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Autonomous reinforcement learning agent for stretchable
kirigami design of 2D materials
Pankaj Rajak 1,2✉, Beibei Wang2,3, Ken-ichi Nomura2,4, Ye Luo1, Aiichiro Nakano 2,3,4,5, Rajiv Kalia2,3,4,5 and Priya Vashishta 2,3,4,5✉

Mechanical behavior of 2D materials such as MoS2 can be tuned by the ancient art of kirigami. Experiments and atomistic
simulations show that 2D materials can be stretched more than 50% by strategic insertion of cuts. However, designing kirigami
structures with desired mechanical properties is highly sensitive to the pattern and location of kirigami cuts. We use reinforcement
learning (RL) to generate a wide range of highly stretchable MoS2 kirigami structures. The RL agent is trained by a small fraction
(1.45%) of molecular dynamics simulation data, randomly sampled from a search space of over 4 million candidates for MoS2
kirigami structures with 6 cuts. After training, the RL agent not only proposes 6-cut kirigami structures that have stretchability above
45%, but also gains mechanistic insight to propose highly stretchable (above 40%) kirigami structures consisting of 8 and 10 cuts
from a search space of billion candidates as zero-shot predictions.
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INTRODUCTION
Two-dimensional (2D) materials have been highlighted in recent
studies for their promising applications in various fields such as
catalysis, photonics, optoelectronic and spintronic devices, includ-
ing sensors and high-performance electrodes1–6. Their outstanding
functionality and tunability have been the spotlight of research in
nanoscience community. Among 2D materials, transition metal
dichalcogenide (TMDC) is drawing a great deal of attention and are
considered promising candidates for the next generation of
thermoelectric and optoelectronic devices due to their excellent
electrical properties, mechanical strength, and chemical stability7–9.
For example, molybdenum disulfide (MoS2), a well-known solid
lubricant, has become an excellent candidate for wearable
electronic devices due to its high electron mobility, wide band
gap, flexibility, and fracture toughness10–12. Numerous studies of
TMDC materials have reported surprising structure-property
relationships due to defects, mechanical straining, and vertical
stacking of heterogenous TMDC layers13–16. For example, Ajayan
and collaborators have shown experimentally that under strain an
MoWSe2 heterostructure undergoes a structural transformation
near the crack tip17. They find that the transformation from the
semi-conducting 2H to metallic 1 T phases increases the fracture
toughness.
A popular approach to engineering mechanical properties is to

design a structural pattern inside materials. Mechanical meta-
materials utilize hierarchical patterning in their structure. For
example, kagomé lattice and octet truss exhibit negative
Poisson’s ratio, negligible shear modulus, and negative compres-
sibility18–21. Origami or kirigami design based on the ancient
paper crafting technique are employed to change the mechan-
ical behavior of 2D materials22–25. For example, graphene is
brittle in nature but its flexibility can be substantially enhanced
by introducing cut patterns in the graphene sheet, thereby
enabling stretchable electronics26,27. Blees et al. have success-
fully created nanodevices based on kirigami-patterned graphene

and demonstrated its excellent flexibility27. Unlike the traditional
composite materials that are based on molecular assembly,
designed patterns and structures can be introduced into
materials using the krigami technique. As a consequence, a
variety of applications of kirigami are found in nanocomposites,
soft electronics, and functional and optical metamaterials28–32.
However, the mechanical properties of kirigami-based 2D
materials are sensitive to a number of parameters in a kirigami
pattern, e.g., the total number of cuts, cut location, length, and
width, as well as the interaction between cuts33,34. A carefully
designed kirigami pattern must incorporate both in-plane and
out-of-plane deformation effects subjected to a strain in order to
render high stretchability in the 2D structure. Zhu et al. have
experimentally shown that graphene can be stretched up to
50%35. Fracture mechanics in a 2D nanosheet with many cuts is
non-trivial. Furthermore, the exponential size of the parameter
space makes it impractical for experimental and theoretical
studies to find the optimum kirigami pattern with the maximum
stretchability.
Recently, machine learning ( ML) methods have shown

tremendous success in material science, especially in designing
data-driven force field models for materials simulation, building
ML models to predict materials property from their atomic
structure, and even build models to create atomic structure for
materials that exhibit a set of desired properties36–42. Neural
network and Gaussian processes have been used to develop data-
driven interatomic potentials that enable molecular dynamics
(MD) simulations with nearly the accuracy of first-principles
quantum mechanical calculations43–46. Also, ML models based
on kernel ridge regression, support vector machines, and graph
neural network have been used to predict a wide range of
material properties such as elastic constants, dielectric constants,
and thermoelectric properties, where the model input is a
representation of the material under consideration, and the
output from the model is a target property47–53. In fact, recently
ML models have also been used to predict toughness and
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strength of composite structures and predict crack propagation
path in crystalline solids during dynamic fracture54,55. Alterna-
tively, in many applications where we are only interested in
materials with optimal properties, ML methods based on Bayesian
optimization (BO), active learning, and reinforcement learning (RL)
are better suited56–58. BO finds the optimal value from a black-box
function involving a few parameters with minimum function
evaluation, where each function evaluation is very expensive.
Application of BO includes discovery of battery materials and 2D
materials with maximum band gap and thermoelectric proper-
ties59,60. In contrast, RL is more suitable for discrete problems that
involve finding an optimal value and sequential decision-making
under uncertainty in a huge parameter space. RL is heavily utilized
in robotics, games, and machine translation. In material science, RL
has been used to predict reaction pathways, optimal condition for
chemical reactions, and design of molecules with desired chemical
properties61–65.
In this study, we have successfully applied RL to optimize the

kirigami pattern in 2D MoS2 and demonstrated that the
maximum streachability exceeds 45% for a system consisting
of up to 6 cuts. We have used MD simulations to create the
training data for the RL model. The location, length, and
separation between kirigami cuts are variables in each
simulation. Specifically, we have 13 different choices depend-
ing on the length and location of each cut in the material. In
the RL model, placement of cuts inside the MoS2 structures is
posed as a sequential decision-making process. The goal of the
RL agent is to place up to 6 cuts inside the MoS2 and maximize
the total reward at the end, which is proportional to the
stretchability of the material. Further, the kirigami design
strategies learned from the training data for 4 and 6 cuts, the
RL agent successfully makes zero-shot predictions of kirigami
structures with 8 and 10 cuts from a search space of a billion
candidate structures without any training data. The MD
calculations confirm that the stretchability of 8- and 10-cut
structures exceed 40%.

RESULTS
MoS2 kirigami state space
A schematic of the MoS2 kirigami design and the corresponding
stress–strain curves during uniaxial tensile simulation by MD are
shown in Fig. 1a–c. Here, the stretchability of the material is
defined as the maximum strain at which the material fails, i.e., the
point of sudden drop in stress in the stress–strain curve of the
material, Fig. 1c, which shows that the failure point of kirigami
materials is very sensitive to the topology of the cut patterns. The
stretchability of these systems is a function of the total number of
cuts, cut length, and their location on the nanosheet. Figure 1a
shows possible choices of kirigami cut patterns in a 20 nm× 30 nm
MoS2 nanosheet. The strategy for inserting a cut is that the system
is first vertically partitioned into n rows of equal width, where each
row may contain a horizontal cut. In these rows, a single cut can be
placed at one of the 4 equally-spaced points chosen horizontally
along the central axis of the row, and the length of these inserted
cut is either 5, 10, or 15 nm. Furthermore, if the end point of the
inserted cut extends beyond the MoS2 nanosheet width (20 nm), it
is wrapped back from the other side, see Fig. 1b (bottom). Thus, we
have 13 different choices to place a cut in each row: 4 different
location × 3 cut length+ no cut, which makes the total number of
possible kirigami structures to be 13n, where n is the total number
of vertical rows in an MoS2 nanosheet. The state space of kirigami
structures grows exponentially with the number of rows containing
cuts. The number of possible structures is 28,561 for n= 4,
4,826,809 for n= 6 and 137,858,491,849 for n= 10. It is impossible
to search this vast space and find structures with high stretchability
via experiments or MD simulation of random structures. Instead of
the brute-force search to find optimal structures, we have created
an RL model to find structures with high stretchability after
training. Previously, Hanakata et al. used an alternative approach
based on active learning and iterative search to design graphene
kirigami with maximum stretchability50. Here, we formulated the
MoS2 kirigami design as a reward-based continuous optimization
problem in the framework of RL, where the goal of the RL agent is
to learn an optimal policy that creates structures with high

Fig. 1 MD simulation of MoS2 kirigami structures. a Schematic of 20 nm × 30 nm MoS2 structure showing the vertical partitioning of system
into 6 groups (yellow dashed lines) for the synthesis of kirigami structures. In each row, a cut can be placed at one of the four locations (white
circle). b Three kirigami structures created by different choices of cut length and location and c their corresponding stress–strain curves by
uniaxial tensile deformation simulation using molecular dynamics.
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stretchability. Training data for the RL model is generated by
performing MD simulation of kirigami structures under uniaxial
tensile stress for all possible 28,561 structures of n= 4, and for
randomly sampled 70,000 structures from 136 structures in the
case of n= 6. The details of the MD simulation are given in the
“Methods” section.

RL framework for kirigami design
Since each MD simulation of a kirigami structure is expensive and
takes ~6 h, it is not feasible to use MD simulations to provide
feedback in the form of reward during the training of the RL
agent. To address this problem, we designed our RL agent using
model-based offline reinforcement learning, where the agent does
have access to the environment during training and learns the
optimal policy from randomly sampled suboptimal offline data
from the environment66. Figure 2a shows the schematic of our
offline RL framework, which consists of an RL agent and a dynamic
model of kirigami structure deformation as policy evaluator. Here,
the dynamic model is constructed using deep convolutional
neural network (CNN) and trained by MD simulation data to
predict stretchability (S) of input kirigami structures, which is fed
into the model as a 64 × 64 × 1 binary tensor. Details of the
dynamics model’s network architecture, conversion of kirigami
structures into binary tensor, and its training and test accuracy are
given in the “Methods” section and in Supplementary Discussion
on Training and Validation Results of the Dynamic Model.
In the next stage of the RL framework consisting of a trained

dynamic model using offline data, the RL agent formulates the
construction of kirigami structures as a sequential decision-
making process, where the decision about the placement of cut
inside the nanosheet is made one by one in a raster scan fashion
inspired by laser fabrication of stretchable kirigami device67. Here,
the synthesis of a single kirigami structure from a pure MoS2
nanosheet (containing no cut) is called an episode of RL, where
the length of each episode is kept fixed at T= 4 or 6 (equal to the
total number of vertical rows), see Fig. 2b. During an episode at
each time step t, the RL agent makes a decision about the location
and length of the next cut in the tth row from the 13 available
choices (action space). The input to the RL agent is the

intermediate structure from the (t−1)th time step. Using the
action proposed by the RL agent, a cut is created at the specified
location of proposed length in the tth row, which serves as an
input state to the RL agent at the next time step. At each time
step, the dynamic model rewards the RL agent. The reward is 0 for
t < T and at the terminal state (t= T) it is proportional to the
stretchability (S) of the material if it is above a certain threshold:

Reward tð Þ ¼ 0 t � T � 1 or t ¼ T and S<STð Þð Þ
0:2S t ¼ T and S � STð Þ
�

(1)

The RL agent is a deep Q-network (DQN)56, whose input is a
64 × 64 × 2 tensor that summarizes the intermediate state (st) of
the structure until time step t and outputs the state-action value
function, Q(st,at), for all the actions (a) we can take from st, which is
13 different cut choices to place in the tth row of the material. Q(st,
at) is an estimate of the total expected reward for each state-
action pair from the tth time step to the end of the episode under
a given policy. The goal of the DQN is to learn a policy (π) that
maximizes the Q(st, at) for each state-action pair (Eq. 2). Details of
the network architecture, and the training of DQN are given in the
“Methods” section and in the Supplementary Method and
Supplementary Table 1.

Q st; atð Þ ¼ maxπE rt þ γrtþ1 þ γ2rtþ2 þ ¼ γT�t�1rN½ �
� maxπEs0 rt þ γmaxatþ1Q stþ1; atþ1ð Þ� � (2)

Two different RL agents are constructed using the same DQN
architecture for n= 4 and 6 such that they are trained to learn a
policy that proposes structures with S ≥ ST (threshold stretch-
ability). The expected reward per episode during training for these
models is given in Fig. 3a and Fig. S1. Here, the value of ST in the
reward function (Eq. 1) is a hyper-parameter and needs to be
tuned during training to screen out structures with lower S values
quickly but at the same time provide sufficient reward signals for
learning. Since the objective of the RL agent is to maximize its
total reward, the final optimal policy converges near the structure
that has maximum S value as long as ST is chosen carefully. We
observe that smaller value of ST leads to longer training time and
lower expected reward, whereas large value of ST causes no
learning at all as most structures give zero reward that means no
gradient signals from the reward function to the RL agent to
update its parameters. The effect of different ST values on training
is discussed in the Supplementary Methods, and the best result in
terms of expected reward is obtained with ST= 15% and 20% for
n= 4 and 6, respectively, Supplementary Fig. 2. After training, the
RL agents follow an ϵ-greedy policy to generate structures in each
episode and choose an action at each time step that maximizes Q
(st, at) with 1−ϵ probability or a random action with ϵ= 0.1
probability. Figure 3b shows the probability density function (PDF)
of S for all the 28,561 structures with n = 4 cuts and PDF for S
constructed by sampling 500 structures using a random search by
the RL agent. In the case of a random search, each structure is
chosen with equal probability. We observe in Fig. 3b that the true
distribution of S is highly sparse, where 95% of the structures have
S < 15%. Thus, a random search cannot find structures with
superior mechanical properties, which is also evident in Fig. 3b
where most of the structures have S < 15%. On the other hand,
after training, the RL agent proposes structures with high S. In fact,
most of the structures proposed by the RL agent have S ≥ 30% for
80% of the time, which is closer to structures near Smax with
maximum probability at Smax for n= 4. Figure 3c, d show several
structures proposed by the RL agent and the random structures
along with their S values.
In the case of n= 6, we have only used 70,000 structures

(~1.45% of all possible structures) to train the dynamic model first
and then the RL agent for 12,000 episodes. After training, we use
the RL agent to find structures with the highest value of S. Figure
4a shows the cumulative density function (CDF) of S for

Fig. 2 RL agent for kirigami design. a A schematic of the RL agent
and a dynamic model for the synthesis of MoS2 kirigami structures.
The dynamic model predicts the stretchability (S) of kirigami
structure proposed by the RL agent and gives a reward to the RL
agent which is used by agent to update its policy so as to maximize
its total reward and creates structures with high S. b An episode of
RL agent showing initial, final and intermediate structures and the
associated actions taken and rewards received during the synthesis
of MoS2 kirigami structure.
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500 structures proposed by an RL agent, and Fig. 4b shows
18 structures with S ≥ 20%. These structures show ductile fracture
and thus have high S (also shown in Fig. 4b), whereas structures
with smaller S ≤ 10% show brittle failure. Figure 4c, d shows the
atomistic failure mechanism and the stress–strain curve for a
system with low and high values of S, respectively. In the case of
structures with low S (Fig. 4c), the local tensile stress near the cut
edges increases with the applied strain. When any of these local
stress concentrators exceeds a critical value (bond strength of
Mo–S bond), it results in Mo–S bond breaking and rapid crack
propagation originating from those high-stress regions. The crack
propagation also causes a sudden drop in stress (Fig. 4c) and
shows brittle fracture. In strained systems with high S values (Fig.
4f), we also observe compressive stresses in addition to local
tensile stresses near the cut edges in intermediate regions of the
cut both along the x and y directions (see Fig. 4g, h). Due to the
absence of constraints along the z axis, these compressive stresses
cause out-of-plane motion along the z axis in those regions, which
releases the system’s stored energy and delays the tensile stress
near the cut edges to reach Mo–S bond strength. These out-of-
plane deformations of localized regions due to compressive stress
varies with the cut design in the system and that directly affects
the stretchability of the system (Fig. 4f). Supplementary informa-
tion videos S1.mov and S2.mov show the failure mechanism of
these two systems.

Zero-shot prediction of kirigami structures with 8–10 cuts
The sequence in which cuts are placed inside the material greatly
affects the stretchability S. In fact, we can quantify the importance

of each cut in terms of its state-action value function, Q(st, at).
Figure 5a, b shows the principal component analysis (PCA) of the
learned feature in the last layer of DQN for all the intermediate
structures, and the associated action that has maximum Q(st, at) at
time t= 2 and 3 for n= 6, i.e., the second and third cut places
inside the material. We observe that there are very few design
choices available with respect to the placement of the 2nd and
3rd cuts inside the material, which will eventually lead to the
creation of structures with high S values. Two such intermediate
structures with high S value are also shown in Fig. 5a, b, whereas a
proposed kirigami structure by the RL agent via these two
intermediate structures is shown in Supplementary Fig. 3. Using Q
(st, at), we can also determine the best location and length of the
very first cut inside the material. Figure 5c shows Q(st, at) for all the
13 choices associated with the placement of the first cut, and a
kirigami structure that is generated using them as first cut and
then the follow-up RL policy for the remaining cut. We observe
that S for generated structures is as low as 21%, reaches a
maximum value of 47%, and is highly dependent upon the
placement of the first cut.
The above analysis shows that the RL agent has learned

strategies of kirigami design with high S value during training. At
test time, this mechanistic understanding can be exploited by the
RL agent to make zero-shot predictions of high S kirigami
structures with n= 8 and 10 cuts, where the search space is
above a billion candidates. Even though no training data is
provided from n ≥ 8, the RL agent can still propose structures
containing more than 8 cuts by simply increasing the length of the
RL episode at test time. We have used this strategy of longer

Fig. 3 Training and test results of RL agent with 4 cuts. a Expected reward (blue lines) and its variance (yellow) during the training of the RL
agent for n= 4 with ST= 15% during trainin. b Probability density function (PDF) constructed by sampling 500 structures using random search
(blue) and RL agent (red). Here, the inset shows the true PDF of strain for all the possible structures for n= 4, i.e., a structure state space
consisting of 134 structures. c Several samples generated during random search along with their stretchability and d shows few samples
proposed by the RL agent along with their stretchability.
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episode lengths to generate 8 structures each for n= 8 and 10
and performed MD simulations to compute their true S values, see
Supplementary Discussion on zero-shot prediction for details.
Here again, the RL agent successfully proposes structures with S ≥
40% for n ≥ 8 as shown in Fig. 5d, e and Supplementary Figs. 8–9.

Comparison of RL with other baselines models. We have also
compared the performance of our RL framework with two other
machine learning methods of material design with optimal
properties: active learning using iterative search similar to
Hanakata et al. and conditional variational autoencoder (CVAE)50,68.
Details of these two models and their performance in finding
structures with maximum S are given in the Supplementary
Discussion under Baselines. We observe that CVAE fails to generate
structures with S ≥ 35%, Supplementary Figs. 10–11. This happens
because for both n= 4 and 6 most structures have S ≥ 20%. Thus,
CVAE does not accurately learn the extremely sparse region of
structures (S ≥ 30%) as very little training data is present there and
after training only generates structures with S ≤ 30%. Active
learning discovers the first structure with S > 40.0% and the best
structure (S= 47.3%) with 500 and 1300 structure evaluation
respectively, whereas the RL agent also discovers the optimal
structure with S= 47.3% around 1000 episode, which is equivalent
to 1000 structure evaluations and uses the rest of the training
episodes to construct its policy in high S regions, Supplementary

Figs. 12–13. We observe that the active learning approach is
sample efficient in terms of finding the optimal structure but is also
computationally more expensive in time due to its sequential
nature and requires more memory for training as each step of
active learning requires the evaluation of entire 4.8 million
structures for n= 6. In comparison, RL requires less memory with
lower training time since it does not evaluate all 4.8 million
structures at each episode and beside learning the optimal policy
also provides mechanistic insight into the placement of cuts in
terms of their state-active value function as described in the
previous section. These mechanistic insights of kirigami design are
difficult to infer from the active learning approach. Further, the RL
agent can exploit these learned strategies for completely different
objectives such as completion of partially created kirigami
structures (see the Supplementary Discussion on partial task
completion) and zero-shot prediction of optimal structures from a
billion candidate search space (n ≥ 8) that has data distribution
different from the training data (n= 6); see Supplementary Figs. 8–
9 and Supplementary Discussion on zero-shot prediction.

DISCUSSION
In summary, we have shown that RL can efficiently generate 2D
kirigami structures with high stretchability from an extremely
large search space consisting of millions of structures. Further,

Fig. 4 MD validation of RL proposed kirigami structures with 6 cuts. a Cumulative density function (CDF) of the stretchability of systems
proposed by RL for n= 6, i.e., a structure state space consisting of 136 structures. b Top 18 structures proposed by the RL agent for n= 6. Here,
structures are sorted by their stretchability (S) and blue and red values above the structures are their S value computed by the dynamic model
and MD simulation, respectively. Stress–strain curve, deformation mechanism, and local stress distribution, pxx and pyy, inside the materials
before failure for system showing brittle failure and have low stretchability in (c–e) and for system showing ductile failure and have high
stretchability in (f–h).
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an RL agent provides insight into the placement and length of
cuts inside the material that will eventually create structure
with superior mechanical properties in terms of its state-action
value function, Q(st,at). In general, the optimal structure design
of materials is high dimensional, involves sequential decision-
making, and sometime discrete in nature. For example,
designing crystal structure with high hardness involves the
selection of very specific set of elements and their placement
inside the crystal at specific locations. Known ML methods such
as regression and Bayesian optimization are difficult to apply
because we cannot take the gradient of the model due to its
discrete nature of search space, and manual evaluation of each
structures becomes computationally expensive and memory-
bound when the size of the search space increases to billions of
structures. Previously, ML models for optimal structure search in
a discrete space used active learning with iterative search by
Hanakata et al., whereas Bombarelli et al. have mapped the
discrete representations of molecules on a continuous latent
space using variational autoencoder and then used that latent
space representation for optimal molecule design50,69. Here, our
RL formulation provides another valuable technique to convert
these challenging problems into a reward-based continuous
optimization, which directly proposes not only the best
structures after training but can also exploit its learned

mechanistic insight to generate structures that are outside
the training data distribution. Thus, RL can be used to design a
wide class of metamaterials where black-box function optimiza-
tion is difficult to apply.

METHODS
Molecular dynamics simulation
The 2H crystal structure of MoS2 is used here to create kirigami structures
by removing Mo and S atoms from a 2D-MoS2 nanosheet in the 2H phase
such that the stoichiometry of the system is maintained. The width of each
cut is 1 nm. Each system has lateral dimensions 20 nm × 30 nm, containing
~22,000 atoms. We relax each kirigami structure by minimizing the energy
configuration using the conjugate gradient method. After that, we relax
the system at a temperature of 100 K for 200 ps under NVE ensemble. The
system is then subjected to uniaxial tension, following loading and
relaxation phases. During the loading phase, each system is homogenously
expanded along the y-axis for 1 ns, followed by the relaxation phase,
where the entire system is relaxed for another 5 ps in the NVE ensemble.
The whole cycle is repeated to apply larger strains. This procedure
amounts to an effective strain rate of 4 × 108 s−1. Periodic boundary
condition is applied only along the y-axis, and the tensile stress of the
material is computed during the relaxation phase. Details of the stress
calculation and interaction potential are given in the Supplementary Notes.

Fig. 5 Mechanistic insight of kirigami design learned by RL agent and zero-shot prediction of 10-cut structures. a, b Principal component
analysis (PCA) of the learned features of the intermediate states at time t= 2 (a) and time t= 3 (b) by the RL agent that has maximum Q(st a),
where each of these states are colored by that Q(st, a) value. State-action pair that has maximum Q(st, a) is also highlighted in (a) and (b). c All
possible cut choices to place a cut inside the material at t= 1 and the associated Q(s, a) for that state-action pair. It also shows a proposed
structure along with its stretchability by the RL agent for each of the associated action taken at t= 1 and then afterward following the RL
policy. d zero-shot prediction of kirigami structures with n= 10. e Stress–strain curve computed by MD simulation and f atomic structure of
the system just above 40% strain (red cross).
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Dynamics model for mechanical deformation
We use a CNN network consisting of three convolutional layers of
dimensions 32 × 32 × 16, 16 × 16 × 32, and 32 × 32 × 64 followed by three
fully-connected layers of dimensions 4096 × 1024, 1024 × 512, and 512 × 1.
The input is a 64 × 64 × 1 binary tensor representing a kirigami structure
and the output is stretchability S. Here, the input binary tensor is created
from the 2D atomic nanosheets of size 20 nm × 30 nm by first partitioning
the nanosheets into bins of size 20

64 nm ´ 30
64 nm ¼ 0:3125nm ´ 0:46875 nm

and then each bin that does not contains any atom is given a value of 1
otherwise 0. In each convolutional layer, we use padding and strides equal
to 1 × 1 and the kernel size is 3 × 3. Relu is used as a non-linear activation
function between hidden layers. We use training data consisting of 8000
and 70,000 structures for n= 4 and 6, respectively. During training, we use
adam optimizer with a learning rate of 0.005 and train the model for 100
epochs with a batch size of 64 and the dropout probability of 0.5 in
between the second to last fully-connected layers. The training and test
accuracy along with error analysis of the model are given in the
Supplementary Figs. 4–7 of the Supplementary Discussion.

Reinforcement learning agent (DQN Network)
DQN is another CNN network with network architecture similar to that of
the dynamic model. However, the input to the DQN network is a 64 × 64 ×
2 tensor representing intermediate structure state at time t and the output
Q(st, at) for all the 13 actions for state st. Here, the first dimension of the
input tensor is a binary tensor of the structure generated at time step t−1,
and the second dimension of the tensor is yth coordinate of the cut added
in time step t−1. During training, we use experienced replay with reply
memory of size 10,000. The training algorithm for the DQN is given in
Supplementary Table 1. We trained two different RL agents for n= 4 and 6.
The expected reward during training for these models is given in Fig. 3a
and Supplementary Fig. 1.
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