
J Supercomput (2011) 57: 20–33
DOI 10.1007/s11227-011-0560-1

Exploiting hierarchical parallelisms for molecular
dynamics simulation on multicore clusters

Liu Peng · Manaschai Kunaseth · Hikmet Dursun ·
Ken-ichi Nomura · Weiqiang Wang ·
Rajiv K. Kalia · Aiichiro Nakano · Priya Vashishta

Published online: 3 February 2011
© Springer Science+Business Media, LLC 2011

Abstract We have developed a scalable hierarchical parallelization scheme for mole-
cular dynamics (MD) simulation on multicore clusters. The scheme explores multi-
level parallelism combining: (1) Internode parallelism using spatial decomposition
via message passing; (2) intercore parallelism using cellular decomposition via mul-
tithreading employing a master/worker model; (3) data-level optimization via single-
instruction multiple-data (SIMD) parallelism with various code transformation tech-
niques. By using a hierarchy of parallelisms, the scheme exposes very high concur-
rency and data locality, thereby achieving: (1) internode weak-scaling parallel effi-
ciency 0.985 on 106,496 BlueGene/L nodes (0.975 on 32,768 BlueGene/P nodes),
internode strong-scaling parallel efficiency 0.90 on 8,192 BlueGene/L nodes; (2) in-

L. Peng (!) · M. Kunaseth · H. Dursun · K.-i. Nomura · W. Wang · R.K. Kalia · A. Nakano ·
P. Vashishta
Collaboratory for Advanced Computing and Simulations (CACS), University of Southern California,
Los Angeles, CA 90089-0242, USA
e-mail: liupeng@usc.edu

M. Kunaseth
e-mail: kunaseth@usc.edu

H. Dursun
e-mail: hdursun@usc.edu

K.-i. Nomura
e-mail: knomura@usc.edu

W. Wang
e-mail: wangweiq@usc.edu

R.K. Kalia
e-mail: rkalia@usc.edu

A. Nakano
e-mail: anakano@usc.edu

P. Vashishta
e-mail: priyav@usc.edu

mailto:priyav@usc.edu
mailto:liupeng@usc.edu
mailto:kunaseth@usc.edu
mailto:hdursun@usc.edu
mailto:knomura@usc.edu
mailto:wangweiq@usc.edu
mailto:rkalia@usc.edu
mailto:anakano@usc.edu


Exploiting hierarchical parallelisms for molecular dynamics 21

tercore multithread parallel efficiency 0.65 for eight threads on a dual quadcore Xeon
platform; and (3) SIMD speedup around 2 for problem sizes ranging from 3,072
to 98,304 atoms. Furthermore, the effect of memory-access penalty on SIMD perfor-
mance is analyzed, and an application-based SIMD analysis scheme is proposed to
help programmers determine whether their applications are amenable to SIMDiza-
tion.

Keywords Molecular dynamics simulation · Multicore cluster · Single instruction
multiple data · Scalable hierarchical parallelization scheme

1 Introduction

Molecular dynamics (MD) simulation is widely used to study material properties at
the atomistic level [1]. Large-scale MD simulations involving multibillion atoms are
beginning to address broad material problems [1, 2], however, increasing computing
power is needed to satisfy the large spatiotemporal scales of the real world simula-
tions. The advent of multicore paradigm, which provides unprecedented computing
power, promises to enable large-scale and long-time simulations, only if we can effi-
ciently harvest the computing power. However, due to the shift from increasing clock
speed to increasing number of cores per chip [3], development of efficient parallel
applications on these platforms remains a challenge.

To address this challenge, we propose a scalable hierarchical parallelization
scheme (SHPF), which exploits multilevel parallelisms of multicore clusters. For in-
ternode parallelization, we use an embedded divide-and-conquer (EDC) scheme [4]
based on spatial decomposition using message passing, which scales linearly with the
number of compute nodes; for intercore level parallelization, we implement cellu-
lar decomposition using multithreading without using critical sections working with
a master-worker paradigm. Combined with single-instruction multiple-data (SIMD)
techniques to exploit data-level parallelism, our hierarchical scheme highly exploits
data concurrency and locality and is expected to usable on future multicore platforms.
The scheme also includes application-based SIMD analysis, which enables program-
mers to determine whether their applications are amenable to SIMDization.

This paper is organized as follows. Section 2 describes the linked-list cell MD sim-
ulation used in our experiments. Section 3 presents our parallelization scheme, and
Sect. 4 shows results and analysis of performance and scalability tests. Conclusions
are drawn in Sect. 5.

2 Linked-list cell molecular dynamics simulation

MD simulation follows the phase-space trajectories of an N -atom system, where
force fields describing the atomic force laws between atoms are spatial derivatives
of a potential energy function E(rN)(rN = {r1, r2, . . . , rN } is the positions of all
atoms). Positions and velocities of all atoms are updated at each MD step by numer-
ically integrating coupled ordinary differential equations. The potential E(rN) con-
sidered in this paper consists of two-body E2(rij ) and three-body E3(rij , rjk, θijk)



22 L. Peng et al.

Fig. 1 2D schematic of the
linked-list cell method

terms, where rij is the distance between atomic pair (i, j ) and θijk is an angle among
atom triplet (i, j, k) [2].

Figure 1 shows a schematic of the computational kernel of MD, which employs
a linked-list cell method to compute interatomic interactions in O(N) time based on
Embedded Divide and Conquer [2, 4]. The center cell C(0,0) is surrounded by eight
neighbor cells. The cell dimensions are often chosen to be the cutoff radius (repre-
sented by the two-heads arrow) of interatomic interaction. Only atoms (grey color)
within the cutoff radius from the dark atom are shown. Periodic boundary condition
is applied to the system in three Cartesian dimensions. Here, a simulation domain is
divided into small rectangular cells, and the linked-list data structure is used to orga-
nize atomic data (e.g., coordinates, velocities, and atom type) in each cell. Traversing
the linked list, one retrieves all atom information belonging to a cell and thereby com-
putes interatomic interactions. The dimensions of the cells are usually determined by
the cutoff radius rc of the interatomic interaction, so that the search for interacting
atomic pairs is restricted to the nearest-neighbor cells. MD is an archetype of irreg-
ular memory-access pattern applications due to atom diffusion, which imposes great
challenge on efficient parallelization and performance optimization.

Since MD simulation is one of the most prominent applications in material sci-
ence, there exist a number of publications on accelerating MD simulation. For exam-
ple, special hardware accelerators including MD-GRAPE [5], Anton [6], and recon-
figurable computers [7] promise to reach millisecond-level simulations. Erez et al.
[8, 9] implemented an MD application, GROMACS, on Standford’s streaming super-
computers, Merrimac [10]. Our goal is instead to investigate how to improve MD
performance and scalability on a low-cost cluster platform, which is available to in-
dividual research groups. George et al. [11] conducted similar research at the initial
stage of the IBM BlueGene architecture but did not discuss hierarchical optimization.
There are other projects like NAMD [12] mainly targeting supercomputing systems
composed of conventional clusters. However, there are few to our knowledge that
reports large-scale internode, intercore scalability as well as fine-grained data-level
optimization. The following details our parallelization scheme.



Exploiting hierarchical parallelisms for molecular dynamics 23

3 Scalable hierarchical parallelization scheme for molecular dynamics

Our scalable hierarchical parallelization scheme (SHPF) combines: (1) internode
level parallelism by spatial decomposition using message passing; (2) intranode (in-
tercore) level parallelism through master-worker pattern with cellular decomposition
via multithreading without using critical sections; and (3) data-level parallelism via
SIMD techniques. The following subsections describe these parallelization levels.

3.1 Inter-node level parallelism

Our internode level parallelism is based on spatial decomposition, where the physical
system is partitioned into subsystems of equal volume. Atoms located in a particular
subsystem are assigned to one of the compute nodes in the cluster, which are log-
ically arranged according to the topology of the physical subsystems (specifically,
we use 3D mesh). In parallel MD, two communication operations are implemented
using message passing. The first is atom caching: In order to compute interatomic in-
teraction within cut-off radius rc at each MD step, atomic coordinates of 26 neighbor
subsystems, which are located within rc from the subsystem boundary, are copied to
each node, where data coherence is maintained by copying the latest neighbor surface
atoms every time before atomic accelerations are computed. The second communica-
tion operation is atom migration: After the atomic coordinates are updated according
to the time-integration algorithm, some resident atoms may have moved out of the
subsystem boundary, and such atoms are moved to proper nodes. We implement the
internode spatial decomposition using the message passing interface (MPI) standard.

3.2 Intercore level parallelism

With spatial decomposition, each spatial subsystem (or compute node) contains a
set of linked-list cells. On multicore clusters, we further decompose the set of cells
into small chunks and assign each chunk to a core by multithreading. For portabil-
ity among broad architectures and operating systems, we adopt the POSIX thread
standard. To achieve high parallel efficiency, we have designed a critical section-free
algorithm to make interatomic force computation of each thread independent of those
of the other threads at the cost of some computational overhead [2]. Our multithread-
ing scheme employs a master/worker model [2] (Fig. 2): The master thread is in
charge of updating the atomic coordinates, constructing neighbor lists, atom caching,

Fig. 2 Flow chart of master/worker force computation



24 L. Peng et al.

Fig. 3 Illustration of padding
for NT = 3

atom migration, and coordinating the worker threads, while the worker threads are
in charge of force computations. In addition, semaphores are used to synchronize the
master and worker threads as well as to avoid the overhead of thread creation and
joining at each MD step.

Our multithreading scheme also takes account of cacheline false sharing con-
ditions among threads. A typical example is an array sum[NT ] (NT is the num-
ber of threads) that provides separate accumulators to different threads for global
sum. Though this eliminates a critical section at data level, cache-level racing con-
dition still occurs when multiple threads simultaneously modify sum[i] laid in the
same cacheline. Here, we employ a padding technique that separates sum[i] to dif-
ferent cachelines (Fig. 3). Furthermore, better performance is achieved by placing
frequently used variables for individual thread together in the same cacheline. Nearly
constant speed up (between 2.1 and 2.2) is observed for various granularities (i.e., the
number of atoms per thread ranging from 12,288 to 98,304) by avoiding overhead
due to the cache coherence protocol on Intel Xeon platform.

3.3 Data level parallelism via SIMD

We exploit data-level parallelism inside each core via SIMD vectorization. There
are mainly two issues for achieving high SIMD speedup: One is to exploit as many
SIMDizable statements as possible via data packing and fusion [13]; and the other
is to arrange data to avoid unaligned memory accessing [14]. In the following sub-
sections, we introduce inner-loop branch translocation and loop unrolling [15] to en-
hance the data packing, and padding to address memory alignment issues [16, 17].
And all the following discussions are for float data type and SSE extension.

3.3.1 Data packing for SIMD via inner loop branch translocation and loop
unrolling

For data-level parallelization, we employ SIMD techniques based on loop branch
translocation and loop unrolling. To explain these techniques, Fig. 4 shows the flow-
charts of branch translocation of interatomic force calculation. The cyan block rep-
resents the most compute-intensive code segment, where the conditional statement
inside it (colored in red) is used to avoid duplicating force calculations among differ-
ent threads.

Since it is well known that branches block streaming processes, and thus seri-
ously degrade SIMD performance, it is important to translocate the conditional state-
ment from inside a loop to the outside to make the most compute-intensive part more
SMIDizable. Noting the descending order of atom indices in each cell according to
the linked lists, our SIMD solution translocates the branch statement on condition,
j < n, to the outside by decomposing the innermost loop into two blocks: First,
j ≥ n, and then j < n. The branch-translocated innermost loop has thus become



Exploiting hierarchical parallelisms for molecular dynamics 25

Fig. 4 Flowcharts of branch translocation of force calculation

two consecutive blocks of SIMD-friendly code segments with different conditional
statements checked at the beginning of each block as shown in Figs. 4(b) and (c).
Figure 4(b) shows the segment to calculate the distance between resident atom i and
non-resident atom j , only updating the force on atom i, whereas Fig. 4(c) handles a
pair of resident atoms, updating the forces on both atoms i and j .

SIMDization of our program is then implemented in conjunction with loop un-
rolling. We unroll the inner loop four times and do data packing, i.e., for each atom i,
a group of four atoms j0, j1, j2, j3 are fetched together to concurrently perform pair-
interaction computations with atom i. If the four pairs are within the cutoff, we fully
SIMDize them (except for the force table lookup, which is not SIMDizable), else
we just use the original code to process them one by one. By eliminating branches
through decomposition of the inner loop, the program becomes much more suitable
for SIMDization. Furthermore, by loop unrolling, our solution achieves better perfor-
mance, as we mostly pack four data together to fully take advantage of SIMD.

3.3.2 Memory alignment for SIMD via zero padding

A basic SIMD operation packs data into 128-bit vector registers to be operated simul-
taneously. However, the load and store instructions in the streaming SIMD extensions
(SSE) have a special requirement on alignment, i.e., an instruction must load from or
store to a 16-Byte aligned memory. Although the SSE intrinsics provide unaligned
load instructions, it is at the expense of a large performance penalty, since such an
instruction may cause cacheline splits. It is thus of great importance to naturally align
memory accessing. This subsection illustrates the use of zero padding to achieve this,
using the velocity update function in our MD code as an example. Here, the code is
doubly nested for loops, where the outer loop traverses N atoms, and the inner loop



26 L. Peng et al.

Fig. 5 SIMD alignment via
padding for velocity update
function

is over the three Cartesian dimensions:

for (i = 0; i < N; i++)

for (a = 0; a < 3; a++)

rv[i][a] = rv[i][a] + ra[i][a];

Our SIMD solution redefines the velocity array rv[N ][3] and acceleration array
ra[N ][3] (N is the number of atoms) to array rv[N ][4] and ra[N ][4] by padding
zero to each row of both arrays. For example, each {rv[i][0], rv[i][1], rv[i][2]} is
made {rv[i][0], rv[i][1], rv[i][2],0} by padding 0. Subsequently, we unroll the inner
loop, pack each {rv[i][0], rv[i][1], rv[i][2],0} to vector rvvec and {ra[i][0], ra[i][1],
ra[i][2],0} to vector ravec, and add them concurrently to obtain the result. The
scheme of the above SIMDization are given in Fig. 5. The effect of this SIMDiza-
tion can be analyzed as follows. The computation is reduced from 3N to N with an
ideal speedup of 3. For the memory accessing part in the ideal case (i.e., if all data are
stored in the cache), it reduces the number of memory accesses from 9N to 3N . (Due
to the zero padding, all vector load and store operations start from an aligned address,
as the stride is 16 bytes for each rv[i][0] and ra[i][0]). Therefore, the ideal memory
accessing speedup is 3. However, there are some overhead because the padding intro-
duces a 33% increase of memory bandwidth as the padded array is 33% larger. More
detailed analysis will be given in the following subsection.

4 Performance test and analysis

The performance and scalability of the SHPF applied to MD has been tested on var-
ious multicore clusters: 106,496 IBM BlueGene/L nodes (each with two IBM Pow-
erPC 440 processors at 700 MHz clock) at Lawrence Livermore National Labora-
tory, 32,768 IBM BlueGene/P nodes (each with four 450 POWER PC processors at
850 MHz clock) at Argonne National Laboratory, and dual quadcore Nehalem Intel
Xeon (2.33 GHz clock) and dual quadcore AMD Opteron (2.3 GHz) based clusters
at the High Performance Computing and Communications facility of the University
of Southern California (HPCC-USC).



Exploiting hierarchical parallelisms for molecular dynamics 27

Fig. 6 (a) and (b) inter-node weak-scalability test, (c) inter-node strong-scalability test

4.1 Inter-node scalability

We first test the internode weak scalability on 106,496 IBM BlueGene/L nodes
(each with two IBM PowerPC 440 processors at 700 MHz clock) at Lawrence Liv-
ermore National Laboratory, and 32,768 IBM BlueGene/P nodes (each with four
450 POWER PC processors at 850 MHz clock) at Argonne National Laboratory.
Here, the problem size (i.e. the number of atoms N ) is scaled linearly with the num-
ber of nodes P , and the internode weak-scaling parallel efficiency of P nodes over
Q nodes is defined as (Timep_cores/P )/(TimeQ_core/Q). Figure 6(a) shows the inter-
node weak-scaling parallel efficiency for 8,177,664P -atom silica systems as a func-
tion of P on BlueGene/P, and Fig. 6(b) shows that for 4,088,832P -atoms on Blue-
Gene/L. Our scheme achieves excellent weak-scaling efficiency on both platforms:
0.975 on 32,768 BlueGene/P nodes and 0.985 on 106,496 BlueGene/L nodes based
on the speedup over 2,048 nodes.

We also test the strong scalability of internode parallelism. Strong-scaling speedup
SP on P nodes is the running time on one node divided by that on P nodes, and the
efficiency EP is defined as SP /P . We fix the problem size as 805 million atoms,
whereas P varies up to 8,192 nodes. Figure 6(c) shows the strong-scaling parallel
efficiency as a function of P on the BlueGene/L cluster based on the speedup of
1,024 nodes. The figure shows that our parallelization scheme maintains a decent



28 L. Peng et al.

strong-scaling parallel efficiency over 0.90 up to 8,192 nodes based on the speedup
over 1,024 nodes on BlueGene/L cluster.

4.2 Inter-core scalability

Next, we test the intercore multithreading strong-scalability of MD on a dual quad-
core Intel Xeon platform.

Here, we define the multithreading speedup with NT threads, SNT , as the run-
ning time of the program with one thread divided by that with NT threads, while the
problem size is kept constant. We then define the intercore (intranode) multithread-
ing parallel efficiency ENT as SNT/NT . Figure 7 shows the multithreading parallel
efficiency as a function of the number of worker threads ranging from 1 to 8. The
program scales well up to 8 threads on the 8-core platform for the two-body force
calculation with efficiency 0.89, while for the entire program the efficiency is 0.65.

It is important to identify the major factor causing the decrease of efficiency when
the thread number increases. This is partly due to the redundant computation intro-
duced for three-body computations for eliminating critical sections. It could also be
due to the overhead for maintaining cache coherency when there is false sharing of
cacheline as discussed in Sect. 3.2. Here, we use the Intel Vtune performance An-
alyzer to observe the impact of better cache coherency. Large value of request-for-
ownership (RFO) transactions and modified data sharing ratio indicate frequent races
among threads on using and modifying data laid in the same cacheline. Table 1 shows
that the padding technique reduces more than 98% of RFO transactions compared to
the code without padding and that the modified data sharing ratio is 9 times less,
which indicates a large performance gain from padding. Our experiments show that

Fig. 7 Intranode multithreading
parallel efficiency on Xeon
platform

Table 1 Profiling of cache
coherence transactions. The
granularity N/P is 3072 atoms
in both results with 4 threads

Code Clock per
Instruction
retired
(CPI)

RFO to clock ratio Modified data
sharing ratio

Naïve 0.83 0.000645 0.0009

Cache coherency 0.67 0.000012 0.0001



Exploiting hierarchical parallelisms for molecular dynamics 29

Fig. 8 SIMD performance test. (a) SIMD speedup for various problem sizes. (b) SIMD efficiency as a
function of MD time steps

the padding technique gains average speedup of 53% for all granularities compared
to the code without padding.

4.3 SIMD performance tests and analysis

We test our data-level optimization scheme by measuring SIMD speedup and SIMD
efficiency averaged over MD steps for various problem sizes on Intel Core i7 E920
processor. Here, the SIMD speedup is defined as the ratio of the running time of the
program without SIMD optimization to the optimized running time; and the SIMD
efficiency is the ratio of the measured SIMD speedup over the theoretical peak value
(i.e. 4 for SSE). Performance tests are performed for silica system with the initial
temperature of 6,000 K. Figure 8(a) shows that the SIMD speedup is around 2 for
problem sizes varying from 3,072 to 98,304 atoms.

To study the dynamic nature of SIMD performance during MD simulation,
Fig. 8(b) shows the SIMD efficiency as a function of MD time steps for the 98,304-
atom silica system. The SIMD efficiency is found to degrade from 0.5 to 0.33 within
3,000 steps. Profiling reveals that the dynamic degradation of SIMD efficiency is a
consequence of the increased memory access penalty caused by atom diffusion and
migration as the simulation progresses. To understand this effect, below we provide a
theoretical analysis of SIMD speedup as well as the effect of memory access penalty
on SIMD speedup.

Analysis of SIMD speedup: Theoretical SIMD speedup is related to data type,
i.e., 4 and 2 for float and double, respectively. In real applications, however, this
ideal SIMD speedup is rarely achieved due to the presence of unSIMDizable code
segments. To explain the discrepancy between the theoretical SIMD speedup of 4
and the measured value around 2 in Fig. 8(a), we here use a model that is based on
pre-SIMD profiling data.

SIMDizability of our application is characterized by the SIMDizable factor,
FSIMDizable = TSIMDizable/Tall, where TSIMDizable is the running time of the SIMDiz-
able part in the original code and Tall is that for the entire program. We then introduce
an estimation of application-based ideal SIMD speedup, EApp = [FSIMDizable/Ntype +



30 L. Peng et al.

Table 2 Tests of the estimated application-based ideal SIMD speedup model for MD

Problem TSIMDizable Tall FSIMDizable EApp Real SIMD Relative error

size (clock cycles) (clock cycles) speedup (%)

6,144 180 261 0.689 2.07 2.00 3

12,288 357 514 0.695 2.09 2.00 4

24,576 735 1,040 0.705 2.12 1.91 10

98,304 308 427 0.722 2.18 1.98 12

(1 − FSIMDizable)]−1, where Ntype is the data type-dependent ideal SIMD speedup
(i.e., 4 for float and 2 for double). We can estimate EApp by obtaining its parameters
from pre-SIMD profiling of the original program. The pre-SIMD profiling data of our
MD application with various problem sizes are estimated by measuring TSIMDizable
and Tall of the most time-consuming force calculation part using the Intel VTune
Performance Analyzer on Intel Xeon Quadcore processor (the major unSIMDizable
part of the force calculation in our MD program due to the force table lookup oper-
ation). Table 2 lists the measured TSIMDizable and Tall with different problem sizes,
together with the corresponding SIMDizable factors FSIMDizable and the application-
based ideal SIMD speedups EApp. Table 2 also shows that the actual SIMD speedups
obtained by SIMDization of the code agree well with the estimated ones (with a max-
imum difference of only 12%).

Analysis of the effect of memory-access penalty on SIMD performance: We
also analyze and quantify the effect of memory-access penalty on SIMD speedup in
order to explain the dynamic degradation of SIMD performance during MD simula-
tion in Fig. 8(b). We again use the same velocity-update example as in Sect. 3.3.2, but
with different stride sizes to mimic the effect of different memory access patterns as
the result of atom migration. Since the positions of all atoms are stored in one large
one-dimensional array, different patterns of accessing the position array are associ-
ated with different cache and DTLB misses. Below, we model the SIMD performance
including these penalties.

Let Tc denote the running time for each computation (e.g., add, subtract, and mul-
tiply), Nc the number of computations, TLS the load/store cost, and NLS the number
of load/store under ideal condition as from L1 cache for both X86 instruction set and
SIMD instruction set (SSE3) (throughput of 1 for both computation and load/store).
We further define a memory access penalty function P , while Porig and PSIMD rep-
resent the penalty before and after SIMDization, respectively. Then the total memory
accessing time TM can generally be expressed as

TM = TLSNLS + P. (1)

In the case of the original velocity-update subroutine, each inner loop involves three
memory accesses and one computation, resulting in the running time of Tc + 3TLS.
Thus, the estimated total running time ETorig is given by

ETorig = 3NTc + 9NTLS + Porig. (2)



Exploiting hierarchical parallelisms for molecular dynamics 31

Fig. 9 SIMD analysis: squares,
triangles show actual, estimated
speedup for various strides

Similarly, the estimated total running time for the subroutine after SIMDization is

ETSIMD = NTc + 3NTLS + PSIMD (3)

Relationship between the memory accessing penalties of the SIMDized and un-
SIMDized velocity-update subroutines can be represented by α = Porig/PSIMD,
which is the reduced memory accessing penalty due to the data-packing prepara-
tion for SIMD. (In our case, α is around 1, since the packed data for SIMD use are
from very close memory sections.) The SIMD speedup SSIMD = ETorig/ETSIMD is
then given by

SSIMD = 3NTc + 9NTLS + Porig

NTc + 3NTLS + PSIMD
=

{ 3(NTc+3NTLS)/Porig+1
(NTc+3NTLS)/Porig+α−1 (Porig #= 0)

3 (Porig = 0)
. (4)

According to (4), if the memory accessing is all from L1 cache so that the penalty
is extremely small (i.e., P = 0), then the SIMDized program will achieve an ideal
speedup of 3. On the other hand, when the memory accessing is extremely poor, i.e.,
when P is large, the SIMD speedup decreases to 1.

As mentioned before, we modify the original velocity-update subroutine by adding
a stride parameter. Here, we define the stride as the distance between two neighbor-
ing elements in accessing. We perform the experiments on an Intel Core i7 plat-
form, where the major memory accessing penalties are from DTLB miss introducing
around 7 cycle penalty and last level cache (LLC) miss introducing around 80 cy-
cle penalty (last level cache latency + bus transaction). For simplicity, we use the
sum of LLC miss penalty and DTLB miss penalty to approximate Porig in (4). Fig-
ure 9 shows the results of our experiments with stride length ranging from 4 Bytes
to 32 MBytes. The memory accessing is characterized by the pair (NLLC,NDTLB),
where NLLC denotes the number of LLC misses and NDTLB that of DTLB misses.
We use the Intel VTune Performance Analyzer to collect NLLC and NDTLB, which
are averaged over 1,000 iterations before rounded off to an integer. In Fig. 9, the
squares denote the actual SIMD speedup, while the triangles show the estimated
SIMD speedup calculated from (4) using the parameters estimated from pre-SIMD
profiling data. Our application-based ideal SIMD speedup model is accurate with



32 L. Peng et al.

relative errors of 3–12% from the measured values. The figure also shows that the
SIMD speedup decreases considerably due to LLC or DTLB misses, which is likely
the main reason of the SIMD performance degradation in MD simulations (Fig. 8(b)),
pointing out that further memory optimization is needed to enhance the SIMD per-
formance.

5 Conclusions

In summary, we have developed a scalable hierarchical parallelization scheme for
molecular dynamics simulation, thereby achieving almost ideal weak scalability on
BlueGene/L and P clusters as well as good strong scalability BlueGene/P cluster.
Within each compute node, multithreading has achieved reasonable intercore paral-
lel efficiency combined with intracore level data parallelization via SIMD vectoriza-
tion. We have also quantified the degradation of the scalability through performance
profiling. Future work will address better data layout to improve the SIMD perfor-
mance.

Acknowledgements This work was supported by NSF-ITR/PetaApps/EMT, DOE-SciDAC/BES/EFRC,
ARO-MURI, and DTRA.

References

1. Vashishta P, Bachlechner ME, Nakano A, Campbell TJ, Kalia RK, Kodiyalam S, Ogata S, Shimojo F,
Walsh P (2001) Multimillion atom simulation of materials on parallel computers-nanopixel, interfacial
fracture, nanoindentation, and oxidation. Appl Surface Sci 182:258–264

2. Nomura K et al (2009) A metascalable computing scheme for large spatiotemporal-scale atomistic
simulations. In: Proceedings of the 2009 international parallel and distributed processing symposium.
IEEE Press, New York

3. Dongarra J et al (2007) The impact of multicore on computational science software. In: CTWatch
4. Nakano A et al (2001) Scalable atomistic simulation algorithms for materials research. In: SuperCom-

puting
5. Ohno Y (2007) A 128 Tflops calculation for x-ray protein structure analysis with special-purpose

computers MD-GRAPE3. In: SuperComputing
6. Shaw DE (2007) Anton, a special-purpose machine for molecular dynamics simulation. In: ISCA
7. Scrofano R, Prasanna VK (2005) Preliminary investigation of advanced electrostatics in molecular

dynamics on reconfigurable computers. In: SuperComputing, New York, NY
8. Erez M et al (2004) Analysis and performance results of a molecular modeling application on Merri-

mac. In: SuperComputing, Washington, DC
9. Erez M et al (2007) Executing irregular scientific applications on stream architectures. In: ICS, New

York, NY
10. Dally WJ et al (2003) Merrimac: supercomputing with streams. In: SuperComputing, Washington,

DC
11. Almasi GS et al (2001) Demonstrating the scalability of a molecular dynamics application on a

petaflop computer. In: ICS, New York, NY, 2001
12. Phillips JC et al (2002) NAMD: Biomolecular simulations on thousands of processors. In: Proceedings

of supercomputing (SC2002). IEEE/ACM, New York
13. Peng L et al (2009) High-order stencil computations on multicore clusters. In: Proceedings of the

2009 international parallel and distributed processing symposium



Exploiting hierarchical parallelisms for molecular dynamics 33

14. Chang H, Sung W (2008) Efficient vectorization of SIMD programs with non-aligned and irregular
data access hardware. In: Proceedings of the 2008 international conference on compilers, architectures
and synthesis for embedded systems, Atlanta, GA, USA

15. McKinley KS et al (1996) Improving data locality with loop transformations. ACM Trans Program
Lang Syst 18:424–453

16. Darte A, Robert Y (1994) On the alignment problem. Parallel Process Lett 4:259–270
17. Eichenberger AE et al (2004) Vectorization for SIMD Architectures with alignment constraints. ACM

SIGPLAN Not 39:82–93


	Exploiting hierarchical parallelisms for molecular dynamics simulation on multicore clusters
	Abstract
	Introduction
	Linked-list cell molecular dynamics simulation
	Scalable hierarchical parallelization scheme for molecular dynamics
	Inter-node level parallelism
	Intercore level parallelism
	Data level parallelism via SIMD
	Data packing for SIMD via inner loop branch translocation and loop unrolling
	Memory alignment for SIMD via zero padding


	Performance test and analysis
	Inter-node scalability
	Inter-core scalability
	SIMD performance tests and analysis

	Conclusions
	Acknowledgements
	References


