b ‘H Available online at www.sciencedirect.com
S

,é? s°'E“°E(d)°'“°"'® Computer Physics
;g Communications
ELSEVIER Computer Physics Communications 153 (2003) 445-461

www.elsevier.com/locate/cpc

Scalable and portable implementation of the fast multipole
method on parallel computets

Shuji Ogata, Timothy J. Campbell, Rajiv K. Kalia®?, Aiichiro Nakand*%*,
Priya Vashisht&?, Satyavani Vemparafa

@ Department of Applied Sciences, Yamaguchi University, Ube 755-8611, Japan
b Mississippi State University, Stennis Space Center, MS 39529, USA
€ Collaboratory for Advanced Computing and Simulations, Department of Computer Science, Department of Material Science & Engineering,
Department of Physics & Astronomy, Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, USA
d Concurrent Computing Laboratory for Materials Smulations, Biological Computation and Visualization Center,
Department of Computer Science, Department of Physics & Astronomy, Louisiana Sate University, Baton Rouge, LA 70801, USA

Abstract

A scalable and portable Fortran code is developed to calculate Coulomb interaction potentials of charged particles on parallel
computers, based on the fast multipole method. The code has a unique feature to calculate microscopic stress tensors due to
the Coulomb interactions, which is useful in constant-pressure simulations and local stress analyses. The code is applicable to
various boundary conditions, including periodic boundary conditions in two and three dimensions, corresponding to slab and
bulk systems, respectively. Numerical accuracy of the code is tested through comparison of its results with those obtained by
the Ewald summation method and by direct calculations. Scalability tests show the parallel efficiency of 0.98 for 512 million
charged particles on 512 IBM SP3 processors. The timing results on IBM SP3 are also compared with those on IBM SP4.

0 2003 Published by Elsevier B.V.

PACS 02.60.-x; 02.70.-c

Keywords: Fast multipole method; Parallel computation; Stress calculation; Periodic boundary conditions; Coulomb interaction

PROGRAM SUMMARY Operating systems or monitors under which the program has been
tested: LINUX with MPICH, IBM SP, SGI Origin
Title of program: FMMP
Programming language used: Fortran77, C language preprocessor
Catalogue identifier: ADRX

. Has the code been vectorized or parallelized: parallelized using
Program Summary URL: http://cpc.cs.qub.ac.uk/summaries/ADRX 1o, Standard

Program obtainable from: CPC Program Library, Queen’s Univer- o . '
sity of Belfast, N. Ireland No. of bytes in distributed program, including test data, etc.: 16 167

Y This paper can be downloaded from the CPC Program Library under catalogue identifier: http://cpc.cs.qub.ac.uk/summaries/ADRX
* Corresponding author.
E-mail address: anakano@usc.edu (A. Nakano).

0010-4655/03/$ — see front mattér 2003 Published by Elsevier B.V.
doi:10.1016/S0010-4655(03)00246-7

446 S Ogata et al. / Computer Physics Communications 153 (2003) 445461

Distribution format: tar gzip file Typical running time

Proportional to the number of charged points.
Nature of physical problem
Parallel computations of Coulomb potentials, forces, and stress ten-

.) Unusual features of the program: None
sors for a collection of charged particles. preg

Method of solution
The fast multipole method.

LONG WRITE-UP

1. Introduction

The fast multipole method (FMM) developed by Greengard and Rokhlin [1] calculates electrostatic energies
and forces for a collection oN charged particles with V) operations and with predictable error bounds,
whereas the optimal Ewald method is atiNd/2) algorithm [2]. The FMM enables atomistic simulations of
realistic materials involving millions to billions of charged particles under various settings of boundary conditions
[3]. We have recently developed a scalable and portable FMM code named FMMP for materials simulations on
parallel computers using the Message Passing Interface (MPI) standard [4]. The FMMP features the calculation
of microscopic stress tensors, which is needed for pressure-controlled simulations and local stress analyses. It
also supports various boundary conditions, including two- and three-dimensional periodic-boundary conditions,
which are used for slab and bulk systems, respectively. The FMMP has been used in various materials simulations,
including oxidation of aluminum nanoparticles [5] and sintering of titania nanoparticles [6] in which interatomic
interaction is modeled with variable-charge potentials [7,8].

In this paper, we describe technical details that are needed for using FMMP, and present accuracy and
performance tests of FMMP. The FMMP code is composed of a Fortran program file fmmp.F and an include
file fmmp_dim.h. The fmmp.F should be preprocessed by the C language preprocessor (CPP) before compilation
with Fortran77. Control macro-parameters for CPP are set in fmmp_dim.h. Present distribution package of FMMP
includes a sample driver program fmmptest.F that uses subprograms in fmmp.F.

2. Formulation of FMM

We consider a collection oV particles with charge$q; | i = 1,..., N} at positions{a; |i = 1,..., N};
a; = (a;, 9;, ;) With a; = |d;| in polar coordinates. Greengard and Rokhlin [1] proposed aw)Q@ilgorithm to
compute Coulomb potentials for all particles, ig#,. gj/lai —aj| (i =1,...,N). The direct calculations to
evaluate Coulomb potentials at particle positions requires (@?) operations. In this section, we summarize
equations that are necessary to understand the present implementation of the FMM.

The electrostatic potential at positionmay be expressed as [9]

3 g { o My (A Ly (F) forr > Amax 0
= F—al | 20 Lin(AM) forr < Amin,
where
My (X) = ;lelm(cose) exp(—ime), 2)

(I + |m!

S Ogata et al. / Computer Physics Communications 153 (2003) 445461 447

Lin(3) = (I — m)x~ "D P, (cosp) explimg), ®3)
Mlm(g) = Zq:'Mlm(ai)» (4)
Lin(A) =Y qiLin(G). (5)

Herex = (x, 0, ¢) in polar coordinatesi denotes a collective sej}, of the positionsAmaxmin iS the maximum
(minimum) value ofy;, {M;,, (K)} are the multipole moments [9] of the charges, :angl,,(ﬁ)} are the local Taylor
expansion coefficients [9] of the Coulomb field at the orighy, (x) in Egs. (2) and (3) are defined with the
associated Legendre polynomials

Pl(x)=1- 2>“/2d P(x) (I=p=0)

dx#
as
(=™ P"(x) form =0,
Py (x) = |m| : ©
P (x) form <O.
The following recursion formulas are useful to calcul&tg (x)
Py (x) = (=1)"[(2m — 1)(2m — 3) - - - 1] (1 — x2)"/? form >1,
Poo(x) =1,
Pm+l,m(x)=x(2m+l)Pmm(x) form >0, (7)
(I =m)Pipy(x) =x@2 =) P—am(x) —(+m—1)P_2,(x) form=0,
—m(x) = (=1 Py (x) form>1
We may use the following relations to speed up computations if values of charges are real numbers:
My =D"M;, form >0, ®)
Li—m=D"L}, form>0,
wherex denotes the complex conjugate.
The above recursive relations can be used to derive transformation operators befyyesard L, :
SN My A Lim) =" My (A — b) Li (7 — b) 9)
[m I m
with the condition of# — 5| > |A — b|,
Z Z M, (1K - I;)le ('7 - I;) = Z Z Ly (I;/ - A)Mlm (l_;/ - 7) (10)
[m I m
with the condition of 5’ — A| > |b’ — 7|, and
Z Z le(l;/ - A)Mlm(g/ - 7) = Z Z le(E - A»)]ulm (Z - 7) (11)
[m [m

with the condmon ofic — A| > |¢ —7|. InEgs. (9)- (11)M1m(A b) andL, (b’ Z) are short hand notations for
> i qiMim(a; —b) and); q,le(b — a;), respectively.

448 S Ogata et al. / Computer Physics Communications 153 (2003) 445461

We then find the following three types of transformation operations [9]:

l J
M (A — b) = Yy Tl’\f%n_k(E)Mjk(K), [multipole-to-multipole]
j=0k=—
' (12)
J
Lim(b — A) ~ SN M i (b)Mjr(A) (p =maximum ofl), [multipole-to-local] ~ (13)
':Ok:—j
Lim(C — A) = Z Z L om®—OLjk(b— A) (p=maximumofl), [local-to-local] (14)
Jj=lk=—j

with the operators,

T,ME-”,,, L (B) = My_j i (=b), (15)
TM 4o ®) = Ljs1kem(b), (16)
THY 4 B) =M 14 m (D). (17)

The FMM calculates Coulomb potentials of charged particles contained in a simulation box in five steps [1,2,9]:

() The simulation box with dimension@,, &y, h;) is successively subdivided. L&}, Zgot, and[{ be the
prescribed numbers of recursive subdivisions along the-, andz-axes. At the finest subdivision levighs =
max(i o, lpop [the simulation box is decomposed into cells with dimensidng2'o, hy) 2lbot, ., /2lhor).

The largest division is the simulation box itself at level 0. At lelyghe simulation box is composed of cells
with dimension(h, / max2bort~ot 1)k, / max(2'bort oot 1), 1, / max(2'bert! oot 1)),

(i) Compute multipole moments of all the cells at the finest level of subdivision. Sweep up from the smallest cells
to largest cell to obtain multipole moments of cells at all subdivision levels using the multipole-to-multipole
transformation formula, Eq. (12).

(i) Sweep down from the largest cell to cells at the next level of subdivision to obtain local expansion coefficients
in the smallest cells: First, transform local expansion coefficients of larger cell to cells at the next level
of subdivision using the local-to-local transformation formula for shifting the origin of a local expansion,
Eq. (14). Second, add to these local expansion coefficients contribution from cells at the next level of
subdivision, which have not been included and are well-separated from the cell being considered, using the
multipole-to-local transformation formula, Eq. (13).

(iv) Once the preceding step has reached the finest subdivision level, evaluate the potential for each particle,
Eq. (1), using the local expansion coeff|C|er1t§m(A) of the smallest cell containing the particle.

(v) Add contributions from other charges in the same cell and the near neighbor cells by direct computations.

The FMMP performs steps (i)—(iv). The direct computations in step (v) should be performed separately in a

subroutine supplied by the user. Such a separation in the FMM steps is appropriate since usual MD simulation
codes have a linked list [10] of neighboring particles for fast computations of short-range forces and the linked list

can be exploited for the direct calculations in step (v).

In FMMP, the most time-consuming part is the multipole-to-local transformation operation in step (iii). If we
take terms only up toj + 1| < p in Eq. (13), the computation time becomes approximately half with some loss of
accuracy [9].

Forces acting on particles are calculated by differentiating the potential, using the following formulas:

oM, Ix . y X
=M, Im —Mi_1m—5—>, 18
9x l"”[xz_|_y2+ X212 hmir e (18)

S Ogata et al. / Computer Physics Communications 153 (2003) 445461 449

oM, ly . X vz
=M, —1 — M;_ -5 19
dy lm|:x2+y2 M Try2 hmiayy? (19)
oM;
m_ Mi_1m. (20)
0z

3. Calculation of the microscopic stress-tensor

In MD simulations of realistic materials, microscopic stress tensors are often required to determine MD box
deformation and to investigate stress distribution in the material [3,10,11]. However no ge@€jah®thod has
been found in the existing literature to calculate stress tensors due to Coulomb interactions. We have developed the
complex-charge method (CCM) to calculate Coulomb contribution to the stress tensor field.

The Coulomb contribution to the microscopic stress tensor fietdsatiefined as [10,11]

o - F—a)(F—a)'
w(r)= I S S A 21
() Xl: 511 |I" —a |3 ()
where <> denotes a matrix and T denotes the transposition of a vector. Apparently, Eq. (21) is a summation of
a product [force due to particld x [distance from particlé]. In the naive usage of the FMM, one can obtain
summation of forces acting atbut not the summation of the product.

The idea in CCM is to attach information of the particle position to the charge. We first calculate

B, %) = qu exp("ﬂ“’ (22)

|r_al

with k = (Ak, 0, 0), (0, Ak, 0), (0,0, Ak), and (0, 0,0) and Ak < 1/L (L is the characteristic length of the
simulation box) using the FMM. Here the particle charge may be regarded as a complex ek - a;). We
then calculate a complex force fiel@(r, k) = d%B(?,k) with the FMM. Thea-component ofz (¥) is obtained

by differentiatingC, (¥, k) exp(—ik - X) with respect tdkg atk = 0 and by taking its imaginary part:

o (¥) = lim Im[%{ca(i,lz) exp(—ili.z)}}

= lim qu af“)(fﬁﬁ_ ‘ip) cog(ik - @ — X))

k—0 |x —a;
_ Zq:’ Xa ala)(xﬂg azﬁ) (23)
- |x - al|

The differentiation with respect toin Eq. (23) is performed through finite difference using the FMM values of
C, at different values of. The CCM is simple to implement, since no multipole translation operator for the stress
tensor needs to be derived. In FMMF is set to 103L.

4. Boundary conditions

The FMMP is applicable to systems of both isolated clusters of charges and periodically repeating simulation
boxes. For the periodic boundary conditions, we previously implemented the reduced-cell multipole method
(RCMM) [12]. In the RCMM, a well-separated image of a simulation box is represented by a small number of
charged points; those positions are chosen at random and magnitudes of the charges are determined to reproduce

450 S Ogata et al. / Computer Physics Communications 153 (2003) 445461

lower-order multipoles of the original simulation box [13]. The Ewald summation technique is used to calculate
Coulomb potential energy between such periodically repeating, reduced-cell charges. However, we found that the
potential energy calculated with the RCMM is sensitive to the positions of representative reduced-cell particles. In
the FMMP, we use a different method that resembles the macroscopic-multipole method [13,14].

It is known that Coulomb potential energy for increasing numbers of repeating simulation boxes becomes a
convergent series if aggregates of the boxes form, e.g., a spherical shape [10,13-16]. The Coulomb potential energy
of an aggregate of infinite boxes includes a term arising from the finite dipole moment of the box. This dipole term
creates a discontinuity in the potential at the box boundaries, i.e. two translationally identical positions on opposite
sides of the box may have different potentials. In the Ewald summation method, this macroscopic dipole term is
neglected, and physically this corresponds to embedding the aggregate of boxes in a “metallic” environment instead
of vacuum [10,13-16].

When we choose a periodic boundary condition in the FMMP, the code calculates the Coulomb interactions with
the original simulation box wrapped by a lattice of boxes forming a sphere with radilmxes. Since the original
MD box is represented by a finite number of multipoles, the computation time increases by small amounts by taking
such image boxes in the FMMP. To realize the metallic environment as in the case of the Ewald summation, the
user has to add dipole correction terms to the FMMP values. The potential energy in the three-dimensional Ewald
summation method is then reproduced as

VEgvlaaldz Vemm + AVd?’ipl?ole’ (24)
where
27 -
Angolez —@|P|2 (25)

with the volume of the simulation bof and the dipole of the simulation bak = vazl gia;. Corresponding
correction term to the force on particlés —aAngole/aéi. The correction term to the total stress tensor is
3D pa Ar =1 aD ¥
M gyag=Hrvm + @PP + Avdipolel' (26)

Recently there have been increasing interests in simulating surface and interfacial systems with a slab geometry.
Conventional 3D Ewald summation formula cannot be used directly because of no periodicity in one of the three
directions. A two-dimensional Ewald summation technigue has been developed, giving explicit formulas for the
Coulomb energwév'eald for the slab geometry [17-19]. Yeh and Berkowitz [20] performed a detailed numerical
comparison betweerSD. ,and V2D | and found an efficient way of calculatingg>, , using VEl_ .

Let us assume that the (neutral) slab system is periodicamdy-directions, and that an empty space is inserted
with its length inz-direction greater than or equal to n{@x, L,). The 2D Ewald result for the Coulomb energy
of the system is reproduced as [20]

2 27
2D 3D 2 3D 2
VEwald= VEwald+ 7, Po' = Vemm + AViipole + 7 P2 (27)

using the FMM valué/gmy in the 3D periodic-boundary condition.

5. Paralld computation

In the FMMP, the simulation box is spatially decomposed into x ny x nz subsystems, which are
assigned to the same number of compute nodes. Hereny, andnz should be either 1 or a power of 2,
i.e. 12,4,8,..., with constraints log(nx) < [, log(ny) < lgot, and log(nz) < I;,. Each node has a
scalar indexryi d in the rang€0, nx x ny x nz — 1]. The vector node-indexwy x, nyy, nmyz) satisfies the

relationmyi d = nyx x ny x nz +nyy x nz + nmyz, and it specifies théx, y, z) position of the node in

S Ogata et al. / Computer Physics Communications 153 (2003) 445461 451

the logical 3D array of compute nodes. In the single-node ¢age=ny =nz =1), for example,myi d =0
with (nyx, nyy,nyz) = (0,0, 0); in the two-node casenk =2, ny =nz = 1), two nodes areryi d = 0 with
(myx,nyy,myz) =(0,0,0) andnyi d =1 with (myx, nyy,myz) = (1,0, 0). Each node is given a number of
particlesNt ot n in the corresponding subsystem, char@elsg(i); i = 1,..., Nt ot n}, normalized positions
{sr(1—-3,i); i =1,...,Nt ot n}, the simulation-box tensoh = (hx(1 —3),hy(1 —3),hz(1—3)). The
normalized position of particlg, sr (1 — 3,i), in a node with the vector node-indéxyx, myy, myz) satisfies
the following inequalitiesmyx/nx < sr (1,i) < (nyx +1)/nx,myy/ny < sr(2,i) < (myy +1)/ny, and
myz/nz <sr(3,i)<(nyz+1)/nz.

Parameters that control the accuracy of the FMMP are the maximum subdivision lekelsx(| boty,
| bot z), the maximum order of multipoleispt op, and the minimum separation between well-separated cells
normalized by the simulation boxWs=1 or 2 (see step (iii) in the FMM algorithm). Multipole and local
expansion data at subdivision levieK | gl i mare global and stored in all nodes, whereas the data at level
I > 1glimare stored only in the corresponding node and transferred to different nodes through MPI_Send
and MPI_Receive calls when they are required. The valdegbfi mis | fit (fori Ws=1)orlfit +1 (for
i Ws=2)with | fit =log,[maxnx,ny,nz)]. Thel fit corresponds to the level at which the cell assumes the
maximum size in a single node.

6. Selected subroutinesin FMMP

The following summarizes important subroutines in the FMMP.

FMPmain: All the FMM calculations are performed in this subroutine.

Mpsetup: This subroutine sets up cell indices for upward and downward passes in the FMM.

MPup: This subroutine calculates the multipole moments for cells starting from the smallest cell toward the
simulation box (level 0).

MPdown: This subroutine transforms the local expansion coefficients of a larger cell to cells at the next level
of subdivision using the local-to-local transformation formula for shifting the origin of a local expansion.
Then, the subroutine adds to these local expansion coefficients the contribution from cells at the next level of
subdivision, which have not been included and are well-separated from the cell being considered, using the
multipole-to-local transformation formula.

GetPFS: This subroutine calculates potential, force, stress tensor fields felt by particles using the local expansion
coefficients for the smallest cell containing the particle.

MDwrap3: This subroutine calculates the contribution of periodic images of simulation boxes in 3 dimensions.

7. Parameters, input, and output of the FMMP

The user should set the following CPP macros in the include file, fmmp_dim.h, to determine maximum array
sizes used in FMMP:

DEBUG Switch to write & 1) debugging information.
I NCLUDE_STRESS: Switch to include £ 1) arrays for stress calculation.
PFLM PRECI SI ON: Switch for single (1) or double (2) precision representation of multipoles.

Nsi ze_: maximum number of particles in each node.
i ptop_: maximum order of multipoles.
nei ze_: maximum size for the cell indexsi ze > 1+ 8+ 82+ - - + 8Pt with

| bot =max(bot x, | boty,| bot z).
i bsi ze_: maximum buffer size for data transfer between the nodes.

452 S Ogata et al. / Computer Physics Communications 153 (2003) 445461

We note that including stress calculations significantly increases required memory size of the program. The fmmp.F
should be preprocessed by CPP before compilation with Fortran77.

The FMM calculations are performed in subroutine FMPmain. The user has to set the number of compute nodes
in each direction(nx, ny, nz), the scalar node-indexyi d, and the vector node-indgxryx, nyy, nmyz) in a

common blocknode_vec. Dimensions of the simulation bok = (hx(1 —3),hy(1 —3),hz(1 — 3)) should
be set in a common blocdkDbox. Charge and normalized coordinates of partigielsg(), sr (1 —3,i)) and
the total number of patrticles in each nddeot n are setin a common blogtode_pt cl .

The following control parameters for FMMP are set in the common bigudat 1.

| bot x(y, z): the finest level of subdivision in(y, z) direction;2 < bot x(y, z) < 16.
i W6=1o0r2: the minimum separation distance in units of the simulation box between well-separated cells.
i TR=0orl1: Ifi TR=1,the multipole-to-local translation is truncated.
i PBC=0 or1: Ifone sets PBC=0, free boundary condition is assumed. We note that the user is allowed
to set different numbers for subdivision levéldot x, | bot y, | bot z) only if i PBC=0.
If one setd PBC= 1, the simulation box is wrapped by a 3-dimensional lattice of boxes.
i ST=0o0r1: Ifthe CPP macrosNCLUDE STRESS=1 andi ST=1,
microscopic stress-tensors are also calculated.

After the subroutine FMPmain terminates, the potential fiEle(i)), negative of the force fieldFF(1 — 3, i)),
and stress tensor fielgST(1 — 6,)) felt by each particle are stored in the common bloclode_resul t.
Definitions of PF, FF, and SF are

PR)=y 190 (28)
it lai—aj|

FF(1-3,i) =8P|i(i) (29)
da;

with the first index denoting = “1", y =“2", z =“3” components, and

(@ —aj(a —aj’

la; —aj|3

SF(1—6.i)=) chg()
J#

: (30)

with the first index denotingx = “1", yy ="2", zz ="3", yz ="4", xz ="5", xy = “6” components. The
measured computation time for each FMM step explained in Section 2 is stored in the commdirbtotk ne:

t _setup: setuptime

t _comm total communication time
t_up: time for upward pass

t _down: time for downward pass

t _wap: time totake care PBC

t_pfs: time to compute PF, FF, and ST

Common block names used in the FMMP arede_vec, MDbox, node_pt cl , node_resul t, npdat 1,
nmpdat 2, pseudoC, PBC3,f rm t i me, andf mpari t y. Those names should not be used in the main program.

S Ogata et al. / Computer Physics Communications 153 (2003) 445461 453

8. Sample program: accuracy and scalability

We have prepared a sample driver program, fmmptest.F, to illustrate the usage of the FMMP and test its
accuracy. The main module and the include file are listed in Appendices A and B, respectively. The executable
fmmptest is created with the make command. The present package contains a sample makefile for Linux and
Compaq workstations with MPICH installed. The fmmptest is then run usingdes under MPI environment [4]
asnpi run —np n f mmpt est .

We perform two tests. The first test estimates the accuracy of the FMM by comparing its results with those
of Ewald summations and direct calculations. In the second test, we demonstrate the scalability of the code by
executing it on different numbers of nodes and study the effect of system size on the scalability of the code.

In the first part of the testv = 1000 particles (charge+1l or —1) are scattered randomly in a cubic
box (side length, 1) such that the overall charge neutrality is maintained. The simulation box is decomposed
into P = 8 nodes;(nx,ny,nz)=(2,2,2). The values of some of the parameters ard5=1, i TR=0,
| botx =l boty=I1botz=3, i ST=0, andi ptop=5. The results of the accuracy test are shown in
Appendix C. This test was performed for botRBC= 0 andi PBC= 1 and, for both cases, the program compares
the FMM results of the potential fields felt by the particles (that include nearest neighbor contribution) with the
direct calculation results. Averaged values of the relative errors are written to the standard output with timing data.
Outputs of FMMP produced with PGI Fortran77 and performed on a Linux PC cluster (8 nodes, 100BaseTX-
connected Pentiumlll/600 MHz) are listed in Appendix C. In the present ¢gdeop = 5), the averaged relative
errors of the potential fields are on the order of 0.01%. When more accurate results are required, the user should
set a large value fdrpt op and/or set W5 = 2. Averaged relative errors of the force (stress) field are 2—3 (5-10)
times larger than that of the potential field.

The second set of the tests examines the scalability of the FMMP on massively parallel computers. We chose the
following parameters: pt op=5,i W=1,i TR=0, i ST=0, andi PBC= 1. We performed the calculations
on an IBM SP3, called “HABU?", at the U.S. Naval Oceanographic Office (NAVO) Major Shared Resource Center.
The HABU is configured with 375 MHz Power3 CPUs and has 334 nodes with 4 CPUs and 4 GB of memory
per node, total of 1336 processors. It runs AlX 4.3 operating system and IBM XL Fortran 7.1 compiler. We also
repeated the same calculations on another parallel computer, IBM SP4, called “Marcellus” at NAVO. The Marcellus
is configured with 1.3 GHz Power4 CPUs and has 148 nodes with 8 CPUs and 8 GB of memory per node, total of
1184 processors.

120 2 120 2
(a) «— 1 c (b) .

m] © o +t 1 ©
3 \ el \ A —A 3 8” -_ b ;8,
P . . 12 o ! P
£ 80/ N/P=10° N/P=10° | E EB801 /b 108 N/P=10°"1 E
= N/P=5x10° 125 TV =5x10° 1. ¢
_5 E 11 _5 .5 L N/P=5x10 14 §
. IR] 3
%40__] § X% 40tF 1 é
7«_: 21 EF | 1 E
e f 18 F 1 8

OE: 1 1 | - lll 1 111”\70 0 § L 1 IIIIJI:O

1 10 100 1000 10 100 1000

Number of Processors Number of Processors

Fig. 1. Timings as function of number of processors. (a) Total execution (solid symbols) and communication (open symbols) times are plotted
for the number of particles per processsy, P = 10° (squares), X 10° (triangles), and 1@(circ|es) on IBM SP3. (b) The same as (a) on IBM
SP4.

454 S Ogata et al. / Computer Physics Communications 153 (2003) 445461

The compute nodes for this test were chosenasny,nz) = (1,1,1), (2,2, 2), (4,4, 4), and (8, 8, 8) with
the number of particles in each nod€é/ P, fixed. We chosevV/P = 100000, 500,000, and 1,000,000. We also
varied the values dfbot x =1 bot y =1 bot z from 4 to 7. The data and the results are shown in Appendix C
and in Figs. 1-3.

Fig. 1(a) shows the results on the IBM SP3. We see that the total execution time of the FMMP code with a fixed
value of N/ P is nearly constant, when the total number of partichésjs increased by varying the number of
compute nodesP. The parallel efficiency for the case 8f=512 andN/P = 1,000,000 is as high as 0.98. The
communication time is only a small fraction of the total execution time. Fig. 1(b) shows the results on the IBM
SP4, which is almost 2.5 times faster than the IBM SP3 in terms of computation, and a slight improvement in terms
of communication time.

We also observe in Fig. 1 that the total execution time is not proportiomé/} # for a fixed value ofP, but is of
the forma + b(N/ P), wherea 3> b. This is understood by analyzing the individual timing for each subroutine in
the FMMP code. Fig. 2 shows the timing data for subroutines for three different caSg¢®o£ 100,000, 500,000,
and 1,000,000 witlP = 512. We note that the dominant computation time is for the subroBdewn, which is
constant and does not change wikli P. The next two dominant computations are from the subroutBe¢s$PFS
andMPset up, which increase withvV/P. This is because the number of particles contained in a cell increases
in proportion toN/P. The other subroutindgPup andMDwr ap3 give very small contributions to the total time.
Combination of the increasing times f@et PFS andMPset up and the constant time faPdown explains the
observed behavior in the total execution time as a functias Aof.

100t (a) ENP=10° 1L () EMNP=10°]
EINP=5x10° P =512 EINP=5x10° P =512
N/P=106 N/P=106
10} . :
o
E \
'— 3 E| 4
0.1]]
0.01 [} L N -- [i N
t comm tup t down t wrap t_pfs t setup t.comm tup tdown twrap t pfs
Fig. 2. Partial timing data for different subroutines ®r= 512 for N/ P = 10°, 5 x 10°, and 16 on (a) SP3 and (b) SP4.
100 . (@) @@P=64 it (b) @EP=64 3

7 P=512 N/P =106 P=512 N/P =106

1

N

t setup t comm t_up t_down t_rap t_pfs t.setup t.comm tup t.down twrap tpfs

Fig. 3. Partial timing data for different subroutines féy P = 10° on P = 64 and 512 processors on (a) SP3 and (b) SP4.

S Ogata et al. / Computer Physics Communications 153 (2003) 445461 455

Fig. 3 compares the timing data for various subroutines witlP? = 1,000,000 betweerP = 64 andP =512.
We see that the timings for all the dominant subroutihg®own, Get PFS, andMPset up are nearly the same
between the two cases 8f Only the communication time and the timing fdPup increase slightly as a function
of P.

9. Concluding remarks

The present code, FMMP, is scalable and portable implementation of the FMM. It can be used not only
in materials simulations but also in various fields of simulations including plasmas and astronomical objects
interacting through Ar potential. The user, however, should be cautious in its application to highly ordered systems
such as a crystalline lattice of charged points. Depending on the lattice structures, values of the potential energy
may vary considerably as a functioniobt op in the case of periodic boundary conditions. This results from the
fact that many of the lower-order multipoles are zero or nearly zero and only some higher-order multipoles assume
non-zero values in such regular lattices. The user needs to set a rather higher order of multipoles for such systems.

Accuracy and speed of the FMMP are controlled by the paramétéist x, | bot y, | bot z,i pt op,i W5,

i TR). Formulas for the error bound in the potential have been derived in Refs. [1,9]. However, actual error
varies depend significantly on configurations, and it is not recommended to predetermine the values of the control
parameters based on these formulas. Rather, the control parameters need to be determined through test runs.

Acknowledgement

This work at Yamaguchi was partially supported by YU-VBL overseas scholarship and by ACT-JST. The work
at USC and LSU was patrtially supported by ARL, NSF, DOE, NASA, and USC-Berkeley-Princeton DURINT.
Benchmark tests were performed at DoD Major Shared Resource Centers under CHSSI and Challenge projects.

Appendix A. Listing of the sampledriver program fmmptest.F

c
c Sanpl e programto use FMWP Ver. 2.1 : check accuracy and tim ngs.
c

program nain

inmplicit real *8(a-h, 0-2)
#i ncl ude "npif.h"

C----- Maxi mum nunber of particles.
par amet er (Nt ot nax=1000)
C----- Charges and nornalized positions of all particles.

real *8 chgg(Nt ot max), srg(3, Nt ot max)

#i ncl ude "fmmp_di m h"
par anmet er (Nsi ze=Nsi ze_)
C----- Comon bl ocks for FMWP
conmon/ node_vec/ nyi d, nyx, nmyy, myz, nx, ny, nz
common/ Mbbox/ hx(3), hy(3), hz(3)
common/ node_pt cl / chg(Nsi ze), sr(3, Nsi ze), Ntotn
conmon/ nmpdat 1/iws, i TR, i PBC, i ST,
& I botx, | boty, | botz, | botdx, | botdy, | botdz, I bot,
& Ifit,lglimncup(0:16), menswt (0: 16)
#i f 1 NCLUDE_STRESS

456 S Ogata et al. / Computer Physics Communications 153 (2003) 445461

common/ node_resul t/ PF(Nsi ze), FF(3, Nsi ze),
& ST(6, Nsi ze)
#el se
common/ node_resul t/ PF(Nsi ze), FF(3, Nsi ze)
#endi f
conmon/fmm tine/t_setup,t_commt _up,t_down,
& t_wap,t_pfs

C----- i ndex to renenber global particle-1D s
i nteger*4 idg(Nsize)

call MPI_INIT(ierr)
cal | MPI _COVM _RANK(MPI _COVM WORLD, nyi d, i err)

C----- Conput er - node | ayout
nx=2
ny=2
nz=2
nodes=nx*ny*nz
nyx=nyi d/ (ny*nz)
nyy=nod(nyi d/ nz, ny)
nyz=nod(nyi d, nz)

C----- Setup control paraneters for FMW

i W=1

i TR=0

| bot x=3

| bot y=I bot x

| bot z=I bot x

i ST=0

f(nyid.eq.0)then
wite(*, *)" iPBC=(0 or 1)?
read(*,*)i PBC

endi f

cal | MPI _BCAST(i PBC, 1, MPl _| NTEGER, 0, MPl _COVM WORLD,; i err)

C----- Set up simul ati on Box
hx (1) =1d0
hx(2) =0d0
hx(3) =0d0
hy(1) =0d0
hy(2)=1d0
hy(3) =0d0
hz(1) =0d0
hz(2) =0d0
hz(3)=1d0

C----- Spatial region of this node
xm n_my=dbl e(myx) / nx
xmax_ny=dbl e(myx+1)/ nx
ym n_my=dbl e(myy) / ny
ymax_ny=dbl e(myy+1)/ ny

S Ogata et al. / Computer Physics Communications 153 (2003) 445461 457

zm n_ny=dbl e(nyz)/nz
zmax_ny=dbl e(nyz+1)/ nz

dseed=12345

i nc=0

----- Total nunber of particles. Even nunber.
Nt ot =1000

----- Setup charged points at random positions
do i =1, Ntot

call nyrnd(rndx, dseed)
call nyrnd(rndy, dseed)
call nyrnd(rndz, dseed)
chgg(i)=nod(i,2)*2-1
srg(1,i)=rndx
srg(2,i)=rndy
srg(3,i)=rndz
------- Each node stores data of particles in the correspondi ng region.
i f(rndx.ge.xmn_ny .and. rndx.|t.xmax_ny .and.

& rndy.ge.ymn_ny .and. rndy.|t.ymax_ny .and.
& rndz.ge.zmn_ny .and. rndz.lt.zmax_ny)then
i nc=i nc+1
i dg(inc)=i

chg(inc)=chgg(i)

sr(1,inc)=srg(1,i)
sr(2,inc)=srg(2,i)
sr(3,inc)=srg(3,i)

endi f
enddo
----- Total nunber of particles in this node
Nt ot n=i nc

----- FMM cal cul ati ons
call FMPmai n()

error=0d0
----- Free boundary conditions
----- Conpare potential field with that obtained by direct cal cul ations
i f(iPBC. eq.0)then
do node_i d=0, nodes-1
--------- Each node wites the results
i f(nyid.eq.node_id)then
do i =1, Ntotn
------------- Get global particle-1D
i g=idg(i)
------------- Contribution fromparticles in near neighbor cells
call NNcont (i g, PFNN, chgg, srg, Nt ot)
------------- Di rect cal cul ations
call getDirect(ig, PFdirect, chgg, srg, Ntot)
error=error+abs((PF(i)+PFNN- PFdi rect)/ PFdirect)
enddo
endi f
enddo

458 S Ogata et al. / Computer Physics Communications 153 (2003) 445461

C----- Peri odi ¢ boundary conditions (3dim)
C----- Conpare potential field with that obtained by Ewal d cal cul ati ons.
el sei f (i PBC. eq. 1)t hen

call Ewal dini (chgg, srg, Ntot)

do node_i d=0, nodes-1
C-----=---- Each node wites the results

i f(nyid.eq.node_id)then
do i=1,Ntotn

C---------- - - Get gl obal particle-1D
i g=idg(i)

C---mmmm - - - - - Contribution fromparticles in near neighbor cells
call NNcont (i g, PFNN, chgg, srg, Nt ot)

C---mmmmmm - - - Ewal d cal cul ations
call PEewal d(i g, PFew d)

C---------- - - Macr oscopi c-di pol e correction to the FMMresults

call dipol e(ig, PFdi pol e)
error=error+abs((PF(i)+PFNN+PFdi pol e- PFewl d) / PFew d)

enddo
endi f
enddo
el se
C------- check i PBC
wite(*,*)' Not supported in this test program iPBC=,iPBC
stop
endi f
C----- Sumup relative error. Nornmalize it by Ntot.
call MPI _ALLREDUCE(error,tenp, 1, MPl _DOUBLE_PRECI SI ON
& MPI _SUM MPI _COVM WORLD, i err)
error=error/ Nt ot
C----- Wite relative error
i f(nyid.eq.0)then
wite(*,*) averaged relative-error of PF =" ,error
endi f
C----- Wite timngs for FMM cal cul ati ons

i f(nyid.eq.0)then
wite(*,*)'t_setup, t_comm t_up, t_down, t_wrap,’,
& ' t_pfs(sec)=
wite(*,1100)t_setup,t_conmt_up,t_down,t_wap,t_pfs
1100 format (6(1pel0. 2))
endi f

call MPI _FI NALI ZE(ierr)

end

S Ogata et al. / Computer Physics Communications 153 (2003) 445461 459

Appendix B. Listing of fmmp_dim.h for a sample program fmmptest.F

C =s=====m===C
c frmp_dimh

¢ Header file for fmmp. F

c Version 2.1

C ::::::::::C
C---------- Begi n user section

#define | NCLUDE_STRESS 0
#defi ne PFLM PRECI SI ON 1
#defi ne DEBUG 0

#define Nsize_ 10000
#define iptop_ 5
#define nsi ze_ 4800
#define ibsize_ 60000

C-----=----- End user section
#i f PFLM_PRECI SI ON ==
#defi ne PFLM_TYPE conpl ex* 16
#el se

#defi ne PFLM_TYPE conpl ex*8
#endi f

Appendix C. Output of sample program fmmptest

Case: iPBC=0

averaged relative-error of RF0.1077E-03
t_setup t comm t_up t_down t wrap t_pfs (sec)
1.45E-03 5.38E-02 5.67E-02 5.68E-01 3.00E-06 3.17E-03

Case: iPBC=1

averaged relative-error of RF0.4799E-03
t_setup t comm t_up t_down t wrap t_pfs (sec)
1.42E-03 5.49E-02 5.77E-02 1.1580 1.47E-01 3.16E-03

460

Scalability test data

SP3HABU
N/P= 100,000
P Ibot N
1 4 1let05
8 5 8et-05
64 6 6.4e-06
512 7 5.12¢07
N/P= 500,000
P Ibot N
1 4 5et05
8 5 4et+06
64 6 3.2e-07
512 7 2.56e-08
N/P= 1,000,000
P Ibot N
1 4 1le+06
8 5 8e+06
64 6 6.4e-07
512 7 5.12¢08
SP4 MARCELLUS
N/P= 100000
P Ibot N
1 4 1let-05
8 5 8e+05
64 6 6.4e-06
512 7 5.12¢07
N/P= 500000
P Ibot N
1 4 5e+05
8 5 4et+06
64 6 3.2e-07
512 7 2.56e¢-08
N/P= 1,000,000
P Ibot N
1 4 1let-06
8 5 8et-06
64 6 6.4e-07
512 7 5.12¢-08
References

t_setup
0573
0586
0589
0591

t_setup
284
292
292
292

t_setup
58
583
582
584

t_setup
0253
0259
0260
0266

t_setup
126
131
130
132

t_setup
252
260
260
262

t_comm
Q012
00514
Q0725
0208

t_comm
00121
00481
00873
0222

t_comm
0.0121
00595
0177
0332

t_comm
Q0056
Q0307
Q0515
Q173

t_comm
00054
00457
00884
0140

t_comm
0.0057
00921
0129
0278

t_up
Q155
0195
0218
Q0353

t up
0155
0192
0231
Q367

t up
0156
0204
0321
Q47

t_up
0066
0092
0113
Q0235

t up
0066
0113
0150
Q202

t up
0066
0154
0191
0339

[1] L. Greengard, V. Rokhlin, J. Comput. Phys. 60 (1985) 187;
L. Greengard, The Rapid Evolution of Potential Fields in Particle Systems, MIT, Boston, 1987.

t down
87.7
88.4
88.5
88.8

t down
87.6
88.3
88.5
88.8

t down
87.6
88.3
88.4
88.9

t down
35.2
35.2
35.2
35.6

t down
35.2
35.4
35.2
35.3

t down
35.2
35.2
35.2
35.3

t_wrap
0.138
0.139
0.138
0.140

t_wrap
0.138
0.138
0.138
0.139

t_wrap
0.138
0.139
0.138
0.140

t_wrap
0.055
0.053
0.056
0.056

t_wrap
0.055
0.056
0.054
0.056

t_wrap
0.055
0.055
0.054
0.056

S Ogata et al. / Computer Physics Communications 153 (2003) 445461

t pfs total
a 897
12 904
12 906
12 913
t pfs total
52 963
58 971
59 975
%0 980
t pfs total
11 1050
12 1060
11 1060
14 1070
t pfs total
B3 361
B3 361
B3 362
B4 369
t pfs total
b5 392
B8 396
B7 395
B9 397
t pfs total
29 431
B5 435
B4 435
B5 439

efficiency
1.00
0.99
0.99
0.98

efficiency
1.00
0.99
0.98
0.98

efficiency
1.00
0.99
0.99
0.98

efficiency
1.00
0.99
0.99
0.98

efficiency
1.00
0.99
0.98
0.98

efficiency
1.00
0.99
0.99
0.98

S Ogata et al. / Computer Physics Communications 153 (2003) 445461 461

[2] E.L. Pollock, J. Glosli, Comp. Phys. Commun. 95 (1996) 93.
[3] A. Nakano, et al., IEEE Comput. Sci. Engrg. 5 (1998) 68.
[4] W. Gropp, E. Lusk, A. Skkjellum, Using MPI Portable Parallel Programming with the Message-Passing Interface, MIT, Boston, 1994.
[5] T.J. Campbell, R.K. Kalia, A. Nakano, P. Vashishta, S. Ogata, S. Rodgers, Phys. Rev. Lett. 82 (1999) 4866.
[6] S. Ogata, H. lyetomi, K. Tsuruta, F. Shimojo, A. Nakano, R.K. Kalia, P. Vashishta, J. Appl. Phys. 88 (2000) 6011.
[7] F.H. Streitz, J.W. Mintmire, Phys. Rev. B 50 (1994) 11996.
[8] S. Ogata, H. lyetomi, K. Tsuruta, F. Shimojo, R.K. Kalia, A. Nakano, P. Vashishta, J. Appl. Phys. 86 (1999) 3036.
[9] C.A. White, M. Head-Gordon, J. Chem. Phys. 101 (1994) 6593.

[10] M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids, Oxford Univ. Press, New York, 1987.

[11] A. Nakano, R.K. Kalia, P. Vashishta, Comp. Phys. Commun. 83 (1994) 197.

[12] H. Ding, N. Karasawa, W.A. Goddard Ill, Chem. Phys. Lett. 196 (1992) 6.

[13] A.Y. Toukmaiji, J.A. Board Jr., Comp. Phys. Comm. 95 (1996) 73.

[14] C.G. Lambert, T.A. Darden, J.A. Board Jr., J. Comp. Phys. 126 (1996) 274.

[15] S.W. De Leeuw, J.W. Perram, E.R. Smith, Proc. Roy. Soc. London A 373 (1980) 27.

[16] M.W. Deem, J.M. Newsam, S.K. Sinha, J. Phys. Chem. 94 (1990) 8356.

[17] D.E. Parry, Surf. Sci. 49 (1975) 433; Surf. Sci. 55 (1976) 195.

[18] D.M. Heyer, M. Barber, J.H. Clarke, J. Chem. Soc., Faraday Trans. Il 73 (1977) 1485.

[19] S.W. de Leeuw, J.W. Perram, Mol. Phys. 37 (1979) 1313.

[20] I.-C. Yeh, M.L. Berkowitz, J. Chem. Phys. 111 (1999) 3155.

