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a b s t r a c t

We have developed PND, a differential equation solver software based on a physics-informed neural
network (PINN) for molecular dynamics simulators. Based on automatic differentiation technique
provided by PyTorch, our software allows users to flexibly implement equation of motion for atoms,
initial and boundary conditions, and conservation laws as loss function to train the network. PND
comes with a parallel molecular dynamic engine in order to examine and optimize loss function
design, and different conservation laws and boundary conditions, and hyperparameters, thereby
accelerating PINN-based development for molecular applications.
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1. Motivation and significance

Molecular dynamics (MD) simulation is a vital tool in physics,
chemistry, biomedical and materials research, because it provides
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tomistic-level insights into material processes [1–3]. While the
ize of the simulation system and attainable temporal scale are
sually in trade-off, efficient algorithms based on divide-and-
onquer (DC) approach [4] have enabled multi-trillion particle
imulations [5]. On the other hand, extending the accessible
emporal scale by atomistic simulations has been an active re-
earch topic. Various accelerated MD methods, such as hyperdy-
amics and parallel replica method, have successfully increased
he accessible temporal scale by several orders of magnitude
6]. However, these time-accelerated algorithms often rely on
pecific characteristics of the potential energy surface (PES) of
ach material, thus limiting their applicability to broader prob-
ems. In MD simulation, Newton’s equation of motion, a multi-
imensional coupled ordinary differential equation (ODE), is in-
egrated by a numerical solver to obtain the trajectory of atoms.
ime-discretization unit ∆t for numerical integration is dictated

by physical properties of the target system, such as pressure,
temperature and vibrational frequency. A general solver that
increases ∆t in a material-oblivious manner has a great potential
to enhance modeling capability.

Due to remarkable successes in machine learning (ML), neural
network (NN) is attracting great attentions as a novel differential
equation (DE) solver. Kadupitiya et al. [7] used recurrent neural
networks (RNN) to predict atomic trajectories instead of directly
solving equation of motions of atoms. RNN is suitable to find
patterns in sequence data such as particle motion subjected to
a harmonic interaction and atoms oscillate at crystal lattice posi-
tions as demonstrated in their work. Another promising approach
is physics-informed neural network (PINN), a branch of deep
learning that has been attracting great attention as a DE solver
recently. Unlike complex network architectures like in RNN, PINN
employs rather simple network architecture such as a few layers
of feedforward network but augmented by physical laws. With
PINN, artificial neural network is trained by minimizing the dif-
ference between the given equation of motion and the predicted
atomic trajectory in phase space as the loss function. Unlike RNN,
PINN does not require preexisting pattern in the target system
and is more suitable for materials in liquid or gas phases.

Dissanayake et al. [8] have proposed a NN-base DE solver,
in which physics laws (i.e. target DEs together with initial and
oundary conditions) are encoded as NN training framework.
he physics-informed NN (PINN) has been successfully applied
o solve many DEs, including heat equation [9], Burger equation
10], Navier Stoke’s equation [11], Schrödinger equation [12],
amilton’s equation of motions [13] and other applications [14–
6]. Employing DC approach, a recently proposed parallel PINN
17] introduces a light-weight, coarse-grained DE solver on top
f multiple fine-grained solvers in smaller time segments that
re solved concurrently to achieve larger ∆t with negligible run-
ime increase due to model training. Growing developments of
INNs, such as variational PINNs [18] and nonlocal PINN [19],
old a great promise for DE-based modeling for scientific and
ngineering applications.
Despite these promising developments, PINN for MD simula-

ions is in its infancy, for which enormous developmental work
s required. For example, simulated systems so far are relatively
mall, and applicability of PINN to practical MD simulations re-
ain unclear due to the huge hyper-parameter space. To this
nd, we have developed a simulation software PND, which is a
ortable, efficient and easy-to-use PINN-MD simulation software
ased on C++, PyTorch C++ Frontend, and Message Passing Inter-
ace (MPI) library. PND comes with a scalable parallel MD engine
hat allows users to examine different model training scenarios,
oss functions and hyperparameters, thereby facilitating rapid
evelopment of PINN-MD algorithms.

2. Software description

The core of the PND software is developed PyTorch C++ Fron-
tend, providing users with high-performance, low latency and
multithreading support, as well as Fortran and C binding capabil-
ity. These features are particularly suitable for many leadership-
scale high performance computing (HPC) software such as RXMD
[20] and QXMD [21] to incorporate PND in their framework.
Equipped with the automatic differentiation capability, PND al-
lows users to implement standard initial and boundary condi-
tions, as well as many forms of physics-based constrains includ-
ing conservation laws for energy and linear momentum, and the
principle of least action [22]. Physical law is implemented as the
loss function to improve model prediction quality and achieve
a faster convergence of the loss function. For example, the law
of linear momentum conservation is implemented as A(

∑N
i=1 pia)

where pia is the momentum of ith atom in Cartesian coordinate
α, A is its weight in the total loss function. These constraints may
be used to guide model training as heuristics to achieve a faster
convergence of the loss function. To reduce the initial barrier
for users to develop and integrate PND into their MD software,
we provide a scalable MD engine and demonstrate a boundary-
condition problem solver with many constraints. Users can define
the loss function to evaluate mean squared error (MSE), which is
essentially the set of DEs governing the evolution of the system
and constraints from boundary conditions. Solution of the DE
is obtained by minimizing the MSE during ANN training, see
Fig. 1. By inheriting the base class PND into the user’s workspace
(referred as ScratchPad), users can implement the laws for system
in the form of a PDE through the interface of the superclass.
The feed forward NN predicts atomic positions and velocities,
which get passed to the MD engine to calculate terms which fit
into the systems PDE such as potential energy, total momentum.
Implementing the PDE takes place by overriding the loss function
method of the base class, thereby easily integrating the MD
Engine layer and PINN training layer in their workspace. The MSE
calculation uses the sum of the mean-squared PDE residuals with
automatic differentiation and the mean-squared error in initial
and boundary conditions. Training of the PINN is carried out by
minimizing the mismatch with respect to the NN parameters.
For the given NN, t represents the time vector for which MD
states need to be determined, σ the activation function and Q⃗
the predicted system states over t.

2.1. Directory structure and source code organization

In this section, we describe main classes and functions that
support the core functionalities of PND. PND software is orga-
nized in three directories – MD_Engine, Source and Example.
The header and source files to train NN and solving equations
of motion are stored in Source directory. MD_Engine directory
contains a scalable MD software (pmd), which may optionally
be replaced by user’s own MD engine. The ScratchPad class
inherits the PND class and exposes member functions for users to
customize the loss function. The ScratchPad source code is stored
in Example directory to demonstrate techniques to perform MD
simulation. An illustrative example is presented in Section 4.

Below, we provide a list of the key classes, member functions and
source codes with their brief explanation.

Source/pnd.in The number of neurons in the NN and training
options such as epochs and learn rate are specified in this file.

Source/pnd.cpp: This source code defines functions which the
user can use to structure and train a NN for the purpose of
solving DE’s closely resembling an MD system over time steps.
The functionality of the source code is encapsulated into the
2
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Fig. 1. Schematic of PND workflow in molecular dynamics application.

ND class. By instantiating this class, users can access instance
ariables to store the training parameters. Instance methods are
esigned to update the instance’s training parameters, thus only
ne instance of the class may be used for all training epochs.
he PND class exposes virtual functions that implements the loss
unction. These functions are meant to overwritten by the user
llowing flexible loss function designs depending on users’ needs
nd simulation system.

ource/pnd.hpp: A header file with declarations for functions and
ariables of the class that gets defined in Source/pnd.cpp.

D_Engine/pmd.cpp: In this source code, we define the class
tom and Subsystem. Collectively, these classes provide func-
ions and data structures to help with spatial decomposition and
apping the subsystem onto processors.

D_Engine/pmd.hpp: Header file with declarations for classes
hat are defined in MD_Engine/pmd.cpp.

D_Engine/pmd.in: Input parameters of MD system are defined
n this file.

xample/ScratchPad.cpp: A sample implementation to interface
with the class — PND as well as the MD engine.

CMakeLists.txt: PND employs CMake build system. User needs to
add the directories containing the MD and PND code as a search
path for include files of our target.

2.2. Loss function, optimizer, and training driver functions

The derivative of the loss function with respect to the net-
work input parameters are passed to the optimizer function
UpdateParamsNadam before the weights and biases are adjusted
to train the network. PND provides a predefined optimizer that
implements the Nestrov and Adam algorithm (NADAM) [23] to
train the NN. Advanced users familiar with PyTorch may re-
place this function with various optimizer algorithms provided
natively under the torch.optim class. Orchestrating this cycle of
the loss calculation and network parameter optimization over
training epochs is handled by the mainTrain function. The initial
nd boundary conditions as well as the systems energy from
round truth are passed down to this function as a tuple and
onsequently made available to the function calculating the MSE.
The loss function Loss (params, icfs, energy) takes the NN

arameters (params), initial and boundary conditions (icfs) and
arious physical constrains, including the total energy (energy).

loss function, which incorporates physically-informed constraints
such as initial and boundary conditions and the conservation laws
for energy and momentum. The returned value is the derivative of
the error defined with respect to the params. For d-dimensional
configuration space for T time steps, the initial position vector
is represented by q⃗0, the final position vector is represented by
q⃗T , the initial velocity vector is represented by v⃗0 and the final
velocity vector is represented by v⃗T . A system containing Np
atoms is represented by a vector of size D = 2 × d × Np. Output
of the NN is represented by Q⃗ (params) ∈ RD×T for all time
steps, or Q⃗ (params, t) for the tth time step. We use a compact
data layout such that the first half outputs of the NN Q⃗1(params)
are vectors for the positions and the second half Q⃗2(params)
are the velocities. We found that a pre-training step using a
rough estimate of atom trajectory, such as linear interpolation of
positions and velocities helps the model training step. The use
of the pre-training step also provides a better control and check
to avoid unwanted atomic positions such as overlapping atom
positions before entering the main training step. Eqs (1) and (2)
show an example of pre-training and main-training loss functions
in a boundary-condition problem.

MSEpre train
=

(
−→
Q1 (params, 0) − q⃗0

)2

+

(
−→
Q1 (params, T ) − q⃗T

)2

+

(
−→
Q2 (params, 0) − v⃗0

)2

+

(
−→
Q2 (params, T ) − v⃗T

)2
(1)

MSEmain train
=

(
−→
Q1 (params, 0) − q⃗0

)2

+

(
−→
Q1 (params, T ) − q⃗T

)2

+

(
−→
Q2 (params, 0) − v⃗0

)2

+

(
−→
Q2 (params, T ) − v⃗T

)2

+ (predictedenergy − energy)2 (2)

3. Illustrative example

In this section, we present an illustrative example of PND
use case for a simple face center cubic (FCC) crystal described
arameters of the NN are trained by minimizing a user-defined by Lennard-Jones (LJ) interatomic potential [1]. We evaluate the

3
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Fig. 2. Time evolution of energies by PND (solid lines) and ground-truth MD (markers) for 32 Ar atoms. Total, potential and kinetic energies are shown in blue,
reen and magenta, respectively. All three energies predicted by PND match well with the ground-truth MD simulation. (For interpretation of the references to
olor in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. (a) and (b) are trajectories of randomly selected two atoms. Red and blue trajectories are taken from ground-truth MD simulation and PND, respectively.
For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

ND predictive performance by comparing the energies and atom
rajectories of the simulated and predicted MD systems.

The simulation was carried out for Argon atoms, starting from
CC-crystalline atomic positions with density 0.8 and random
elocities corresponding to an initial temperature of 0.7 and using
he time step of 0.01. All parameters are in normalized LJ unit.
ig. 2 demonstrates that PINN-MD conserves the total energy,
hile closely reproducing the ground-truth kinetic and potential
nergies obtained by a conventional ODE solver over the entire
ime steps. Fig. 3 shows a few typical atom trajectories, which
emonstrate close match to the ground-truth trajectories. An
nput file of this illustrative example is provided in the source
epository within the MD_Engine directory.

. Impact

The design goal of PND is to facilitate development of novel
INN-based algorithms in molecular modeling software that may
ealize larger temporal resolution per single model training than
raditional time integrator such as velocity-Verlet algorithm. The
se of neural network to solve differential equations has opened
p a novel research area and shown its great potential in many

engineering fields. It is also expected to play an important role
in materials simulation such as a novel time integration solver
in MD. A number of studies [17,22,24] have proven that the
prediction accuracy and algorithmic concurrency may be further
enhanced by exploiting the conservation laws specific in each
simulation. However, the potential of the PINN-MD approach has
not been fully unleashed due to the inevitable large degrees-of-
freedom in MD simulations, and more importantly, the lack of
an open-source software that allows simultaneously examina-
tion the effect of physic-informed loss function, model training
performance, and model prediction accuracy. The PND software
satisfies the urgent demand and serves as a crucial role for the
development of PINN-based molecular simulation methodology.

5. Conclusions

In summary, we have developed PND software, an opensource
development platform of PINN-based ODE solvers for MD sim-
ulations. In PND, a neural network is trained to directly predict
atomic position and momentum on prescribed time grids in-
stead of performing conventional time-stepping algorithms. PND
comes with the flexible Scratchpad design and a parallel MD
4
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imulation engine, allowing PND users to implement custom loss
unctions, initial and boundary conditions, and conservation laws
est suited for their application without requiring a third-party
pplication. Employing PyTorch C++ Frontend for the core of the
oftware, PND supports native multithreading, low-latency com-
utation, GPU offloading, and Fortran and C binding capability,
hus enjoying the full-fledged ML features without sacrificing
erformance. The system setup and input parameters are pro-
ided with the code on the Github repository https://github.com/
SCCACS/PND.
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