
SoftwareX 14 (2021) 100696

h
2

Contents lists available at ScienceDirect

SoftwareX

journal homepage: www.elsevier.com/locate/softx

Original software publication

MISTIQS: An open-source software for performing quantumdynamics
simulations on quantum computers
Connor Powers a, Lindsay Bassman a,b, Thomas M. Linker a, Ken-ichi Nomura a,∗,
Sahil Gulania c, Rajiv K. Kalia a, Aiichiro Nakano a, Priya Vashishta a

a Collaboratory for Advanced Computing and Simulations, University of Southern California, Los Angeles, CA 90089-0242, USA
b Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
c Department of Chemistry, University of Southern California, Los Angeles, CA 90089-1062, USA

a r t i c l e i n f o

Article history:
Received 3 December 2020
Received in revised form 2 April 2021
Accepted 6 April 2021

Keywords:
Quantum dynamics simulation
Quantum computing

a b s t r a c t

We present MISTIQS, a Multiplatform Software for Time-dependent Quantum Simulations. MISTIQS
delivers end-to-end functionality for simulating the quantum many-body dynamics of systems gov-
erned by time-dependent Heisenberg Hamiltonians across multiple quantum computing platforms. It
provides high-level programming functionality for generating intermediate representations of quantum
circuits which can be translated into a variety of industry-standard representations. Furthermore, it
offers a selection of circuit compilation and optimization methods and facilitates execution of the
quantum circuits on currently available cloud-based quantum computing backends. MISTIQS serves as
an accessible and highly flexible research and education platform, allowing a broader community of
scientists and students to perform quantum many-body dynamics simulations on current quantum
computers.

© 2021 Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Motivation and significance

With Google’s recent experimental realization of quantum

supremacy for a proof-of-concept problem [1] and IBM’s an-
nounced roadmap for scaling quantum computers up to over a
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housand qubits as early as 2023, there is a growing demand
or the use of quantum computers for nontrivial scientific ap-
lications. A highly anticipated application is a universal sim-
lator of quantum many-body systems, an idea originally con-
eived of by Richard Feynman in the 1980s [2] and later elabo-
ated by Seth Lloyd [3]. The last decade has witnessed the grow-
ng success of quantum computing for simulating static proper-
ies of quantum systems, i.e., the ground state energy of small
olecules [4–9]. However, it remains a challenge to simulate
uantum many-body dynamics on current-to-near-future noisy
ntermediate-scale quantum (NISQ) computers [10].

To facilitate the adoption of quantum computing for studying
uantum dynamics, we have developed open-source software
o perform non-trivial many-body quantum dynamics on the
ublicly available IBM-Q and Rigetti quantum computers. The
andscape of quantum computing software has rapidly matured
n recent years to include general-purpose platforms, such as
irq [11] for developing quantum circuits, as well as problem-
pecific platforms, such as OpenFermion [12] for solving static
lectronic structure problems on quantum computers. However,
o such platform is widely available for studying time-dependent
uantum many-body dynamics. Here, we present MISTIQS (Mul-
iplatform Software for Time-dependent Quantum Simulation),
n open-source software package for simulating quantum many-
ody dynamics of systems that can be represented by the Heisen-
erg model, a ubiquitous model that captures the behavior of a
ariety of quantum materials and systems. An early prototype of
his software was successfully used to simulate ultrafast control
f emergent magnetism by terahertz radiation in atomically thin
e-doped MoSe2 monolayers [13], and has since been expanded
o simulate the dynamics of broader material systems that are
escribed by the Heisenberg model.
MISTIQS also includes two quantum circuit compilers opti-

ized for simulating a subgroup of the Heisenberg model known
s the transverse field Ising model (TFIM). One is tailored to the
ative gate sets of IBM quantum computers, and one is tailored
o the gate sets used by Rigetti quantum computers, as each gate
et provides distinct opportunities for circuit compression in the
ate patterns characteristic of TFIM dynamics simulations [14].
heir circuit compression algorithms, detailed in [14], allow these
pecial-purpose compilers to significantly reduce the gate count
f the circuits for simulating the many-body dynamics, while
lso significantly reducing the wall-clock compilation time over
ackend-native general-purpose compilers. Gate count reduction
s particularly important for NISQ devices, which suffer from rela-
ively large gate error rates (ranging from 0.01% to 0.1% for single-
ubit gates and ranging from 0.1% to 1% for two-qubit gates on
uperconducting quantum computers). In practice, this means
hat quantum circuits with larger numbers of gates tend to ac-
umulate more errors. Therefore, quantum circuit compilers that
educe gate counts can enable more accurate simulations on NISQ
evices by decreasing the compounding gate error [15]. In total,
ISTIQS employs a user-friendly, object-orientated framework

or formulating, optimizing, and executing quantum circuits for
any-body dynamics simulations on quantum computers with

he goal of expanding education and spurring the development
f research in this field.

. Software description

MISTIQS is written in Python, with backend-specific libraries
nly imported as needed per each use case. MISTIQS provides
full-stack solution for the direct quantum simulation of spin

ystems governed by the Heisenberg model Hamiltonian, taking
he following form for N spins:

(t) = −

N−1∑
[Jxσ x

i σ
x
i+1 + Jyσ

y
i σ

y
i+1 + Jzσ z

i σ z
i+1] − h (t)

N∑
σ k
i (1)

Here, Jx, Jy, and Jz give the exchange interaction strengths between
nearest neighbor spins in the x-, y-, and z-directions respectively.
Superscript k, which can be either x, y, or z, represents the
direction of the external magnetic field to which the spins are
exposed. The time-dependent magnitude of this field is given
by h(t), and σ k

i is the kth Pauli matrix acting on qubit i. The
dynamics of systems modeled by this class of Hamiltonians can
be simulated on digital quantum computers by mapping the
states of the spins to those of the qubits, and translating the
Hamiltonian-dependent time-evolution operator into a quantum
circuit. Execution of the resultant quantum circuits on a quantum
computer produces results that can be post-processed to show
the temporal evolution of the system.

The workflow for MISTIQS is described by Fig. 1. First, the
user must define the coefficients of the Hamiltonian specific
to the material system of interest, along with other simulation
parameters such as number of time-steps, step-size, and quantum
backend. MISTIQS then generates quantum circuits that simulate
the time-evolution of the system. These circuits can then be
executed on the chosen NISQ backend. Finally, the results can
be post-processed to reveal the evolution of the spins over the
course of the simulation. It is worth emphasizing that MISTIQS
accepts a user-specified function for the time dependence of
the external magnetic field, defined as h(t) in Eq. (1), allowing
researchers to more accurately model the specific conditions of
their experiments. The specifics of this full-stack functionality are
shown in more detail in Fig. 2a.

The user can also choose to only use portions of MISTIQS’s
functionality. For example, if the user just wants to output a
list of quantum circuits compatible on IBM quantum devices,
they can choose to skip circuit execution and post-processing.
There is also the option to use the domain-specific compilers on
externally generated circuits to output compiled circuits for IBM’s
or Rigetti’s platforms.

2.1. Software architecture

Upon downloading the software from https://github.com/USC
CACS/MISTIQS, the following directories will be present:

• src/: Directory containing MISTIQS source code.
• docs/: Directory containing user’s manual for MISTIQS.
• examples/: Directory containing demonstrative examples

covering some different use cases of MISTIQS.

Upon running any portion of the software, the following subdi-
rectory will be created:

• data/: Directory containing simulation results, graphics (if
applicable), and the logfile generated by executing the soft-
ware.

MISTIQS is comprised of three core modules, described below
with additional information about their key member functions:

• quantum_circuits: Code defining quantum logic gate and
quantum circuit objects native to MISTIQS that allow it to
operate above the syntax of any one quantum computing
platform.

• Gate: Takes as input a quantum gate name, rotation
angles (if applicable), and the set of qubits it acts on to
create an intermediate quantum gate representation.

• Program: Builds an intermediate quantum circuit rep-
resentation from a list of Gate objects.

• Heisenberg: Code that generates, compiles, and executes
quantum circuits using user-defined Hamiltonian and sim-
i=1 i=1 ulation as input.
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Fig. 1. Process overview of simulating Heisenberg spin Hamiltonians on digital quantum computers and quantum simulators.

• generate_circuits: From the input file, this method
uses the user-specified Hamiltonian parameters, as
well as user choices regarding backend and compila-
tion. First, it generates intermediate quantum circuits
needed to simulate the time-evolution of the system,
then it compiles these circuits into the native gate sets
and syntax of the user-specified quantum computing
backend.

• connect_ibm: For IBM use cases, this method connects
to the IBMQ backend (needed for quantum circuit com-
pilation and execution). Takes in IBMQ API key and
account overwrite boolean as needed.

• run_circuits: From the input file, this method uses
the backend and quantum device choice, as well as
user choices regarding post-processing of results. Its
functionality is to execute the quantum circuits on the
user-specified quantum device and post-process the
results to the user’s specifications.

• ds_compiler: Code for domain-specific compilation of cir-
cuits for the TFIM (which is a special case of the general
Hamiltonian in Eq. (1)) into the native gate sets employed
by IBM and Rigetti.

• ds_compile_ibm: Domain-specific quantum compiler
for circuits simulating time-evolution of the TFIM.
Takes in a high-level quantum circuit and returns a
compiled quantum circuit executable on IBM quantum
computers.

• ds_compile_rigetti: Domain-specific quantum com-
piler for circuits simulating time-evolution of the TFIM.
Takes in a high-level quantum circuit and returns a
compiled quantum circuit executable on Rigetti quan-
tum computers.

he described roles and key member functions of these modules
re illustrated in Fig. 2b. In this figure, information inlets and
utlet paths are also highlighted, and the optional compiler-only
se case is included in the context of the nominal workflow.
This multi-output architecture allows MISTIQS to serve a vari-

ty of education-facing and research-facing applications; utilizing

observable evolutions under the Hamiltonian of interest, while
the ability to output the generated simulation circuits allows
for researchers to utilize their own compilers or transform cir-
cuits into the syntax appropriate for alternate quantum hardware
backends.

2.2. Prerequisites

The MISTIQS codebase was intentionally written to minimize
the number of required external libraries; it only requires the
numpy library to be installed. If the user would like to generate
plots of the simulation results, then the matplotlib library must be
installed as well. Otherwise, any additional required libraries are
solely dependent on the quantum-computing platform the user
would like to produce quantum circuits for; qiskit [16] is required
to generate circuits for IBM devices, pyquil [17,18] is required for
Rigetti use cases, and cirq [11] is likewise required for Google use
cases.

2.3. Generalized workflow

To use MISTIQS, the user must first define any parameters that
need to be changed from their default values in a simple text-
based input file. The customizable parameters are described in
the appendix. A Heisenberg object is then created, which stores
all of the input system parameters. Note that while attributes of
the object are initially set from the input file, they can be changed
later in the code as any time. Next, the software transforms the
input Hamiltonian and simulation parameters into a series of
quantum programs (an intermediate representation of quantum
circuits) that will simulate the dynamics of the system of interest
via Trotter approximation. This intermediate circuit represen-
tation (native to MISTIQS) facilitates the transformation of the
quantum circuits into the equivalent native circuits for various
quantum computing platforms. This is crucial because quantum
computing platforms can vary widely in not only in circuit object
syntax, but also the native quantum gate set allowed on their
hardware.

MISTIQS then compiles the circuits, if desired, using either the

he full feature stack allows for streamlined visualizations of key compilers native to the specified quantum computing platform

3
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Fig. 2. (a) Full-stack representation of MISTIQS workflow. (b) Key roles and member functions of MISTIQS modules.

Fig. 3. (a) Average magnetization of the domain wall example spin chain over time. (b) Average magnetization of the second spin over time as output by MISTIQS.
c) Example average magnetization evolution of a TFIM chain spin executed by MISTIQS on both a noiseless quantum simulator and an IBM quantum computer.(d)
omparison of quantum gate counts in a sample TFIM circuit when compiled with the IBM native compiler and the domain-specific compiler integrated into MISTIQS.

r the built-in domain-specific quantum compilers. If execution
f the quantum simulation is desired, MISTIQS will run the cir-
uits on the specified quantum device. Once successfully run, the
oftware can post-process the results and save the average mag-
etization data for each qubit over the duration of the simulation
n individual output files. It can also generate and save plots of
his data. A logfile is kept during each use, and this, along with
ll generated qubit data and plots, will be saved in a data folder.
The memory size of quantum dynamics simulation scales as

(N) on a quantum computer and O(2N ) on a quantum computer
imulator on a classical computer for N spins [19], while the
untime has an additional factor of O(T ) for the simulated times-
an of T. Mathematical structures can be utilized to reduce the
(T ) factor to O(1) for special cases [20,21], while different algo-
ithms trade the spatial and temporal complexities on a classical
omputer [1].

2.4. Software functionalities

MISTIQS can perform quantum dynamics simulations for any
variant of the time-dependent Heisenberg model, including the
important XX chain model, XXZ chain model, and TFIM [22].
The time-dependent external magnetic field, set to a sinusoidal
function of a tunable frequency by default, can also be customized
by the user, allowing for greater flexibility in the pulse shapes
that can be simulated by this software. Another key functionality
of the software is quantum circuit compilation, as its built-in
domain-specific compilers are optimized for TFIM simulations on
IBM and Rigetti backends.
4
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. Illustrative examples

.1. XX chain model domain wall quench simulation

In this example, we use a 16-qubit noiseless quantum sim-
lator to explore the dynamics of a 6-spin XX chain forming a
omain wall. We are interested in measuring and plotting the
verage magnetization of each spin over time. An XX spin chain
s a subcase of Eq. (1) where Jx = Jy ̸= 0 and Jz = h(t) = 0,
ith Jx set by the material being simulated. While it is one of
he simplest subsets of the Heisenberg model, it has shown rel-
vance in entanglement teleportation and low-energy quantum
hromodynamics (QCD) [23,24].
For this example, we configure the initial spins of the spin

hain by setting the initial_spins parameter so that half of the
pins start in a spin-down configuration in order to form a do-
ain wall. To run the simulation, we first initialize the Heisenberg
bject with the relevant input file, then generate the circuits with
he generate_circuits() method, then run the simulation with the
un_simulation() method. Fig. 3a illustrates the spin states of each
pin in this domain wall example over the course of a 50 fs
imulation, with the evolution of the second spin highlighted in
reen, and the corresponding plot of the evolution of the second
pin produced by MISTIQS is shown in Fig. 3b. The results align
ith those presented in Fig. 2 of Ref. [22].

.2. Quantum ising model simulation of emergent magnetism in
oSe2

In this example, we will explore the emergent magnetism of
Re-doped MoSe2 monolayer, which we model with the TFIM,
y performing a 5-qubit quantum simulation on IBM’s 5-qubit
‘Ourense’’ quantum computer. TFIM spin chains are governed
y Eq. (1) where Jx = Jy = 0, Jz ̸= 0, and k = x. Physically,
his describes a system with inter-spin coupling only in the z-
direction in the presence of an external magnetic field aligned
with the x-direction. To run a quantum simulation of such a
system with MISTIQS, set the Jz parameter to the value matching
the system of interest, set the ext_dir parameter to ‘X’, then set the
h_ext to a nonzero value. Then, the num_qubits parameter is set
ccordingly, and the initial_spins parameter is set to reflect stan-
ard spin-up configuration. Other general simulation parameters,
uch as simulation length and backend, are also set. A complete
xample input file, TFIM_input_file.txt, is found in the examples
irectory.
To run the simulation, a Heisenberg object is created with the

elevant input file, then the user is connected to the IBM Q back-
nd by running the connect_IBM() method. Next, the quantum
ircuits are generated by running the generate_circuits() method,
nd the simulation is executed and post-processed by running the
un_circuits()method. The resulting plot of average magnetization
hould resemble Fig. 3c, although differences will inevitably arise
ue to device noise.

.3. Standalone compiler for the quantum ising problem

In this example, we will use the domain-specific (DS) compil-
rs built into MISTIQS to optimize the quantum circuits of a TFIM
imulation. The user need only import the ds_compiler module,
nd call the ds_compile method on the circuits, providing the
esired backend to compile to as an argument. If running the
ample circuits described above, this backend argument would
e ‘‘ibm’’. The optimized circuits will be returned as a new list.
nput circuits may be generated by initializing a Heisenberg object

output of the return_circuits() method of the Heisenberg object.
Alternatively, the user may input externally created circuits.

The examples directory contains an example use case that
directly implements these steps, then runs the same circuits
through IBM’s native compiler to directly compare the perfor-
mances of the two compilers. This will produce a comparison of
quantum gate counts between the identical circuits compiled by
the domain-specific compiler built into MISTIQS and the native
IBM compiler resembling Fig. 3d.

4. Impact

The three major impacts of MISTIQS are: (1) to provide an
open-source platform enabling accessible, end-to-end quantum
dynamics simulations across the major quantum computing plat-
forms open to public use; (2) to accelerate quantum dynam-
ics simulation research by wrapping quantum circuit formation,
compilation, execution, and basic post-processing into a user-
friendly package; and (3) to facilitate quantum computing educa-
tion, where the accompanying examples and tutorials can be used
as self-contained course modules in classroom and workshop
settings.

MISTIQS aims to bridge the gap between quantum computa-
tion and fields such as chemistry, materials science, and con-
densed matter physics by making quantum dynamics simulations
on NISQ-era devices accessible to a wider range of researchers. It
is our hope that this high-level programming library can spur new
acceleration in exploring the power of current quantum devices
across a wide range of applications. Already, beta versions of this
software have been successfully used to perform quantum simu-
lations of ultrathin materials under the TFIM exploring emergent
magnetism phenomena [13].

5. Conclusions

In summary, MISTIQS is an end-to-end software solution for
performing quantum simulations of systems governed by any
subset of the time-dependent Heisenberg model Hamiltonians on
current quantum computers. By simplifying and streamlining the
workflow from the material’s Hamiltonian to the post-processed
quantum computer data, as well as providing effortless cross-
platform functionality between IBM, Google, and Rigetti quantum
computing platforms, researchers outside of the field of quantum
computation can easily leverage the power of quantum comput-
ers in their work. MISTIQS has already proven its utility in the
simulation of quantum materials, and is expected to accelerate
quantum simulation research in a wide variety of applications
including quantum chemistry, materials science, and condensed
matter physics.
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ith the TFIM example input file (see Section 3.2), and using the
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ist and Descriptions of Customizable Parameters

Parameter name Description

Jx Controls inter-spin coupling in the X direction
Jy Controls inter-spin coupling in the Y direction
Jz Controls inter-spin coupling in the Z direction
h_ext Controls amplitude of the Hamiltonian’s

external magnetic field term
ext_dir Sets the direction of the external magnetic

field
num_qubits Specifies the number of qubits of the quantum

simulation
initial_spins Sets the initial spins of each qubit
delta_t Sets the timestep of the quantum simulation
steps Specifies the number of timesteps in the

quantum simulation
QCQS Specifies whether the circuits will be run on a

quantum computer or a quantum simulator
shots Sets the number of shots to execute on the

quantum device
noise_choice If using a quantum simulator, this sets

whether a noisy simulator is desired.
device_choice Specify the quantum device to generate the

circuits for and\or run the circuits on
plot_flag Sets whether post-processed results from

running the quantum simulation should be
plotted and saved.

time_dep_flag Specifies whether time dependence is desired
in the Hamiltonian external field term

freq Specifies the frequency of the optional time
dependent function in the Hamiltonian
external field term

custom_time_dep Sets whether the software should look for a
user-defined time dependence function for the
Hamiltonian external field term

backend Sets the choice of quantum computing
platform (IBM, Rigetti, Google)

compile Sets whether the software should compile the
generated quantum circuits

auto_smart_compile Sets whether the integrated domain-specific
compilers should automatically be applied to
detected TFIM circuits (IBM and Rigetti
backends only)

default_compiler Sets whether the software defaults to
compilers native to the backend of choice or
the integrated domain-specific compilers (IBM
and Rigetti backends only)
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