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Autonomous reinforcement learning agent for chemical vapor
deposition synthesis of quantum materials
Pankaj Rajak 1,6, Aravind Krishnamoorthy 2,3,6, Ankit Mishra2,3, Rajiv Kalia2,3,4,5, Aiichiro Nakano 2,3,4,5 and Priya Vashishta 2,3,4,5✉

Predictive materials synthesis is the primary bottleneck in realizing functional and quantum materials. Strategies for synthesis of
promising materials are currently identified by time-consuming trial and error and there are no known predictive schemes to
design synthesis parameters for materials. We use offline reinforcement learning (RL) to predict optimal synthesis schedules, i.e., a
time-sequence of reaction conditions like temperatures and concentrations, for the synthesis of semiconducting monolayer MoS2
using chemical vapor deposition. The RL agent, trained on 10,000 computational synthesis simulations, learned threshold
temperatures and chemical potentials for onset of chemical reactions and predicted previously unknown synthesis schedules that
produce well-sulfidized crystalline, phase-pure MoS2. The model can be extended to multi-task objectives such as predicting
profiles for synthesis of complex structures including multi-phase heterostructures and can predict long-time behavior of reacting
systems, far beyond the domain of molecular dynamics simulations, making these predictions directly relevant to experimental
synthesis.
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INTRODUCTION
Rapid development of technology based on advanced materials
requires us to considerably shorten the existing ~20-year materials
development timeline1. This long timeline results both from the
empirical discovery of promising materials as well as the trial-and-
error approach to identifying scalable synthesis routes for these
material candidates. Over the last decade, we have made
considerable progress in addressing the first of these challenges
through data-driven materials science to perform large-scale
materials screening for improved properties. The exponential
explosion in available computing power and increase efficiency of
ab initio and machine learning (ML) driven materials simulation
software have enabled the high-throughput simulations of several
tens of thousands of materials from multiple material classes2–5.
These high-throughput simulations and the resulting rich
databases are increasingly being mined and analyzed using
emerging ML techniques to identify promising material composi-
tions and phases6–10. These strategies have been successfully
employed to identify ultrahard materials, ternary nitride composi-
tions, battery materials, polymers11, organic solar cells12, OLEDs13,
thermoelectrics etc14–16.
This identification of advanced materials is only one piece

necessary towards the goal of reducing time to deployment of
advanced materials17. An equally important component in this
paradigm is the corresponding ability to synthesize these
promising materials and compositions. However, techniques for
experimental synthesis of materials have not kept pace with
advances in computational materials screening17,18. As a result,
materials synthesis is largely dominated by individual groups that
can identify synthesis strategies for advanced materials based on
empirically insights and materials intuition. There are several
attempted strategies to identify and optimize synthesis routes
prior to actual synthesis. The first strategy, common in chemical

and biological synthesis of small molecules, uses high-throughput
experimental synthesis to screen for optimal synthesis precursors
for chemical synthesis of small molecules19–22. The effectiveness of
such strategies is limited since an exhaustive search of synthesis
strategies is prohibitively expensive and inefficient in regard to
time and reagents, whereas a narrow search scheme that varies
only a single synthesis parameter at a time will likely miss several
promising synthesis strategies.
In contrast to the relatively widespread use of automated

algorithms to optimize chemical reactions of molecular and
organic systems23, synthesis planning for bulk inorganic materials
is still in its infancy24,25. Non-solution-based synthesis of quantum
materials involves more complicated time-correlations between
synthesis parameters, which are not amenable to experimental
high-throughput synthesis26. This also requires considerably more
refined models than previous efforts which only considered the
combination of reactants to predict the outcome of chemical
reactions27,28. Therefore, there are efforts to perform text-mining
on published synthesis profiles from the literature, including
common solvent concentrations, heating temperatures, proces-
sing times, and precursors used to understand common rules-of-
thumb and identify synthesis schedules for materials29–31.
However, even these upcoming ML techniques are limited by
scarcity of data in terms of existing schedules and synthesized
materials and therefore their extension to potentially unknown
materials is problematic30. Finally, the identification of a synthesis
schedule is the optimization of a time sequence of multiple
synthesis parameters, which requires a new class of ML
techniques. This problem is well-suited for Reinforcement Learn-
ing (RL), a branch of machine learning, where the goal of the RL
agent is design an optimal policy to solve problems that involves
sequential decision making in an environment consisting of
thousands of tunable parameters and a huge search space32,33.
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Due to this flexibility and ability of RL in handling complex tasks
involving non-trivial decision making and planning under
uncertainties imposed by the surrounding environment, it has
been used in robotics, self-driving cars and in material science
domain for problems such as designing drug molecules with
desired proproteins, predict reaction pathways and construct
optimal conditions for chemical reactions19,34–41.
In this work, we describe a model-based offline reinforce-

ment learning scheme to optimize synthesis routes for a
prototypical member of the family of 2D quantum material,
MoS2, via Chemical Vapor Deposition (CVD). CVD, a popular
scalable technique for the synthesis of 2D materials42, has
numerous time-dependent parameters such as temperature,
flow rates, concentration of gaseous reactants, and type of
reaction precursors, dopants and substrates (together referred
to as the synthesis profile) that need to be optimized for the
synthesis of advanced materials. Recent computational studies
have identified several mechanistic details about the synthesis
process43,44, but there are no comprehensive rules for design-
ing synthesis strategies for a given material. We use RL
specifically to (1) Identify synthesis profiles that result in
material structures that optimize a desired property (in our
case, the phase fraction of the semiconducting crystalline phase
of MoS2) in the shortest possible time and (2) Understand
trends and time-correlations in the synthesis parameters that
are most important in realizing materials with desired proper-
ties. These trends and time-correlations effectively provide
information about mechanism of the synthesis process. Experi-
mental synthesis by CVD is time-consuming and not amenable
to high-throughput synthesis and is therefore incapable of
generating the significant amount of data on synthesis using
multiple profiles required for RL training. Therefore, we train our
RL workflow on data from simulated CVD performed using
reactive molecular dynamics simulations (RMD), which were
previously shown to accurately reflect the potential energy
surface of the reacting system as well as capture important
mechanisms involved in the CVD synthesis of MoS2 from MoO3,
including MoO3 self-reduction, oxygen-vacancy-enhanced sulfi-
dation, SO/SO2 formation, void formation and closure etc.
identified in previous studies44–49.
Below, we describe results from the molecular dynamics

simulation of CVD, followed by a representation of the
dynamics of this CVD-environment as a probability density
function using a probabilistic deep generative model called
Neural Autoregressive Density Estimator (NADE-CVD) and
model-based Offline Reinforcement Learning to identify opti-
mal synthesis strategies. We conclude with a discussion on
applicability of RL+ NADE-CVD models for prediction of long-
time material synthesis.

RESULTS
Reactive MD for chemical vapor deposition
We perform RMD simulations to simulate a multi-step reaction of
MoO3 crystal with a sulfidizing atmosphere containing H2S, S2 and
H2 molecules. Each RMD simulation models a 20-ns long synthesis
schedule, divided into 20 steps, each 1 ns long. At the beginning
of each step, the gaseous atmosphere from the previous step is
purged and replaced with a predefined number of H2S, S2 and H2

molecules. These changes in RMD parameters reflect the time-
dependent changes in synthesis conditions during experimental
synthesis. The sulfidizing environment is then made to react with
the partially sulfidized MoOxSy structure from the end of the
previous step at a predefined temperature for 1 ns. Each step is
characterized by 4 variables, the system temperature, and the
number of S2, H2S and H2 molecules in the reacting environment
denoted as the quartet, T ; nH2 ; nS2 ; nH2Sð Þ. While the initial
structure for each RMD simulation at t = 0 ns is a pristine MoO3

slab, the final output structure (MoS2+MoO3-x) is a non-trivial
function of its synthesis schedule, defined by 20 such quartets as
shown in Fig. 1.

NADE for predicting output of synthesis schedules
RMD simulations can generate output structures for thousands of
simulated synthesis schedules to overcome the primary problem
of data scarcity common to experiments. RL-based optimization of
synthesis schedules consists successive stages of policy genera-
tion by the RL agent and policy evaluation by the environment.
However, using RMD simulations directly as the policy evaluation
environment is infeasibly time-consuming since direct evaluation
a single synthesis profile by RMD takes approximately 2 days of
computing. To overcome this problem, we construct a probabil-
istic representation of the CVD synthesis of MoS2 as a Bayesian
Network (BN) which encodes a functional relationship between
the synthesis conditions and generated output structures and can
therefore predict output structures for an arbitrary input condition
in a fraction of the time required by RMD simulations. The BN
consists of two sets random variables, namely the (a) the
unobserved variable Z given by the time dependent phase
fractions of 2H, 1T phases and defects in the MoOxSy surface, and
(b) the observed variables, X, given by the user-defined synthesis
condition, namely the temperature and gas concentrations (Fig.
2a, b)50. Each node in the BN represents either the synthesis
condition at time t as Xt or the distribution of different phases on
MoOxSy surface as Zt. Together, the BN represents the joint
distribution of X and Z as P(X, Z). Since, Z1 (initial structure, pristine
MoO3) and X (synthesis condition) is known, we can convert P(X, Z)
into a conditional distribution P Z2:T jX; Z1ð Þ using chain rule.
Further, using conditional independence between BN variables,
P Z2:T jX; Z1ð Þ can be further simplified as the autoregressive
probability density function, where each Zt+1 depends only upon

Fig. 1 Reactive MD for computational synthesis. a Schematic of the RMD simulation of a single 20-ns long synthesis schedule. The initial
MoO3 slab at t = 0 ns reacts with a time-varying sulfidizing environment to generate a final structure composed of MoS2 and MoO3-x at t = 20
ns. b Snapshot of RMD simulation cell for MoS2 synthesis. The sulfidizing environment containing S2, H2 and H2S gases reacts with the MoOxSy
slab in the middle of the simulation cell (black lines).
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the simulation history of observed and unobserved variables till
time t (Fig. 2b).

P Z2:T jX; Z1ð Þ ¼ P Z2jZ1; X1ð Þ¼ P Ztþ1jZ1:t; X1:tð Þ¼ P ZT jZ1:T�1; X1:T�1ð Þ
(1)

In the BN, each of these conditional probabilities,
P Ztþ1jZ1:t; X1:tð Þ is modeled as a multivariate Gaussian distribution
N Ztþ1jμtþ1; σtþ1
� �

, whose mean μtþ1 ¼ μ2Htþ1; μ
1T
tþ1; μ

defect
tþ1

� �
and

variance σtþ1 ¼ σ2H
tþ1; σ

1T
tþ1; σ

defect
tþ1

� �
is function of simulation

history, Z1:t; X1:tð Þ.
To learn the BN representation of the CVD process and capture

the conditional distribution P ZjX; Z1ð Þ compactly, we have
developed a deep generative model architecture called a Neural
Autoregressive Density Estimator (NADE-CVD; Fig. 2c), which
consist of an encoder, decoder and recurrent neural network
(RNN)51–54. The output of NADE-CVD function at time step t + 1 is
μtþ1 and σtþ1 for three phases in MoOxSy surface which are
functions of simulation history encoded by the RNN cell as ht ,
where ht is a function of ht�1 and synthesis condition Zt; Xtð Þ at
time t. Parameters of the NADE-CVD model are learned using
maximum likelihood estimate using a training data of 10,000 RMD
simulations of CVD using different synthesis conditions. The
prediction error of the trained NADE-CVD model on test data (Fig.
2c) shows a RMSE error of merely 3.5 atoms and maximum
prediction error on any phase of ≤30 atoms. The architecture of
the NADE-CVD model is described in the Methods section and
details about model training are provided the Supplementary
Methods.

Offline model-based RL for optimal synthesis schedules
The NADE-CVD model accurately approximates a computationally
expensive RMD simulation and provides a fast and probabilistic
evaluation of the output structure from a given synthesis
schedule. However, on its own, this model cannot be used to

achieve the goal of predictive synthesis, which is to identify the
most likely synthesis schedules that yield a material with optimal
properties (such as high crystallinity, phase purity or hardness). For
MoS2 synthesis, one example of a design goal is to determine
synthesis schedules that yield high quality MoS2 (i.e., largest phase
fraction of semiconducting 2H phase in the final product), in the
shortest possible time. In other words, we wish to perform the
non-trivial optimization of X1:t to maximize the value of

P
t Z1:t

(see Supplementary Methods). Mathematically, it can be written as

argmax
X1:t

P
Z1:t where Z1:t; X1:tð Þ � P Z1:t; X1:tð Þ ¼ P Z1:tjX1:tð ÞP X1:tð Þ

(2)

For this purpose, we construct a model-based offline reinforce-
ment learning (RL) scheme, where the agent does not have access
to the environment (RMD simulation) during training and learns
the optimal policy from randomly sampled suboptimal offline data
from the environment55–59. Here, the offline RL workflow consists
of a RL agent coupled to NADE-CVD trained on offline RMD data as
discussed in the previous section, (Fig. 3a). The RL agent πθð Þ is a
multi-layer perceptron, where the input state stð Þ at time t is a 128-
dimension embedding vector of the entire simulation history till t,
Z1:t; X1:tð Þ. At each time step t, the RL agent takes an
action, at, which is the change in synthesis condition (i.e.
reaction temperature and gas concentrations) at t,
at ¼ ΔZ ¼ ΔT ;ΔS2;ΔH2;ΔH2Sf g. The synthesis condition for the
next nanosecond of the simulation is defined as Xtþ1 ¼ Xt þ at .
The corresponding action atð Þ to take at st is modeled using a
Gaussian distribution at � N μ sTð Þ; σ2ð Þð Þ, whose parameters μ sTð Þ
– state dependent mean – is the output of the RL agent,
μ sTð Þ ¼ πθðsT Þ. The variance, σ2 is assumed to be constant and is
tuned as a hyperparameter of the RL scheme. Therefore, the RL
scheme designs a 20 ns synthesis schedule τð Þstarting with an
arbitrary synthesis condition, T0; S02;H

0
2;H2S0

� �
, such that the

Fig. 2 NADE model of computational synthesis of MoS2. a Each 1-ns step of the RMD simulation is characterized by an input vector Xi
characterizing the synthesis conditions and the distribution of phases in the resulting structure, Zi . b Bayesian Network representation of CVD
synthesis of MoS2 over Tmax= 20 ns. The green and blue nodes are synthesis condition as observed variables (Xn), whereas orange nodes are
unobserved (Zn), which represents phase fraction of 2H, 1T and defect in MoOxSy surface as a function of time. c Schematic of the NADE-CVD,
composed of two multi-layer perceptrons FMLP as encoder and decoder networks and an intermediate recurrent neural network block, FRNN.
d Test accuracy of NADE-CVD with a mean absolute error <0.1 phase fraction.
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action proposed at each timestep t serves to convert the initial
MoO3 crystal into 2H-MoS2 structure as quickly as possible.
During training, the RL agent learns the policy of designing the

optimal synthesis condition via policy gradient algorithm
informed by the NADE-CVD model33,60–62. At each time step t in
an episode, the RL agent receives an input state st and proposes
an action at that determines the synthesis condition at next time
step, Xtþ1. Using this, NADE-CVD predicts the distribution of
various phases in the synthesized product Ztþ1. The NADE-CVD
model also gives a reward rtð Þ proportional to the concentration of
2H phase Ztþ1½n2H� and a new state stþ1 to the RL agent. During
training, the goal of the RL agent is to use these reward signals
and adjust its policy parameters πθð Þ so as to maximize its total
reward, to produce 2H-rich MoS2 structure in minimum time.

Objective: argmax
θ

Eτ�πθ

Pt
t¼1

st; atð Þ
� �

where rt st; atð Þ ¼ 0:0 if Ztþ1 n2H½ �<0:4
0:2Ztþ1 if Ztþ1 n2H½ � � 0:4

�

(3)

The details of the network architecture, and the policy gradient
algorithm is given in the Methods section and RL agent training is
described in the Supplementary Methods.
The efficiency of the trained RL agent in identifying promising

synthesis schedules is demonstrated in Fig. 3b, which compares
the 2H phase fraction of the resulting structures from 3200 synth-
esis schedules generated by the RL agent against 3200 randomly
generated schedules, similar to what is used for training NADE-
CVD. The RL agent is able to consistently identify schedules that
result in highly crystalline and phase-pure products, while the

randomly generated schedules overwhelmingly yield poorly-
sulfidized and/or poorly crystalline products. This shows that
offline RL agent is able to learn a superior policy from the sub-
optimal random RMD simulation used in its training. Also, from
probabilistic viewpoint, the RL agent constructs a probability
distribution function (pdf) of X1:t that places most of its probability
mass on regions on X1:t that maximizes

P
Z1:t . Figure 3c shows the

validation of one RL-predicted synthesis schedule by subsequent
RMD simulation, showing that the observed time-dependent
phase fraction tracks the RL-NADE prediction closely.

Optimal synthesis schedules and mechanistic insights from RL
The RL agent is trained to learn polices that generate time-
dependent temperatures, and concentrations of H2S, S2 and H2

molecules to synthesize 2H-rich MoS2 structures in least time.
Closer inspection of these RL designed policies provides mechan-
istic insight into CVD synthesis and the effect of variations in
temperature and gas concentration on the quality of the
synthesized product. Figure 4 shows that the RL agent has
learned to generate a two-part temperature profile consisting of
an early high-temperature (>3000 K) phase spanning the first
7–10 ns followed by annealing to an intermediate temperature (~
2000 K) for the reminder of the synthesis profile. This two-part
synthesis profile identified by RL policy is consistent with the
experiments and atomistic simulations, that is high temperature (>
3000 K) is necessary for both the reduction of MoO3 surface and its
sulfidation, whereas the subsequent lower temperature (~ 2000 K)
is necessary for enabling crystallization in the 2H structure, while

Fig. 3 Reinforcement Learning model for synthesis schedule design. a Schematic of the RL-NADE model for optimizing schedules for MoS2
synthesis. b Comparison of structures generated by the RL-designed schedules against randomly generated schedules demonstrates that the
RL-NADE model consistently identifies CVD synthesis schedules that generate highly crystalline products. c Validation of a promising RL-
generated schedule using RMD simulations.
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continuing to promote residual sulfidation. Consistent with
previous reactive and quantum molecular dynamics simulations
of material synthesis, a significantly elevated temperature is
necessary to observe reaction event within the limited time
domain accessible to atomistic simulations44–46,49. It is observed
that the RL agent maintains this two-stage synthesis profile even if
the provided initial temperature at t = 0 ns is low by quickly
ramping up the synthesis temperature to the high-temperature
regime (> 3000 K). The RL agent is also able to predict non-trivial
mechanistic details about phase evolution, including the observa-
tion that the nucleation of the 1T phase precedes the nucleation
of the 2H crystal structure (Fig. 4a, b). Similar trends were observed
in previous mechanistic studies of MoS2 synthesis44.
Another important phenomenon identified by RL agent is the

effect of gas concentrations on the quality of the final product
(Fig. 4b). To analyse the effect of initial gas concentration, we
compute the probability distribution of 2H phase in MoS2 over the
last 10 ns of the simulation for the synthesis conditions proposed
by the RL agent under different initial conditions of gas conc. but
with similar temperature profile. The mean μ2Hð Þ of the pdf is

μ2H ¼ Eτ�πθ
1
10

Pt¼20
t¼20 Zt n2H½ �

h i
, is the expected fraction of the 2H

phase in over the last 10 ns of the synthesis simulation and a
higher value of μ2H provides an indication of the extent of
sulfidation as well as the time required to generate 2H phases. The
RL agent is found to promote synthesis profiles that have low
concentration of gas molecules (particularly non-reducing S2
molecules) at early stages (0–3 ns) of the synthesis, when the
temperature is high. This partially evacuated synthesis

atmosphere promotes the evolution of oxygen from and self-
reduction of the MoO3 surface. This can be clearly observed by
comparing the histogram of 2H phase fractions in structures
generated by synthesis profiles with low initial (i.e. t = 0 ns)
concentration of S2 molecules against those with higher
concentration of S2 molecules (Fig. 4c). Profiles with low initial
S2 concentrations enable greater self-reduction of the MoO3

surface resulting in a significantly higher 2H phase fraction in the
synthesized product at t = 10–20 ns. H2S and H2 molecules, which
are more reducing than S2, do not meaningfully affect the MoO3

self-reduction rate, and the 2H phase fraction in the final MoOxSy
product is largely independent of the initial H2S and H2

concentrations (Fig. 4d, e).

Multi-task RL-CVD: schedules for heterostructure synthesis
The outputs of the NADE-CVD model, each μtþ1 and σtþ1 is only
function of simulation history up to time t. Similarly, each action at
taken by the RL agent is a function only of the input state st , which
is an encoded representation of simulation history up to time t.
Hence, we can use RL + NADE-CVD to design policies for synthesis
over time scales significantly longer than the 20 ns RMD
simulation trajectories used for NADE-CVD training. Figure 5
shows a policy proposed by the RL + NADE-CVD model for a 30 ns
simulation. This extended synthesis profile retains the design
principles such as a two-phase temperature cycle and low initial
gas phase concentrations that were learned from 20-ns trajec-
tories. Further, the longer synthesis schedule also allows the RL
agent to uncover synthesis design rules for improving 2H phase

Fig. 4 Effect of synthesis conditions on products. a A generated synthesis profile starting from low temperature and low gas concentrations.
The RL model quickly ramps up the temperature up to 7 ns to promote reduction and sulfidation and then lowers the temperature to
intermediate values to promote crystallization. This profile generates significant phase fraction of 2H starting from 10 ns. b A generated
synthesis profile starting from high temperature and high S2 concentrations. The RL-NADE model retains the high temperature at early stages
of synthesis and slowly anneals the system to intermediate temperatures after 10 ns. This schedule promotes relatively late crystallization and
2H phase formation. c Synthesis profiles with initially low S2 concentrations yield significantly higher phase fraction of 2H in the final product
compared to profiles containing higher S2 concentrations at t = 0 ns. d, e Synthesis schedules are relatively insensitive to the initial
concentration of reducing species, H2S and H2.
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fraction. The RL profile in Fig. 5 includes a heating-cooling cycle
between 15–30 ns what has previously been shown to improve
the crystallinity and 2H phase fraction in the synthesized
material44.
The RL agent learns promising synthesis profile by adjusting its

policy parameters πθð Þ to maximize a pre-defined reward function,
that corresponds the material to be synthesized. Therefore, the RL
agent can optimize synthesis schedules for other material
structures, including multi-phase heterostructures, by constructing
corresponding reward functions. The following reward function,
rt st; atð Þ maximizes the phase fraction of 1T crystal structure over
the 20 ns simulation.

Objective: argmax
θ

Eτ�πθ

Pt¼20

t¼1
r st; atð Þ

� �
where rt st ; atð Þ ¼ 0:0 if Ztþ1 n1T½ �<0:17

0:35Ztþ1 if Ztþ1 n1T½ � � 0:17

�

(4)

Figure 5c shows a RL-generated schedule to synthesize 1T-rich
structures. The temperature profile is largely consistent with those
observed for 2H-maximized synthesis schedules. The RL generated
gas-phase concentrations optimized for 1T synthesis maximize H2

and H2S concentrations, while minimizing S2 concentrations. This
is consistent with experimental observations, where reducing
environments were observed to produce more 1T phase
fractions63. This is in contrast to schedules optimized for 2H
MoS2, where the concentration of all three gaseous species show

correlated variations (Fig. 4a, b). Figure 5d shows a MoS2 2H-1T
heterostructure configuration generated at the end of MD
simulations according to the RL-generated synthesis schedule.
The synthesized heterostructure consists of an island of 1T-MoS2
embedded in the 2H-MoS2 matrix with an atomically sharp
interface between the two phases. We note here that same RMD
data is used to train the CVD dynamics (NADE) models followed by
training the RL-agent for two different objectives (2H or 1T
maximization) by simply modifying the reward function. This
shows the capability of the model-based offline RL in learning
policies for multiple-tasks/objective without generating
additional data.
Finally, RL-predicted synthesis schedules are also extremely

robust with respect to system-size scaling. Figure 5e shows the
validation of a single RL-generated profile using RMD simulations
on systems of two different sizes – 51 Å × 49 Å and 100 Å × 100 Å.
Figure 5f shows that the observed fractions of 2H and 1T phases in
RMD simulations of both the small and large systems are
consistent with each other over the entire 20-ns simulation range.
Further, these phase fractions are also quantitatively consistent
with the values predicted by the NADE model used in the RL
optimization loop (See Supplementary Figures 4 and 5 and
Supplementary Discussion on accuracy and scale-independence
of NADE-CVD predictions). This capability to optimize synthesis

Fig. 5 Extensions of RL + NADE-CVD Method. a, b A 30-ns long synthesis profile predicted by RL + NADE-CVD retains design principles
about two-phase temperature cycle and low initial gas phase concentrations learned from 20-ns RMD trajectories. In addition, the 30-ns
profile also includes a temperature annealing step between 15–30 ns (arrows) that improves the 2H phase fraction beyond 60%. c RL + NADE-
CVD generated synthesis schedule for optimizing 1T phase fraction. d Output structure from an RMD simulation of the 1T-optimized synthesis
schedule reveals a heterostructure containing a 1T-rich region embedded in the 2H phase. e, f The robustness of RL-generated profiles against
system size-scaling is validated by the identical fractions of 2H and 1T phases in laterally-small and laterally-large systems simulated using
RMD using the same profile.

P. Rajak et al.

6

npj Computational Materials (2021)   108 Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences



schedules independent of system size is useful to extend this
approach to experimental synthesis.

DISCUSSION
We have developed a machine learning scheme based on offline
reinforcement learning for the predictive design of time-
dependent reaction conditions for material synthesis. The scheme
integrates a reinforcement learning agent with a deep generative
model of chemical reactions to predict and design optimum
conditions for the rapid synthesis of two-dimensional MoS2
monolayers using chemical vapor deposition. This model was
trained on thousands of computational synthesis simulations at
different reaction conditions performed using reactive molecular
dynamics. The model successfully learned the dynamics of
material synthesis during simulated chemical vapor deposition
and was able to accurately predict synthesis schedules to generate
a variety of MoS2 structures such as 2H-MoS2, 1T-MoS2 and 2H-1T
in-plane heterostructures. Beyond mere synthesis design, the
model is also useful for mechanistic understanding of the
synthesis process and helped identify distinct temperature
regimes that promote sulfidation and crystallization and the
impact of a reducing environment on the phase purity of the
synthesis product. We also demonstrate how the reinforcement
learning scheme can be extended to predict the outcome of
material synthesis over long time-scales for system sizes larger
than those used for training. This flexibility makes the offline
reinforcement learning based design scheme suitable for optimi-
zation of experimental synthesis of wide variety of nanomaterials,
where the agent does not have to directly interact with the
environment during training and can still learn optimal policy
from the randomly data collected from the environment.

METHODS
Molecular dynamics simulation
All 10000 RMD simulations were performed using the RXMD molecular
dynamics engine64,65 using the reactive forcefield originally developed by
Hong et al.45 that is optimized for reacting Mo-O-S-H systems. RMD
computational synthesis simulations were performed on a 51 Å × 49 Å ×
94 Å simulation cell containing 1200-atom MoO3 slab at z = 47 Å
surrounded by a reacting atmosphere containing H2, S2 and H2S molecules.
During RMD simulations, a one-dimensional harmonic potential is applied
to each Mo atom along the z-axis (i.e., normal to the slab surface) with the
spring constant of 75.0 kcal/mol to keep the atoms in a two-dimensional
plane at elevated temperatures. For each nanosecond of the computa-
tional synthesis simulation, the system temperature is maintained at the
value specified in the synthesis profile by scaling the velocities of the
atoms. MD trajectories are integrated with a timestep of 1 femtosecond
and charge-equilibration is performed every 10 timesteps66.

NADE-CVD
The NADE-CVD consists of an encoder, a LSTM block and a decoder (Fig.
2a). The encoder transforms Xt; Ztð Þ into a 72-dimension vector, et ¼
Fencoder Xt; Ztð Þ . After that, the LSTM layer constructs an embedding of the
simulation history till time t as ht ¼ FLSTM ht�1; etð Þ, where ht is a 128
dimension vector. The decoder than uses the ht to predict the mean and
variance of various phases in MoOxSy surface as μtþ1; σtþ1 ¼ Fdecoder htð Þ.
The encoder and decoder are fully connected neural network of
dimensions 7 × 24, 24 × 48, 48 × 72 and 128 × 72, 72 × 24, 24 × 3,
respectively. The parameters of the NADE-CVD Θð Þ are learned via
maximum likelihood estimate (MLE) of the following likelihood function

L Θ;Dð Þ ¼ Qj¼m

j¼1
PΘ Zj ; Xjð Þ ¼ Qj¼m

j¼1

Qt¼n

t¼2
PΘ Zj

t jZj
1:t�1; X

j
1:t�1

	 

(5)

Here, D ¼ X1
1:nZ

1
1:n

� �
; X2

1:nZ
2
1:n

� �
; ¼ Xm

1:nZ
m
1:n

� �� �
is training dataset of m

RMD simulation trajectories. Further details such as log-likelihood of
training data during training and evaluation of the NADE-CVD on test data
is given in Supplementary Methods.

RL agent architecture and policy gradient
The RL agent, πθ , is constructed using a fully connected neural network
with tunable parameters θ. It consists of an input layer of 128 nodes that is
followed by two hidden layers with 72 and 24 nodes and then an output
layer. The input st to πθ is the embedding of the simulation history,
X1:t ; Z1:tð Þ, generated by NADE-CVD, ht . The output of the RL agent is the
mean μ stð Þ of action at and value function V stð Þ associated with st . The
hyperparameters σ2 associated with the variance of the Gaussian
distribution of actions at is taken as 5. During training, the RL agent
learns the optimal policy that maximize the total expected rewardE (Eq. 1)
using policy gradient algorithm by taking the derivative of E with respect

to its parameter θ, ∇E ¼ ∂Eτ�πθ

PT

t¼1
r st ;atð Þ

� �
∂θ , where trajectory

τ ¼ s1; a1; s2; a2; ¼ sT ; aTf g. This derivate reduces into the following
objective function which is optimized via gradient accent.

∇θE ¼ Eτ�πθ

PTmax

t¼1
∇θ log πθ st; atð Þ Gt � VðstÞð Þ

� �
;whereGt ¼

Pt¼t

t¼1
rt (6)

Here, value function V stð Þ is used as a variance reduction technique in
the calculation of ∇θE via Monte Carlo estimate. Details of the above
derivation and the policy gradient algorithm is given in Supplementary
Methods.

DATA AVAILABILITY
Example profiles and structures from reactive molecular dynamics (RMD) simulations
used for training RL models and the trained NADE model of CVD dynamics are
distributed along with the code.

CODE AVAILABILITY
The deep learning code used in this study can be found at https://github.com/rajak7/
RL_CVD.git.
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