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Abstract

Disk space, input/output (I/O) speed, and data-transfer bandwidth present a major bottleneck in large-scale molecular
dynamics simulations, which require storing positions and velocities of multimillion atoms. A data compression algorithm
is designed for scalable I/O of molecular dynamics data. The algorithm uses octree indexing and sorts atoms accordingly on
the resulting space-filling curve. By storing differences of successive atomic coordinates and using an adaptive, variable-length
encoding to handle exceptional values, the I/O size is reduced by an order-of-magnitude with user-controlled error bound.
 2000 Elsevier Science B.V. All rights reserved.

1. Introduction

Molecular dynamics (MD) simulations [1] have
played a key role in our understanding of various phe-
nomena in physics, chemistry, biology, and materi-
als sciences [2]. In the MD approach, one obtains the
phase-space trajectories of the system (positions and
velocities of all atoms at all time) from the numerical
solution of Newton’s equations. Recent advances in
scalable multiresolution algorithms [3] coupled with
access to massively parallel computers have enabled
very large MD simulations involving 10–100 million
atoms [3–5].

These large-scale MD simulations present an enor-
mous challenge from the standpoint of data manage-
ment including input/output (I/O). The I/O problem
is particularly serious, when computing and mass-
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storage resources are geographically distributed and
data transfer is required through wide area networks
[6]. A 100-million-atom MD simulation produces ap-
proximately 5 gigabytes (GB) of data per frame to
store atom types, coordinates, and velocities. This
amounts to 17 terabytes (TB) per day if the simula-
tion runs for 35,000 steps [7] and data are saved after
every 10 steps. Often additional atomic attributes such
as atomic tensor components are stored, and make the
I/O size significantly larger. Such massive data have
made I/O a major bottleneck, and optimization of the
I/O performance has become essential in the design of
MD software.

A number of systems- and application-level ap-
proaches have been applied to the I/O problem [8]. At
the application-software level, a promising approach
uses data compression [9,10], optimized to the appli-
cation’s data and algorithmic structures. A data com-

0010-4655/00/$ – see front matter 2000 Elsevier Science B.V. All rights reserved.
PII: S0010-4655(00)00083-7



A. Omeltchenko et al. / Computer Physics Communications 131 (2000) 78–85 79

pression scheme for MD configurations should satisfy
the following requirements:
(1) Compression with user-controlled error bound–

I/O size is reduced significantly (by an order-
of-magnitude), while the user can prescribe the
accuracy;

(2) Outlier tolerance– exceptional values are handled
correctly;

(3) Scalability – both I/O size and computation for
compression scale as O(N) for anN -atom system;

(4) Light weight– minimal computation and memory
overheads are involved;

(5) Portability – the source code and the data format
are portable to different architectures;

(6) Compatibility– the algorithm can be incorporated
into an existing MD code as a plug-in.

In this paper, the I/O problem is addressed using a
scalable data-compression scheme. The scheme con-
verts MD data to integers by dividing them by a user-
specified error bound. An adaptive, variable-length en-
coding scheme is used to store these integers with min-
imal number of bits, while handling outliers. The algo-
rithm also uses octree indexing of three-dimensional
coordinates [11–13]. Atoms are sorted on the result-
ing fractal-like, space-filling curve. By storing differ-
ences between successive atomic coordinates [14,15],
the I/O requirement with a given error tolerance level
reduces from O(N logN) to O(N). The compression
algorithm is implemented in the C language, and is
portable. It has been incorporated in existing MD pro-
grams written in FORTRAN. The next section con-
tains the description of the compression algorithm.
Numerical results given in Section 3 exhibit an order-
of-magnitude reduction of I/O size. Finally Section 4
includes discussions.

2. Method

Our compression algorithm for MD configurations
(atomic positions, velocities, and other attributes such
as atomic stress components forN atoms) consists of
the following major steps:
(1) Quantize all double-precision data by dividing

them by a user-specified error bound (see Sec-
tion 2.1);

(2) Compute the octree index,Ri , of atomic positions
for all atoms,i = 1, . . . ,N (Section 2.2);

(3) Sort the atoms in ascending order ofRi (Sec-
tion 2.3);

(4) Store differentiated1Ri = Ri −Ri−1, velocities,
and other data using an adaptive, variable-length
encoding (Section 2.4).

These algorithmic steps are described in Sections 2.1–
2.4, and some implementation issues are discussed in
Section 2.5.

2.1. Data quantization and accuracy requirements

In MD simulations, Newton’s equations of motion
for a set ofN atoms are integrated by discretizing time
with an interval,1t , and applying a finite-difference
integrator [1]. At each time step, the state of the system
is completely specified by an MD configuration – 3N
atomic positions and 3N velocities. As the system
evolves in time, a sequence of MD configurations (i.e.
an MD trajectory) is generated. Typical runs range
from 104 to 106 steps, but usually it is sufficient to
output the trajectory data after every few time steps
for post-processing and visualization.

In addition to atomic positions and velocities, an
MD configuration usually consists of tags to spec-
ify the type of each atom and other information. In
the MD code considered in this paper, the resulting
storage is 56 bytes for each atom,i: atomic posi-
tion – Eri = (xi, yi, zi), 3∗sizeof(double)= 24 bytes;
atomic velocity –Evi = (vix, viy, viz), 3∗sizeof(double)
= 24 bytes; atom id, 1∗sizeof(double)= 8 bytes. The
fractional accuracy for a double precision number is
∼10−15. This level of accuracy is often necessary for
numerical computation but not for I/O as is discussed
below. Therefore compression can be achieved by cut-
ting the precision, i.e. by adopting a lossy compres-
sion [9,10].

Distribution of atomic positions is characterized
by a typical nearest-neighbor distance,a. In materi-
als simulations, separation between atoms cannot be-
come much smaller thana due to strong steric repul-
sion between atoms at small distances [16]. Atomic
positions,Eri , are constrained within the MD box of
size(Lx × Ly × Lz), i.e. 0< xi < Lx , 0< yi < Ly ,
0< zi < Lz. ThusEri assume larger values as the sys-
tem size increases (they are not scalable). This is in
contrast to velocities,Evi , which in equilibrium follow
the Maxwell distribution. In general, there is no ex-
plicit size dependence in velocity distribution.
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Fig. 1. (a) A space-filling curve based on octree indexing maps the three-dimensional space into a sequential list, while preserving spatial
proximity of consecutive list elements. (The panel shows a 2D example.) (b) Atoms are sorted along the space-filling curve and only relative
positions of successive atoms are stored.

To efficiently store an MD configuration, one has
to decide to what extent the original double precision
data be reproducible. For example, the precision needs
not exceed that of the numerical integration for storing
a configuration as a start-point of another run. A rea-
sonable estimate for the tolerance on positions and
velocities is obtained by first setting an error toler-
ance for the energy on the order of the total energy
fluctuation resulting from the integration algorithm.
A conservative estimate for the energy tolerance is
given byδE ∼ 10−4 eV, which corresponds to temper-
ature tolerance of∼1 K. The resulting tolerance val-
ues for positions and velocities areδr ∼ 10−4 Å and
δv ∼ 10−4 Å/fs, respectively.

Given the accuracy requirements, it is possible to
divide the double precision data by an appropriate
tolerance and switch to an integer representation:
Eri← nint(Eri/δr), andEvi← nint(Evi/δv), where “nint”
stands for the nearest integer.

2.2. Space-filling curve

The number of bits for representing a position,Eri , is
approximately

log2(Lx/δr)+ log2(Ly/δr)+ log2(Lz/δr)

= log2(Ω/δΩ), (1)

whereΩ = LxLyLz is the volume of the MD box
andδΩ = δr3. Consider a path through all the atoms
which only connects neighbor atoms and assign an
index to each atom according to its position on the
path, as illustrated in Fig. 1(b). One can then store
the relative positions,1Eri = Eri − Eri−1, rather than
the absolute values. Assuming that the atoms are
distributed uniformly with a nearest-neighbor distance
a, the average number of bits to store1Eri is roughly

3 log2(a/δr)= log2
[
(Ω/δΩ)(a3/δΩ)

]
∼ log2(Ω/δΩ)− log2N. (2)

Thus, the required number of bits per atom is reduced
by log2N and is independent of the system size.
Note that this reduction is achieved by abandoning the
original order of atoms (i.e. the atomic array index),
which in most cases is not necessary to preserve [17].
(The information associated with a given order is
log2N per atom.)

Appropriate ordering of atoms may be accom-
plished by arranging them according to their position
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on a space-filling curve [11–13]. A space-filling curve
is a mapping of a one-dimensional array to three-
dimensional grid points, which preserves the spatial
proximity of successive array elements [13]. Fig. 1(a)
shows a space-filling curve (the so-called Z-curves) in
two dimensions.

Points on a Z curve are identified using an octree
index,Ri , constructed by interleaving bits ofxi , yi ,
andzi . The number of bits to represent thex, y, or z
coordinate is

lx =
⌈
log2(Lx/δr)

⌉
, ly =

⌈
log2(Ly/δr)

⌉
,

or

lz =
⌈
log2(Lz/δr)

⌉
,

respectively. If the same number of bits,l =max(lx,
ly , lz), is used to represent all coordinates, the octree
indexRi is easily computed by interleaving the bits of
the position components, as illustrated in Fig. 2(a). In
the example,l = 7 bits and the resulting octree index
is 3l = 21 bits.

The above procedure is not suitable when one of
the components is represented by a much smaller
number of bits than the others (e.g., for a simulation
of a thin plate). The above scheme requireslR =
3 max(lx, ly, lz) bits, while lR = lx + ly + lz bits
are sufficient to encode eachEri . We modify the
encoding procedure to interleave only “useful” bits.
The generalization is straightforward, as shown in the

Fig. 2. (a) A 21-bit octree index,Ri , obtained by interleaving
three 7-bit Cartesian coordinates,xi , yi , andzi . (b) A generalized
octree index for bit lengthslx = 5, ly = 7, andlz = 3 consists of
5+ 7+ 3= 15 bits.

example in Fig. 2(b). For,lx = 5, ly = 7, andlz = 3,
the resulting octree index is 5+ 7+ 3= 15 bits. The
computation of the octree index is implemented using
bitwise “and ”, “ or ”, and “shift ” operators.

2.3. Sorting

Atoms are ordered along theZ curve by sorting
them in ascending order ofRi . It is well known
that the best comparison-based sorting algorithm re-
quires O(N logN) operations [18]. Radix-based sort-
ing of integers scales as O(Nl), where l is the bit-
number [18]. Computation time in radix sorting, how-
ever, involves a large pre-factor proportional tol. The
sorting procedure can be further optimized for MD
configurations, since atoms cannot concentrate above
a certain density and the distribution of atoms is uni-
form within sufficiently small volumes. Octree indices
are thus uniformly distributed in most of its range,
[Rmax,Rmin].

The sorting algorithm used in this paper consists of
two stages. The first stage sortsRi , into N bins of
equal size,(Rmax−Rmin)/N , in O(N) operations [19].
If the distribution ofRi is uniform, each bin con-
tainsn ∼ 1 integers. In the second stage,n integers
are sorted within each bin. For efficiency, the cases
of n 6 3 are programmed explicitly, whilen > 3 is
handled with the heapsort algorithm [18]. The result-
ing algorithm is O(N) for a uniform distribution and
O(N logN) in the worst case.

To compress a large MD configuration, it is advanta-
geous to separate the system into smaller subsystems.
This is accomplished by dividing the MD box into
several boxes of limited size,D. This procedure ef-
fectively reduces the bit-number of the integer atomic
positions,Eri , since the common high-order bits may
be stored in the header, while onlydlog2(D/δr)e bits
remain to be stored.

2.4. Adaptive, variable-length encoding

The final task is to store integer representations of
atomic attributes – differentiated1Ri = Ri − Ri−1,
velocities, and other data – with reduced number of
bits. This requires encoding an array of unsigned in-
tegers (x1, x2, . . . , xN) with the corresponding bit-
numbers(l1, l2, . . . , lN ) following an unknown distri-
bution.
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To take advantage of the fact that mostli fall into
a limited range with existence of a small number of
xi with arbitrary large values (“outliers”), we use a
variable-length encoding algorithm (see Appendix A).
This algorithm involves two parameters:l and 1l.
Initially, l bits are allocated to store eachli . If li > l,
then additional bits are allocated incrementally in units
of 1l until all the bits inli are stored. The resulting
sequence of bits can be decoded using status bits to
decide how many bits to read next. The status bit 1
means that there are more bits to be read, while the
status bit 0 terminates further allocation.

Examples of such variable-length encoding are
given below forl = 3, 1l = 2, where the status bits
are preceded with(ˆ): li = 10→ ˆ0 010;li = 1100→
ˆ1 001ˆ0 10;li = 1010111→ ˆ1 111ˆ1 01ˆ0 01. (Note
that the bits are written starting from the lowest bit.)

In order to minimize the storage size, the variable-
length encoding scheme is made adaptive by varying
l and1l according to the data being encoded. The
minimization procedure is facilitated by defining the
following variables:L+ – number of extra bits (status
and padding) resulting froml being too small;L –
number of extra bits (status and padding) resulting
from l being too large;1L+ – number of extra
bits (status and padding) resulting from1l being
too small;1L− – number of extra bits (status and
padding) resulting from1l being too large. The
following examples demonstrate how these variables
are computed:
(i) 0→ ˆ0 010 –l being too long results in one extra

“0” padding bit, so thatL− = 1, L+ = 1L+ =
1L− = 0;

(ii) 1100→ ˆ1 001ˆ0 10 –l being too short results in
one extra status bit, and1l being too short leads
to an extra padding bit, so thatL+ = 1,1L+ = 1,
L− =1L− = 0;

(iii) 1010111→ ˆ1 111ˆ1 01ˆ0 01 –l being too short
results in two extra status bits, and there are
no padding bits, so thatL+ = 2, L− = 1L+ =
1L− = 0.

The adaptive encoding scheme works as follows: As
the data is being encoded, the difference betweenL+
andL− is accumulated as

L=
∑
i

(
L+i −L−i

)
,

and similarly

1L=
∑
i

(
1L+i −1L−i

)
.

WheneverL exceeds a certain tolerance(L > Lmax)

the encoding parameterl is incremented by one
and the value ofL is reset to zero. Similarly,l is
decremented whenL < −Lmax. The parameter1l
is adjusted in the same fashion, i.e. incremented or
decremented when1L >1Lmax or 1L < −1Lmax,
respectively. We chooseLmax = 1Lmax = 32, but
the algorithm’s performance is not sensitive to these
parameters.

Though this heuristic algorithm involves little com-
putation, it provides reasonable compression (see nu-
merical results in Section 3). If allli are identical, only
one additional bit per integer is required. Otherwise,
the overhead is usually two to three bits per integer,
depending on the data.

2.5. Implementation

The compression algorithm is implemented in the
C language. An interface to an MD code, which is
written in FORTRAN, is provided by a limited set
of functions callable from a FORTRAN program.
These routines enable the user to specify the types of
data to be written along with corresponding accuracy
tolerances, to format the MD data into the data
structures used by the compression code, and to
read/write the data to a file in the compressed format.

The user is allowed to select the data fields to be
stored for each atom. The only required data are the
atomic positions. The data to be stored may be either
double precision (e.g., velocities, forces, charges), or
integer (various tags attached to atoms). The user is
responsible for choosing the accuracy requirements
for each data type either experimentally or using
estimates similar to those given in Section 2.1. The
code is portable to computers that use 32-bit integers.
The data format is also made portable by converting all
integers to the network byte order [20] before writing
them to a file.

To ensure that the code is efficient and portable,
a simple bit-level I/O interface has been developed
using bitwise operators in C. Routines are provided to
open a bit-level stream for reading from or writing to
a string or a stream. Once a bit-stream is open, the
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Fig. 3. Size (per atom) of compressed MD configurations: (a) effect of the tolerance parametersδr andτ , (b) relationship between the storage
size and the error in total energy introduced by compression.

user canput or get an arbitrary number (up to 32)
of lowest bits in an integer. The resulting storage is
not aligned on byte boundaries. Theput and get
functions are implemented as preprocessor macros to
improve efficiency.

3. Numerical results

The compression algorithm has been tested on a
Digital AlphaServer 2100 for several MD configura-
tions.

First, a diamond grain-boundary configuration con-
taining 46,440 atoms at a temperature of 300 K is
considered. In the original MD code, the storage was
56 bytes/atom which include positions and velocities
in double precision and an 8-byte tag used for multi-
ple purposes. To compress this data, one has to specify
the position tolerance,δr, and the time parameter,τ .
(The velocity tolerance is computed asδr/τ .) Fig. 3(a)
shows the amount of compressed storage per atom as
a function of the position tolerance,δr, for three dif-
ferent values ofτ . Significant reduction in storage is

achieved by increasingδr. However, the information
loss due to compression results in an error in the to-
tal energy, as is shown in Fig. 3(b). Assuming that
an energy deviation of 1 K is acceptable, the mini-
mum storage size is achieved withδr = 5× 10−3 Å
andτ = 4 fs. (These values are used for further tests.)
Fig. 3(a) demonstrates that the present compression
scheme reduces the required storage size by nearly an
order-of-magnitude, from 56 to 6.22 bytes/atom.

Scalability of the algorithm, is tested by measuring
the compressed size for a sequence of system sizes
ranging from 27,396 to 2,248,704 atoms, see Table 1.
The resulting number of bytes per atom shows little
dependence on the number of atoms, i.e. the scheme is
scalable.

To test the applicability of the algorithm, we first
consider a highly irregular configuration from a dia-
mond-impact simulation [21]. The system consists of
a 36,000-atom diamond cluster hitting a million-atom
diamond film. The temperature in the system is also
non-uniform: the initial temperature of the film is
300 K, while the temperature near the point of the
impact is higher by more than an order of magnitude.
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Table 1
Scaling of the compressed storage size with the number of atoms

Number of atoms 4392 38,136 281,088 2,248,704

Size (bytes/atoms) 6.238 6.206 6.200 6.200

Table 2
Compressed storage size as a function of temperature for amorphous and liquid carbon configurations

Temperature (K) 300 500 1000 2000 5000 (liquid)

Size (bytes/atoms) 6.185 6.318 6.515 6.557 6.915

Table 3
Error in the total energy introduced by the compression algorithm for diamond cluster system

Temperature (K) 500 1000 2000 3000

Energy change (K/atoms) 1.16 1.06 0.78 1.28

The algorithm is applicable in this situation as well,
and results in 6.24 bytes/atom of storage.

Other types of MD configurations are also tested
(the storage per atom is given in parenthesis): a two-
dimensional graphite sheet with a propagating crack
(6.21 bytes/atom) [22] and a million-atom Si3N4-
coated Si mesa on Si substrate (6.56 bytes/atom) [23].
The results for disordered amorphous and liquid car-
bon systems at various temperatures are listed in Ta-
ble 2. The storage size increases only slightly with
temperature.

To decide whether the position tolerance should be
adjusted with temperature, the compression error in
the total energy has been computed for a range of
temperatures in a small diamond-cluster system using
the same tolerance parameters (δr = 5× 10−3, τ =
4 fs). Table 3 shows that the error in the total energy
is nearly independent of temperature. Thus the user
will not have to adjust the compression parameters for
different temperatures.

Finally, it is found that the computation time used
for compression is negligible compared with typical
simulation time.

4. Discussion

Based on a few simple ideas, including integer rep-
resentation with controlled accuracy and octree order-

ing of atoms, a compression algorithm is designed to
reduce the I/O size of MD simulations. An adaptive,
variable-length encoding scheme is used to make the
scheme tolerant to outliers. A flexible interface to MD
codes is provided, and significant improvement in the
I/O performance is achieved for actual MD data. The
compression scheme can also be used for in-core com-
pressed storage to minimize the use of RAM, since
the algorithm is not compute-intensive. The in-core
compressed storage would allow to extend accessible
system sizes when the main memory size is a limita-
tion.
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Appendix A. Variable-length encoding algorithm

Input: an unsigned integer,xi (06 xi < 232− 1)
Output: a sequence of bits

Step 1. Computeli =
{ dlog2(xi)e, xi > 0;

0, xi = 0.
Step 2. If li 6 l then

output one “0” bit (“status bit”)
to indicate thatxi fits into l bits
outputxi usingl bits
(i.e. li useful bits+(l − li) extra “0” bits)
encoding is now complete

else
output one “1” status bit to indicate that
the number does not fit intol bits
outputl lowest bits ofxi ((li − l) bits
still remain to be written)

Step 3.Repeat until all the bits ofxi are written
if no more than1l bits remain then

output one “0” status bit
output remaining bits plus “0”
padding to a total of1l bits;

else
output one “1” status bit
output1l of the remaining bits
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