10.2))

endif

call MPI_FINALIZE(ierr)

end

S. Ogata et al. / Computer Physics Communications 153 (2003) 445–461 459
Appendix B. Listing of fmmp_dim.h for a sample program fmmptest.F

c=================================c
c fmmp_dim.h
c Header file for fmmp.F
c Version 2.1
c=================================c

c----------Begin user section

#define INCLUDE_STRESS 0
#define PFLM_PRECISION 1
#define DEBUG 0

#define Nsize_ 10000
#define iptop_ 5
#define msize_ 4800
#define ibsize_ 60000

c----------End user section

#if PFLM_PRECISION == 2
#define PFLM_TYPE complex*16
#else
#define PFLM_TYPE complex*8
#endif

Appendix C. Output of sample program fmmptest

Case: iPBC= 0

averaged relative-error of PF= 0.1077E–03

t_setup t_comm t_up t_down t_wrap t_pfs (sec)

1.45E–03 5.38E–02 5.67E–02 5.68E–01 3.00E–06 3.17E–03

Case: iPBC= 1

averaged relative-error of PF= 0.4799E–03

t_setup t_comm t_up t_down t_wrap t_pfs (sec)

1.42E–03 5.49E–02 5.77E–02 1.15E+00 1.47E–01 3.16E–03

460 S. Ogata et al. / Computer Physics Communications 153 (2003) 445–461
Scalability test data

SP3 HABU

N/P= 100,000
P lbot N t_setup t_comm t_up t_down t_wrap t_pfs total efficiency
1 4 1e+05 0.573 0.012 0.155 87.7 0.138 1.1 89.7 1.00
8 5 8e+05 0.586 0.0514 0.195 88.4 0.139 1.12 90.4 0.99

64 6 6.4e+06 0.589 0.0725 0.218 88.5 0.138 1.12 90.6 0.99
512 7 5.12e+07 0.591 0.208 0.353 88.8 0.140 1.12 91.3 0.98

N/P= 500,000
P lbot N t_setup t_comm t_up t_down t_wrap t_pfs total efficiency
1 4 5e+05 2.84 0.0121 0.155 87.6 0.138 5.52 96.3 1.00
8 5 4e+06 2.92 0.0481 0.192 88.3 0.138 5.58 97.1 0.99

64 6 3.2e+07 2.92 0.0873 0.231 88.5 0.138 5.59 97.5 0.98
512 7 2.56e+08 2.92 0.222 0.367 88.8 0.139 5.60 98.0 0.98

N/P= 1,000,000
P lbot N t_setup t_comm t_up t_down t_wrap t_pfs total efficiency
1 4 1e+06 5.8 0.0121 0.156 87.6 0.138 11.1 105.0 1.00
8 5 8e+06 5.83 0.0595 0.204 88.3 0.139 11.2 106.0 0.99

64 6 6.4e+07 5.82 0.177 0.321 88.4 0.138 11.1 106.0 0.99
512 7 5.12e+08 5.84 0.332 0.47 88.9 0.140 11.4 107.0 0.98

SP4 MARCELLUS

N/P= 100,000
P lbot N t_setup t_comm t_up t_down t_wrap t_pfs total efficiency
1 4 1e+05 0.253 0.0056 0.066 35.2 0.055 0.53 36.1 1.00
8 5 8e+05 0.259 0.0307 0.092 35.2 0.053 0.53 36.1 0.99

64 6 6.4e+06 0.260 0.0515 0.113 35.2 0.056 0.53 36.2 0.99
512 7 5.12e+07 0.266 0.173 0.235 35.6 0.056 0.54 36.9 0.98

N/P= 500,000
P lbot N t_setup t_comm t_up t_down t_wrap t_pfs total efficiency
1 4 5e+05 1.26 0.0054 0.066 35.2 0.055 2.65 39.2 1.00
8 5 4e+06 1.31 0.0457 0.113 35.4 0.056 2.68 39.6 0.99

64 6 3.2e+07 1.30 0.0884 0.150 35.2 0.054 2.67 39.5 0.98
512 7 2.56e+08 1.32 0.140 0.202 35.3 0.056 2.69 39.7 0.98

N/P= 1,000,000
P lbot N t_setup t_comm t_up t_down t_wrap t_pfs total efficiency
1 4 1e+06 2.52 0.0057 0.066 35.2 0.055 5.29 43.1 1.00
8 5 8e+06 2.60 0.0921 0.154 35.2 0.055 5.35 43.5 0.99

64 6 6.4e+07 2.60 0.129 0.191 35.2 0.054 5.34 43.5 0.99
512 7 5.12e+08 2.62 0.278 0.339 35.3 0.056 5.35 43.9 0.98

References

[1] L. Greengard, V. Rokhlin, J. Comput. Phys. 60 (1985) 187;
L. Greengard, The Rapid Evolution of Potential Fields in Particle Systems, MIT, Boston, 1987.

S. Ogata et al. / Computer Physics Communications 153 (2003) 445–461 461

994.
[2] E.L. Pollock, J. Glosli, Comp. Phys. Commun. 95 (1996) 93.
[3] A. Nakano, et al., IEEE Comput. Sci. Engrg. 5 (1998) 68.
[4] W. Gropp, E. Lusk, A. Skkjellum, Using MPI Portable Parallel Programming with the Message-Passing Interface, MIT, Boston, 1
[5] T.J. Campbell, R.K. Kalia, A. Nakano, P. Vashishta, S. Ogata, S. Rodgers, Phys. Rev. Lett. 82 (1999) 4866.
[6] S. Ogata, H. Iyetomi, K. Tsuruta, F. Shimojo, A. Nakano, R.K. Kalia, P. Vashishta, J. Appl. Phys. 88 (2000) 6011.
[7] F.H. Streitz, J.W. Mintmire, Phys. Rev. B 50 (1994) 11996.
[8] S. Ogata, H. Iyetomi, K. Tsuruta, F. Shimojo, R.K. Kalia, A. Nakano, P. Vashishta, J. Appl. Phys. 86 (1999) 3036.
[9] C.A. White, M. Head-Gordon, J. Chem. Phys. 101 (1994) 6593.

[10] M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids, Oxford Univ. Press, New York, 1987.
[11] A. Nakano, R.K. Kalia, P. Vashishta, Comp. Phys. Commun. 83 (1994) 197.
[12] H. Ding, N. Karasawa, W.A. Goddard III, Chem. Phys. Lett. 196 (1992) 6.
[13] A.Y. Toukmaji, J.A. Board Jr., Comp. Phys. Comm. 95 (1996) 73.
[14] C.G. Lambert, T.A. Darden, J.A. Board Jr., J. Comp. Phys. 126 (1996) 274.
[15] S.W. De Leeuw, J.W. Perram, E.R. Smith, Proc. Roy. Soc. London A 373 (1980) 27.
[16] M.W. Deem, J.M. Newsam, S.K. Sinha, J. Phys. Chem. 94 (1990) 8356.
[17] D.E. Parry, Surf. Sci. 49 (1975) 433; Surf. Sci. 55 (1976) 195.
[18] D.M. Heyer, M. Barber, J.H. Clarke, J. Chem. Soc., Faraday Trans. II 73 (1977) 1485.
[19] S.W. de Leeuw, J.W. Perram, Mol. Phys. 37 (1979) 1313.
[20] I.-C. Yeh, M.L. Berkowitz, J. Chem. Phys. 111 (1999) 3155.

