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ABSTRACT
First-principles molecular dynamics (FPMD) simulations are highly accurate, but due to their high calculation cost, the computational scale is
often limited to hundreds of atoms and few picoseconds under specific temperature and pressure conditions. We present here the guidelines
for creating artificial neural network empirical interatomic potential (ANN potential) trained with such a limited FPMD data, which can
perform long time scale MD simulations at least under the same conditions. The FPMD data for training are prepared on the basis of the
convergence of radial distribution function [g(r)]. While training the ANN using total energy and atomic forces of the FPMD data, the error
of pressure is also monitored and minimized. To create further robust potential, we add a small amount of FPMD data to reproduce the
interaction between two atoms that are close to each other. ANN potentials for α-Ag2Se were created as an application example, and it has
been confirmed that not only g(r) and mean square displacements but also the specific heat requiring a long time scale simulation matched
the FPMD and the experimental values. In addition, the MD simulation using the ANN potential achieved over 104 acceleration over the
FPMD one. The guidelines proposed here mitigate the creation difficulty of the ANN potential, and a lot of FPMD data sleeping on the hard
disk after the research may be put on the front stage again.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5116420., s

I. INTRODUCTION

The large-scale and long time scale first-principles molecular
dynamics (FPMD) simulations are not practical, considering their
large computational complexity [more than O(N3) for the number
of atoms N]. For the system consisting of several hundred atoms,
several picosecond simulations would be standard, but it is difficult
to get enough statistics on this scale. In particular, in order to obtain

the convergence of physical quantities such as specific heat and
thermal conductivity calculated from energy fluctuations, it is neces-
sary to perform the MD simulation for quite a long time.1 Therefore,
it is the mainstream to employ the classical MD simulation instead of
the FPMD method, where an FP potential is replaced by an empir-
ical interatomic potential with low computational complexity with
sacrificing precision. Under such circumstances, an artificial neu-
ral network (ANN) has been proposed as a promising method for
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resolving this issue. It uses the universal approximation of the ANN
to learn FPMD simulations as training data to construct an empirical
potential (referred to as an ANN potential).2 Since the computa-
tional cost of MD simulations using the ANN potential (referred to
as ANN-MD) is basically O(N), a high-speed MD simulation is pos-
sible while retaining the accuracy of the FPMD one. Applications
to MD have been not only to covalent crystal bulks3 and ion crys-
tal bulk/cluster4,5 but also recently to systems with a high degree of
freedom, such as water,6,7 aqueous electrolyte solutions,8 and solid-
liquid interfaces,9 where proton transfer between molecules, which
was difficult with the conventional empirical potentials, is expressed
with the FPMD precision. The ability of ANN to imitate the FP accu-
racy can be exploited in many research fields, for example, methods
and program packages for rapidly predicting the properties of a wide
range of molecules that can be applied to chemical structure search
and drug screening have been actively developed.10,11 As understood
from these active research studies, the ANN (or ANN potential)
figures prominently in the physical chemistry field.

Furthermore, recently, the development of interatomic poten-
tial with high transferability by active learning technology is also
progressing.2,12–14 Using the active learning, it might be possible to
achieve efficient training of the ANN potential by quantifying uncer-
tainty of some important physical quantities from the output of the
potential (for example, estimation error of total energy2 or atomic
force14) and selecting data and algorithm to minimize the value.

Meanwhile, what we would like to mention here is what we
should keep in mind for creating the ANN potential when we have
FPMD data with specific conditions (e.g., hundreds of atoms and
several picoseconds). Note that this study deals with robust poten-
tials, at least under the specific conditions. Due to the large com-
putational complexity, the studies conducted using FPMD simula-
tions would be basically limited to specific temperature, pressure,
and number of atoms as well as short time scale. There may be cases
that one is interested only in specific conditions (e.g., temperature,
pressure, and density) tailored to the experimental conditions or the
standard condition if one assumes in vivo circumstances. In such
cases, one often wants to investigate the atomic dynamics beyond
the time domain that FPMD simulations can reach. An example is
the calculation of the above-mentioned physical quantities such as
the specific heat and thermal conductivity which need a long time to
converge. Therefore, if ANN potentials can be created from the lim-
ited data, it will be possible to obtain more findings than those from
only FPMD results. In addition, accumulation of such know-how is
important because FPMD data being saved after the studies can be
utilized again. We also recognize that the active learning above14 is
effective to create transferable potentials. However, in this method,
searching the state space comprehensively by changing the temper-
ature and the structure variously is necessary. Unless one is familiar
with machine learning, it is difficult to judge whether or not the
scheduling of exhaustive search is sufficient. On the other hand, if a
robust ANN potential is created under the same specific conditions
as the training data, it can be used for the starting point (template)
with the active learning. Furthermore, when performing ANN-MD
simulations under different conditions from the training data, with
uncertainty defined by active learning, it seems possible to inves-
tigate whether physicochemical information that the training data
includes can access the various conditions. Such an analysis method
may be useful to understand the systems with phase transitions. (The

prospect of application to structural phase transition is described in
Sec. VI of the supplementary material.)

Here are the four empirical guidelines that we consider
important:

1. Prepare FPMD data as training data (including total energy,
atomic force, pressure, and atomic Cartesian coordinates) so
that the radial distribution functions [g(r)] are converged.

2. Not only total energy but also atomic force should be repro-
duced while training the ANN.

3. The error of pressure must always be monitored during train-
ing.

4. Prepare additional FPMD data to correct interaction between
two atoms approaching each other.

The issue 1 is a criterion to determine whether training data
are sufficient (e.g., we prepared 1000-step FPMD data). If g(r) is
appropriately acquired, it indicates that detailed information on
the local structure determined by the interaction between atoms
is obtained. It would be thus physically relevant to judge that the
FPMD data with g(r) being converged are sufficient as training
data.

Next is concerned with the issue 2. Recently, there are an
increasing number of studies that have proposed ANN potentials
trained with not only total energy but also atomic force. We also
consider that training with atomic force is essential to achieve the
training with precision of both global (i.e., total energy) and local
aspects. However, more important thing is the issue 3. As described
later, even if the prediction of total energy and atomic force shows
good accuracy, the prediction of pressure is often poor. The pre-
dicted pressure does not match that of the FPMD data if both
global and local precisions of the ANN potential are not sufficient.15

That is why monitoring the pressure error in training must be
essential.

However, there is still a problem when considering the pres-
sure error, which is a failure that occurs in ANN-MD simulations
due to the insufficient reprehensibility of interatomic repulsion. We
overcome it by adding a small amount of FPMD data to correct the
interaction between atoms that are close to each other. Although the
additional FPMD data may be needed in this way, one can create a
robust ANN potential capable of performing long time scale ANN-
MD simulations (e.g., nanosecond order) under the same conditions
as FPMD data.

These four guidelines are used for the improvement of the ANN
potential creation code, the Atomic energy network (Aenet) devel-
oped by Artrith and Urban.16 In addition, we use our own code
QXMD17,18 to perform FPMD and ANN-MD simulations.

This paper attempts to create ANN potentials for a superionic
conductor, α phase of Ag2Se (α-Ag2Se) according to the guidelines
above. Ag2Se is a chalcogenide recently attracting attention as a ther-
moelectric material.19–21 An empirical interatomic potential other
than the ANN potential has already been proposed for α-Ag2Se,
which shows good accuracy with respect to the diffusion coefficient
of Ag and the g(r) around Se.22 However, the g(r) between Ag-Ag
largely deviates from the FPMD simulation and experiment.22 This
discrepancy is a hindrance to clarify the atomic mechanism of the
spike of specific heat and thermal conductivity reported near the
phase transition temperature (Tc = 406 K) between low tempera-
ture β phases (β-Ag2Se).20,23,24 As described above, since a long time
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scale MD simulation is required to calculate the specific heat and
thermal conductivity, we create a robust ANN potential that can
reproduce the structure of Ag correctly and calculate the specific
heat with respect to α-Ag2Se.

II. METHOD OF CALCULATION
A. Artificial neural network (ANN)

Here, a general method of creating the ANN potential is
described. The feedforward neural network (FFNN) is the simplest
type of ANN,25,26 where only forward propagation of information
from input nodes to output nodes is allowed. It has been applied to
MD simulations for more than a dozen years.27–29 Figure 1 shows
the structure of a simple FFNN comprising an input layer, one or
more hidden layers, and an output layer. The nodes of each layer are
connected to the nodes in the adjacent layers by weight parameters,
which are determined by fitting FPMD results. The value ylj of node
j in layer l is given by

ylj = f
l
j (B

l
j +∑

i
wk,l

l,j ⋅ y
k
i ), (1)

where wk,l
l,j is the weight parameter from node i in layer k to node

j (=i + 1) in layer l (=k + 1), yki is the input value from the previ-
ous layer k, and Bl

j is the bias weight, which is used as an adjustable
parameter to shift the activation function f lj . The activation function
used in this study is given by

f l(x) = atanh(bx), (2)

FIG. 1. Structure of a simple feedforward neural network. The value in the output
layer (green) is obtained as a function of the input values x in the input layer
(blue). There are several hidden layers comprising nodes (red). The black arrows
represent the weight parameters wk,l

l,j . The bias weights Bl
j (purple dashed arrows)

are used as adjustable parameters to shift the activation function.

where a = 1.7195 and b = 2/3. This activation function is the mod-
ified hyperbolic tangent function to prevent the vanishing gradient
during back propagation proposed by Lecan et al.30

In this study, we employ the FFNN comprising two hidden
layers with 20 nodes for Ag and Se.

B. Symmetry functions
The total energy predicted by the ANN potential EANN is a sum

of the atomic energies,3

EANN
=

Natom

∑

i
Ei, (3)

where Ei is the energy associated with the ith atom and Natom is the
total number of atoms in the system. Figure 2 shows a schematic of
the ANN-potential construction. At first, the Cartesian coordinates
{Ri}, which are obtained by the FPMD simulation, are transformed
into a set of symmetry function values Gi associated with each atom.
These values depend on the positions of all atoms in the system.
After the Gi values are used as the input values x for the FFNN
(Fig. 1), the atomic energies Ei are obtained as the output values.
The total energy EANN is then obtained by the sum of Ei, as shown in
Eq. (3).

Symmetry functions were introduced by Behler31 and have
been used for the construction of various ANN potentials32,33 and
other machine-learning tasks.34 There are two types of symmetry
functions: a radial function Grad

i and an angular function Gang
i . The

radial function Grad
i is given by

Grad
i =∑

j
e−η(Rij−Rc)

2

⋅ fc(Rij), (4)

where Rij = |Rij| is the distance between the ith and jth atoms, η
and Rs are adjustable parameters, and f c(Rij) is the cutoff function
defined as

fc(Rij) =

⎧
⎪⎪
⎨
⎪⎪
⎩

0.5[cos( πRij

Rc
)] (Rij ≤ Rc)

0 (Rij ≥ Rc)
, (5)

FIG. 2. Schematic of ANN potential construction.3 The Cartesian coordinates {Ri }
(blue) are transformed into a set of symmetry function values Gi (red) associated
with each atom. These values depend on the position of all atoms in the system
indicated by the gray arrows. The Gi values are used as the input values for the
FFNNs, and the atomic energies Ei (green) are obtained as the output values. The
total energy EANN (yellow) is obtained by summing Ei .
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where Rc is the cutoff distance. The angular function Gang
i is

expressed as

Gang
i =

all

∑

j,k≠i
(1 + λcosθijk)

ζ
⋅ e−η(R

2
ij+R

2
ik+R2

jk)

⋅ fc(Rij) ⋅ fc(Rik) ⋅ fc(Rjk), (6)

where θijk is the angle between Rij and Rik with λ, ζ, and η being
adjustable parameters.

The creation method of the symmetry functions used in this
study and the list thereof are shown in Sec. I of the supplemen-
tary material. The parameters of the symmetry functions are listed
in Tables S I and S II of the supplementary material. We processed
the symmetry functions used in the previous study that created ANN
potentials for TiO2 crystals by Artrith and Urban16 and defined 56
of those for Ag and Se.

C. FPMD simulation for preparing training data
FPMD simulations are carried out using a highly paral-

lelized plane wave DFT program, QXMD,17,18 which calculates
the electronic states using the projector-augmented-wave (PAW)
method.35,36 The generalized gradient approximation (GGA) is used
for the exchange-correlation energy.37 The plane-wave cutoff ener-
gies are 20.0 and 200.0 Ry for the electronic pseudowave func-
tions and pseudocharge density, respectively. The projector func-
tions are generated for 4d, 5s, and 5p of Ag and 4s, 4p, and 4d
of Se.

To prepare training data of α-Ag2Se, the system with 256 Ag
and 128 Se atoms in a cubic supercell is used under periodic bound-
ary conditions. The number density of atom (0.0461 Å−3) is taken
from the experiment.38 The corresponding size of the supercell is
20.271 Å. The NVT ensemble by the Nosé-Hoover thermostat39

is employed for FPMD simulations. The temperature is set to be
500 K. The equations of motion are solved via an explicit reversible
integrator40 with a time step of Δt = 2.42 fs.

1000 FPMD steps in the equilibrium state that g(r) converged
were used for training of the ANN potential. As mentioned in Sec. I
as one of the guidelines, this is because the convergence of the g(r)
was selected as the indicator for determining the amount of train-
ing data. We believe that this criterion is physically relevant, as the
convergence of g(r) guarantees that the local structure is well char-
acterized. Section II of the supplementary material explains that g(r)
converged with 1000 steps of FPMD data. Ith step data include total
energy (EFPMD

I ), atomic forces ({FFPMD
I,i }), pressures ({PFPMD

I,i }), and
Cartesian coordinates ({Ri}). Movie 1 of the supplementary material
shows the atomic dynamics during the 1000 steps, where the pink
and yellow spheres represent Ag and Se atoms, respectively. For con-
venience, the dataset of total energies is hereafter referred to as DE
and that of atomic forces as DF .

However, a mean square displacement (MSD) observed for the
diffusion of Ag was not converged due to the insufficient sampling.
We performed another 4000-step FPMD simulation to converge the
MSD. There was thus no guarantee that the MSD yielded by the
ANN potential trained with 1000-step FPMD data matched that
of the FPMD simulation. The comparison result is described in
Sec. III.

D. Physical quantities calculated by ANN-MD
simulations for α-Ag2Se

As stated in Sec. I, the current issue with the conventional
empirical interatomic potential of α-Ag2Se is that the structure of Ag
is not consistent with those of FPMD simulation and experiment.22

To our knowledge, since the experimental data of g(r) at 500 K have
not been reported yet, g(r) of Ag–Ag, Ag–Se, and Se–Se calculated
from our FPMD simulation are compared to those yielded by ANN-
MD ones in Sec. III. The agreement means that this issue can be
resolved.

In addition, since the diffusion of Ag must be described as well
to confirm the reproduction of its superionic behavior, the MSD is
calculated to compare the results of FPMD and ANN-MD simula-
tions. We also compare the diffusion coefficient of Ag at 500 K38,41

by calculating the slope of the MSD.
An experimental value of constant pressure specific heat (Cp)

at 500 K has been reported.24 By performing a long time scale ANN-
MD simulation, the convergence value of Cp is evaluated.

The calculation of physical quantities above was performed
in the equilibrium state of ANN-MD simulations with the NVT
or NPT ensemble. In order to realize these ensembles, specifi-
cally, this study employed the Nosé-Hoover thermostat39 and the
Parrinello-Rahman-type barostat with an invariant variable cell
shape method.42 All the ANN-MD simulations conducted in this
study started from an atomic structure in the equilibration stage
of the FPMD one. The first 1000 ANN-MD steps were omitted as
the equilibration stage, and the subsequent data were used to calcu-
late the physical quantities above. Thus, note that the 1001th step
is shifted to the first step. The equilibration process of ANN-MD
simulations is described in Sec. III of the supplementary material.

E. Cost function and training termination conditions
We first defined a cost function L to train the ANN, which con-

sists of not only the loss function of total energy (first term) but also
those of atomic force (second term) and pressure (third term),

L = pE
2

1
NI

NI

∑

I
(EFPMD

I − EANN
I )

2

+
pF
2

1
NI

NI

∑

I

1
3Natom

Natom

∑

i
(FANN

I,i − FFPMD
I,i )

2

+
pP
2

1
NI

NI

∑

I

1
6

6

∑

j
(PANN

I,j − PFPMD
I,j )

2
, (7)

where NI is the number of FPMD training data. The factor 6 of
the pressure term means that the number of independent degrees
of freedom of the pressure tensor. {FANN

I,i } and {PANN
I,j } is the atomic

forces and pressures predicted by the ANN potential and is derived
by the derivatives of Ith total energy EANN

I with respect to the
Cartesian coordinates ({Ri}) and the cell tensor h, respectively.
Section IV of the supplementary material describes mathematical
forms of {FANN

I,i } and {PANN
I,j }. Since the three loss functions differ

in dimension and size, pE, pF , and pP are introduced as adjustment
parameters. As the cost function of Aenet16 consists of only the first
term, we added the second and third terms. Note that Zhang et al.
have already employed the same cost function,15 and defined the
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third term using the virial tensor, but we called the term pressure
term. This is just because we wanted to emphasize the word “pres-
sure,” not “virial,” though we implemented it on Aenet in the form
of virial (see Sec. IV of the supplementary material).

However, this cost function is relatively useless since one needs
to establish the adjustment method of the three parameters above.
As we will explain the reason in Subsection III A, total energy
and atomic force loss functions are used for training ANN poten-
tials, but not the pressure loss function in this study. Instead,
importantly, the error assessment for pressure is conducted while
training.

Two cases are tried here: (1) training with only DE as the
previous studies and (2) training with both DE and DF (see
Subsection II C for the meaning of these symbols). The training of
the ANN is performed by the Limited memory Broyden–Fletcher–
Goldfarb–Shanno for Bound constrained optimization (L-BFGS-B)
method43 implemented in Aenet. The number of epochs is set to be
2000 for all training cases. The details of the time spent on training
and the volumes of training data are described in Sec. V of the sup-
plementary material. Here, 95% and the remaining 5% of all data are
randomly used for training and testing, respectively. Hereafter, these
are called “Train” and “Test” datasets, respectively.

In Sec. III, the error evaluation of ANN potentials is not in the
form of Eq. (7). Instead, dividing into total energy, atomic force,
and pressure loss functions, the root mean square error (RMSE)
calculated from each loss function and correlation coefficient (CC)
between the reference values of FPMD data and predicted ones by
an ANN potential is employed. In case (1) described above, the con-
vergence of all the RMSE values is used as the training termination
condition. In case (2), on the other hand, the additional condition
that all CCs are 0.99 or more is set.

F. FPMD data for correction (D Cor)
As the reason is described in Sec. III, in fact, with only the

training data prepared in Subsection II C, one can probably cre-
ate an incomplete potential. In MD simulations with an ensemble
such as NVT, there is a very low probability (but it may happen) that
two atoms approach extremely close. Since the training data contain
very few such extreme incidents, ANN potentials are created with
imperfect short-range potential surfaces.

In order to resolve this issue, additional FPMD data contain-
ing many extremely short interatomic bonds are prepared with the
atomic coordinates in which a side of the cubic supercell is reduced
to 17.5 from 20.271 Å. These data are called DCor hereafter. The rea-
son for 25% reduction in the length of the side is that a lot of target
interatomic distances are available. The interatomic bond distances
targeted here are those by furthermore 0.1 Å smaller than the short-
est distances of Ag–Ag, Ag–Se, and Se–Se included in the training
data (i.e., 2.4, 2.2, and 3.0 Å, respectively). However, it should be
noted that this configuration is considered to be far from the equi-
librium state, and, therefore, the potential accuracy would be worse
if only the data obtained from this configuration are included in
the training. This is because the respective potential surfaces cre-
ated from the data above and the original training one may not
be connected. We use two different optimization methods that for
the atomic structure to get more of the data of interest and that
for cell size to get closer to the original size. In the former case of

FIG. 3. The number of specific interatomic distances present in DCor as func-
tions of cell size and pressure. The black, red, and green lines represent those
between Ag–Ag, Ag–Se, and Se–Se, respectively, where the interatomic bonds
within distances of 2.4, 2.2, and 3.0 Å were counted.

structural optimization (referred to as Ostr), only the atomic coor-
dinates are moved while the cell size remains fixed. At this time,
since the distance between atoms does not greatly increase, it is pos-
sible to obtain target data of short interatomic distances. On the
other hand, in the latter optimization of the cell size (referred to
as Ocel), only the cell size is varied, and the relative atomic coor-
dinates are thereby scaled. This is used to approximate the original
cell size. Both optimizations were performed by the quasi-Newton
method based on the BFGS algorithm implemented in our QXMD
code.17,18 We performed Ostr and Ocel alternately 10 times, but the
second Ostr was stopped by 5 times. The overall optimization pro-
file was therefore Ostr(10 times)–Ocel(10 times)–Ostr(5 times). The
total number of optimization steps was 25. The cell size resulted
from 17.5 to 19.3 Å. The reason for having stopped optimization
at 25 is that the interatomic distances between Ag–Ag, Ag–Se, and
Se–Se present in the system became greater than 2.4, 2.2, and 3.0
Å, respectively. DCor was thus consisted of the 25 optimization-step
data. The change in the number of Ag–Ag, Ag–Se, and Se–Se inter-
atomic distances within 2.4, 2.2, and 3.0 Å, respectively, as functions
of a side of the system and pressure in DCor is shown in Fig. 3. At
least 50 interatomic distance data for each were available with this
operation.

III. RESULTS
A. ANN potential without D Cor

Here, we will describe the results of the trained ANN potential
using the FPMD data of α-Ag2Se at 500 K without DCor. We will
illustrate that the ANN potential is incomplete but yields g(r) and
MSDs consistent with those of our FPMD simulation. In addition,
the results of ANN potentials trained with only DE and both DE and
DF (referred to as DE ,F) are shown.

The profile of RMSEs and CCs of total energy, atomic force,
and pressure during 2000 training epochs is shown in Fig. 4. Since all
converged at 2000 epoch, Tables I and II show these RMSE and CC
values at the epoch. In the conventional training with only DE, the
RMSE and CC of the total energy could be predicted extremely accu-
rately. On the other hand, the CC of atomic force remained at about
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FIG. 4. The profiles of [(a) and (b)] CCs and [(c)–(e)] RMSEs of total energy, atomic
force, and pressure during 2000-epoch training of ANN potentials with DE and DE ,F
for Train and Test datasets. The top figure shows the change in the value of the
coefficient of the loss function of atomic force pF while training with DE ,F .

78% agreement for both Train and Test datasets, which was not a
good prediction. The error of 1.8 GPa occurred in pressure even for
the Train dataset as well. When an ANN-MD simulation under the
NVT ensemble with the same supercell size as the FPMD one was
performed, the structure could not be maintained from the begin-
ning. One can check this in Movie 2 of the supplementary material.
In addition, there are conserved quantities in energy unit in the MD

TABLE I. RMSEs and CCs of total energy (Energy), atomic force (Force), and
pressure for Train and Test datasets at 2000 epoch of the ANN potential trained
with DE .

Root mean square error (RMSE)

Energy (meV/atom) Force (eV/Å) Pressure (GPa)

Train Test Train Test Train Test
0.0060 0.0215 0.2634 0.2618 1.7392 1.8093

Correlation coefficient (CC)

Energy (%) Force (%) Pressure (%)

Train Test Train Test Train Test
99.999 99.996 77.702 77.821 96.242 94.518

TABLE II. RMSEs and CCs of total energy (Energy), atomic force (Force), and pres-
sure for Train and Test datasets at 2000 epoch of the ANN potential trained with
DE ,F .

Root mean square error (RMSE)

Energy (meV/atom) Force (eV/Å) Pressure (GPa)

Train Test Train Test Train Test
0.2754 0.2555 0.0480 0.0482 0.0420 0.0555

Correlation coefficient (CC)

Energy (%) Force (%) Pressure (%)

Train Test Train Test Train Test
99.366 99.391 99.285 99.391 99.697 99.284

algorithms with explicit reversible integrators,40 which are effective
to check whether the dynamics of the system are physically rele-
vant. The failure above was reflected in the conserved quantity of
the ANN-MD simulation as a deviation [see around 1000 MD step
(=2.42 ps) of the black line in Fig. 5(a)].

On the other hand, the ANN potential trained with DE ,F
showed good predictions, although the RMSE of the total energy
decreased a little as shown in Fig. 4 and Table II. In addition, with
respect to atomic force and pressure, the CCs achieved almost 1.0.
In order to obtain this result, we adopted the method to gradu-
ally reduce the coefficient of the loss function of atomic force pF
in Eq. (7) during training while paying attention to the RMSE and
CC of pressure. We first followed an example of the adjustment
method of pP as well as pE and pF proposed by Zhang et al.,15

but it failed in our case. They might be a cause that the creating

FIG. 5. (a) The time evolution of conserved quantities (Hartree/atom) and (b) con-
stant pressure specific heat Cp (J/mol K) as a function of steps (or picoseconds)
in our MD simulations using ANN potentials trained with DE , DE ,F , DE ,Cor, and
DE ,F ,Cor. Here, MD simulations with NVT and NPT ensembles are referred to as
NVT-MD and NPT-MD, respectively.
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method of ANN such as the descriptor for the input layer and
architecture differed from us. In addition, the adjustment method
may depend on the system of interest, as the pressure is not cor-
rect unless both global (total energy) and local (atomic force) pre-
cisions are sufficient. The pressure loss function was therefore not
used for training ANN potentials in this study (i.e., pP = 0), result-
ing in a simpler training procedure by adjusting only pE and pF .
[However, pressure errors (RMSE and CC) are constantly moni-
tored during training.] Actually, we followed the training method
with total energy and atomic force exemplified by Zhang et al., which
gradually reduced pF during training.15 We found that this method
worked well, where, specifically, we set both coefficients pE and pF
to 1.0 at first, and then reduced the pF to 1/10 every 500 epochs (see
the top of Fig. 4). This is understandable that the loss function of
atomic force has much more freedom to be minimized than that
of total energy when (pE, pF) = (1.0, 1.0) so that the loss function
of atomic force is mainly preferred as a target of training. Mak-
ing pF smaller means gradually shifting the training target to the
total energy loss function. However, if this operation is performed
without monitoring the error of pressure, as the CC around 1000
epoch shown in Fig. 4(b), one may not note that training is actu-
ally inadequate because total energy and atomic force show the good
accuracies. At around 1000 epoch, it seems that the focus of train-
ing was still biased toward atomic force. By lowering pF to eliminate
the bias, this imbalanced issue was certainly resolved. Therefore, the
pressure error must be always monitored, and this insight should
be integrated to the adjustment method of Zhang et al. mentioned
above.15

The ANN-MD simulation using this potential yielded the g(r)
and MSD as shown by red curves in Figs. 6 and 7, which were in
good agreement with those of the FPMD one. It was also confirmed
that the diffusion coefficient calculated from our MSD agreed with
the experimental that of Ag at 500 K (1.5 × 10−5 cm2/s).38,41 Since
there was no guarantee that MSD agreed with that of the FPMD

FIG. 6. The partial radial distribution functions gαβ(r) between Ag–Ag, Ag–Se, and
Se–Se calculated by our FPMD and ANN-MD simulations using potentials trained
with DE ,F and DE ,F ,Cor.

FIG. 7. The mean square displacements (MSD) (Å2) of Ag and Se atoms calculated
by our FPMD and ANN-MD simulations using potentials trained with DE ,F and
DE ,F ,Cor. They were calculated on a time scale of 4000 times the MD time step
Δt (=4.84 ps). The diffusion coefficients mentioned in the text were calculated from
the slope after 3 ps.

simulation as stated at the end of Subsection II D, we con-
sider that the convergence of g(r) is a relevant criterion to
decide the amount of training data. Movie 3 of the supple-
mentary material shows the atomic dynamics during the begin-
ning 1000 steps. Concerning calculation time, when converted
to the time using the 1 CPU core, our FPMD simulation took
50 164.128 s/step, while the ANN-MD one took just 0.784 s/step.
Therefore, we have achieved over 104 acceleration. This bench-
mark was performed with System B of the Institute of Physi-
cal Properties Research, the University of Tokyo, as noted in the
acknowledgment.

However, there is still a problem with this ANN potential, and
a failure occurred in the middle of the ANN-MD simulation. As
shown by the red line in Fig. 5(a), a deviation of the conserved
quantity can be seen after exceeding 19 000 steps (=46.0 ps). The
g(r) of Fig. 6 and the MSD of Fig. 7 were calculated by the data
until 19 000 steps. In contrast to the catastrophic failure seen in MD
with the ANN potential trained with DE, there is, however, room for
improvement on this potential. In the following subsection, we will
describe the results of attempting to improve by adding correction
data (DCor) to training data.

B. ANN potential with D Cor

The cause of failure in the previous subsection was that a dis-
tance between any two atoms of Ag–Ag, Ag–Se, and Se–Se rapidly
approaches and reached zero during ANN-MD simulations, result-
ing in the breakage of the whole atomic structure. The shortest dis-
tances for Ag–Ag, Ag–Se, and Se–Se included in the original FPMD
training data were 2.5, 2.3, and 3.1 Å, respectively, and only a few
have been identified. Since learning such rare events is quite diffi-
cult, it was assumed that the interaction between two atoms close to
each other was not properly reproduced.

The training was thus performed by adding the correction data
DCor, which is the FPMD data containing the number of interatomic
distances 2.4, 2.2, and 3.0 Å for Ag–Ag, Ag–Se, and Se–Se, respec-
tively. The values indicate the 0.1 Å shorter distances than the short-
est ones in the original training data. The preparation of DCor was
described in Subsection II F.
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TABLE III. RMSEs and CCs of total energy (Energy), atomic force (Force), and pres-
sure for Train and Test datasets at 2000 epoch of the ANN potential trained with
DE ,Cor.

Root mean square error (RMSE)

Energy (meV/atom) Force (eV/Å) Pressure (GPa)

Train Test Train Test Train Test
0.5187 1.0481 0.3651 0.5150 1.8314 3.5603

Correlation coefficient (CC)

Energy (%) Force (%) Pressure (%)

Train Test Train Test Train Test
99.999 99.996 69.597 69.003 94.317 97.509

Here, we created ANN potentials by training with DE and DE ,F
added DCor (referred to as DE ,Cor and DE ,F ,Cor) and then show the
RMSEs and CCs at 2000 epoch in Tables III and IV. Even if we added
DCor, prediction accuracies of atomic force and pressure were not
improved for the case with DE ,Cor. When an ANN-MD simulation
was performed with this potential, the atomic structure could not be
maintained. The corresponding conserved quantity [the green line
in Fig. 5(a)] has a deviation at around 1000 steps.

The ANN potential trained with DE ,F ,Cor was able to predict all
properties reasonably, although the RMSE of pressure increased by
one order compared with that of the potential trained with DE ,F (see
Tables II and IV). The reason for the reduced accuracy is that DCor
contains the data that pressure reaches as high as about 100 GPa,
as shown in Fig. 3. Conversely, this fact indicates that we could cre-
ate an ANN potential that was able to predict such a wide range of
pressures. Considering the appropriateness of the conserved quan-
tity [see the blue line in Fig. 5(a)], the addition of DCor resolved the
issue in the previous subsection and enabled an ANN-MD simula-
tion on a million-step (=2.42 ns) scale. It was also confirmed that the
g(r) and MSD agreed with the results of our FPMD simulation, as
shown in Figs. 6 and 7.

TABLE IV. RMSEs and CCs of total energy (Energy), atomic force (Force), and pres-
sure for Train and Test datasets at 2000 epoch of the ANN potential trained with
DE ,F ,Cor.

Root mean square error (RMSE)

Energy (meV/atom) Force (eV/Å) Pressure (GPa)

Train Test Train Test Train Test
0.5404 0.6029 0.0509 0.0556 0.2907 0.5404

Correlation coefficient (CC)

Energy (%) Force (%) Pressure (%)

Train Test Train Test Train Test
99.998 99.998 99.231 99.433 99.942 99.958

While the g(r) and MSD were converged with statistics of about
several thousand MD steps, the specific heat that requires much
more numerous steps is also calculated here. The constant pres-
sure specific heat Cp under the ambient pressure at 500 K has been
experimentally reported to be 83.6 J/mol K.24 However, the ANN-
MD simulations up to here were based on the NVT ensemble as
well as our FPMD simulation, which provides only constant vol-
ume specific heat Cv . To calculate Cp, an ANN-MD simulation
with the NPT ensemble was performed for a million steps. This
also had the meaning of examination of whether MD simulations
with the NPT ensemble can be performed using an ANN potential
created from the FPMD data with the NVT ensemble. The pro-
file of conserved quantity [magenta line in Fig. 5(a)] indicates that
the robust simulation was performed. From the profile of specific
heat shown in Fig. 5(b), we obtained the converged value to be
Cp = 83.0 J/mol K, which is in excellent agreement with the experi-
mental one.

We are also interested in how this ANN potential behaves
under different conditions from the training data, in order to elu-
cidate the atomic mechanism that generates anomalous increases
in specific heat and thermal conductivity around the phase transi-
tion temperature of Ag2Se (406 K). Therefore, in addition to 500 K,
ANN-MD simulations under NPT-MD ensemble were performed
at 450, 410, and 400 K. As our future expectations are included,
the results were discussed in Sec. VI of the supplementary material,
where the following three findings were described:

1. The specific heats agreed with the experimental values except
that of 410 K. It was considered that the structural phase
changes occurred even at 410 K because the system consisted
of a small number of atoms (384 atoms).

2. At 400 (and 410 K), the system experienced several struc-
tural changes and resulted in a “β-like structure” (we will
mention the meaning in the next finding). The key factor for
the ANN-MD simulation being able to continue for 1 × 106

steps (=2.42 ns) without failures is that DCor would ensure the
required physical property (i.e., interaction between two atoms
that are close to each other).

3. The reason why we called the structure observed at 400 K
“β-like structure” is that Ag atoms were diffused. Since β-Ag2Se
is not a superionic conductor, the observed one was thus not
the complete β phase structure. However, this also means that
the data at 500 K of the α phase contained information on the
β structure even though it is not perfect. We expect that how
much information is embedded in the data of 500 K can be
quantified by uncertainty in the output of the ANN potential
derived from the active learning technique, where the uncer-
tainty is quantified using the variance of the values output
from multiple ANN potentials with different initial weights
that have learned the same training data.

Since the ANN is known to be vulnerable to extrapolation,44

it would be difficult to reproduce physical phenomena that are
not included in the training data. However, taking advantage of
this weak point, such a template ANN potential trained under the
specific condition may be useful, in order to infer what are the
lacking data for reproducing physical phenomena under different
conditions from the training data.
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C. Training times and prospects for its mitigation
In this study, since the original Aenet16 was extended (referred

to as extended Aenet) as described in Subsection II E, the training
times were longer than the original one. Finally, we thus describe
how much training times have been increased and the prospects for
its mitigation. Strictly, the training times and the volumes of train-
ing data are different from those of the original Aenet as described
in Sec. V of the supplementary material, but only training times are
mentioned here. Table V shows the training time using the origi-
nal Aenet and those for four ANN potentials created in this study
using our extended one. These computations were performed with
System B of the Institute of Physical Properties Research, the Uni-
versity of Tokyo, and the number of CPU cores used was 96. The
number of training epochs was set to be 2000. The training data
that can be used in the original Aenet are only the total energy
(i.e., DE), and the corresponding training time was 3274 s. On
the other hand, training with DE using our extended Aenet took
106 793 s, about 33 times that of the original one. This time dif-
ference is due to the original Aenet output errors such as RMSE
between the total energies predicted by the ANN potential (i.e.,
{EANN

I }) and those of FPMD at each epoch, while our extended Aenet
does not only {EANN

I } but also predicted atomic forces (i.e., {FANN
I,i }),

pressures (i.e., {PANN
I,j }), and their errors with those of FPMD (see

Fig. 4), although the accuracy of ANN potentials created by both
versions is completely consistent because the training data are the
same. Whereas the computation of {EANN

I } can be fast performed
according to Eq. (3), those of {FANN

I,i } and {PANN
I,j } take a quite long

time due to the complexity of summations shown by Eqs. (IV.1)
and (IV.2) in the supplementary material. However, as described in
Subsection III A, if the errors of {FANN

I,i } and {PANN
I,j } are not eval-

uated, one cannot figure out whether balanced training is achieved
in two aspects, global and local. We thus must calculate the errors in
exchange for an increase in training time. Actually, since these errors
are not used for updating ANN weights, they can be calculated at a
frequency specified by the user. Although we calculated every epoch
in this study, for example, if every 10 epoch, the error calculation
time 103 519 (=106 793 – 3274) s becomes its 1/10. Hence, in the case
where only DE is the training target, the training time can be easily
reduced.

On the other hand, considering the balance of training, the case
of using atomic force data (i.e., DF) in addition to DE (i.e., DE ,F) is
more important. However, since {FANN

I,i } must be calculated for each
epoch to update the weights of the ANN, it is not easy to reduce

TABLE V. Training times for four ANN potentials created in this study using the
extended version and for the one using the original Aenet.16 “Dataset” indicates the
dataset used to train the target ANN potential.

Version of Aenet Dataset Training time (s)

Extended

DE 106 793
DE ,F 184 621
DE ,Cor 136 471
DE ,F ,Cor 215 548

Original DE 3 274

the training time compared to the case of only DE. The correspond-
ing training time was 184 621 s. In addition, when the correction
data DCor were added to DE ,F (i.e., DE ,F ,Cor), the training time fur-
ther increased to 215 548 s (=about 2.5 days). DCor is difficult to
train because this is the extreme dataset that contains atomic struc-
tures showing as high as 100 GPa (see Fig. 3). This is the longest
training time in this study, and we consider that it is reasonable in
terms of practicality for now if training is completed in about 2.5
days. However, in the future, it may be necessary to re-examine the
training method when handling data that is several times the size
of this study. The shortcut for solving this issue in terms of soft-
ware is to reduce the number of training epochs by utilizing and
improving optimization algorithms such as Levenberg-Marquardt,
adaptive moment estimation, and Kalman filter methods, which are
or are being implemented in the original Aenet. We will investigate
optimization algorithms suitable for training using DE ,F ,Cor as future
work.

IV. CONCLUSIONS
We have given an example for the creation of ANN potentials

that can perform a long time scale MD simulation under at least the
same conditions from FPMD data of specific conditions. The pro-
cedure is as follows: (1) enough FPMD data are prepared for g(r)
to converge; (2) while training the ANN with DE and DF , not only
errors of total energy and atomic force but also those of pressure
are monitored until the errors are minimized; and (3) more robust
ANN potentials that do not break down in the middle of MD sim-
ulations can be created by mixing a small amount of FPMD data
for expressing the interaction between atoms that are close to each
other (DCor). As an application example, we created ANN potentials
for α-Ag2Se, and it was confirmed that the g(r), MSD (or diffusion
coefficient), and the specific heat requiring a long-time simulation
reproduced the FPMD and the experimental values. In addition, the
ANN-MD simulation achieved over 104 acceleration over the FPMD
one. Therefore, we consider that this is an important first step to
clarify the atomistic mechanism of the spike of specific heat and ther-
mal conductivity accompanying the phase transition toward the low
temperature β phase.20,23,24 In addition, with some guidelines pro-
posed in this study, a lot of FPMD data sleeping on hard disks after
research may be utilized again. We believe that these findings can
generally be used in the creation of the ANN potential for a lot of
materials.

However, we still have to say that there are many untested issues
regarding the applicable scope of these guidelines. The convergence
condition of the g(r) means at least that it is not assumed to uti-
lize nonequilibrium FPMD data as training data. We attempt to set
the definition of data preparation guidelines for such nonequilib-
rium states as one of the future works. Besides, for α-Ag2Se, the
transferability of our ANN potentials should be clarified by per-
forming MD simulations under the conditions different from the
training data. From the results of our trial (described at the end of
Subsection III B), since DCor seems to prevent the catastrophic fail-
ures as shown in Fig. 5(a), it would provide accurate ANN potentials
under the conditions near training data. On the other hand, the
conditions far from the training data, such as β-Ag2Se, may not
be reproduced. However, using the ANN potential created in this
study as a template, it is expected that what are essential data to
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reproduce the β phase structure can be elucidated by the evaluation
of the uncertainty defined in the active learning.

For systems with a high degree of freedom, only the data for
expressing the interaction between two atoms approaching each
other may be insufficient. For example, although rare, proton trans-
fer occurs between water molecules even under an equilibrium state.
As such, essential but rare incidents associated with the surround-
ings of molecules may cause failure of ANN-MD simulations, we
would like to clarify what kinds of data should be prepared consider-
ing the previous studies for the water and aqueous electrolyte solu-
tions.2,6,7 If this becomes clear, ANN-MD simulations with FPMD
precision for biochemical systems come into view.

SUPPLEMENTARY MATERIAL

See the supplementary material for detailed descriptions
regarding the symmetry functions used in our study (Sec. I) and the
convergence of the radial distribution function (Sec. II). The initial
condition and the forms of atomic force and pressure tensor for the
ANN-MD simulations are also described in Secs. III and IV, respec-
tively. In addition, the training times and volumes of training data
are summarized in Sec. V. Section VI describes the calculation result
of specific heats at different temperatures from that of the train-
ing data and the characteristic atomic structures observed in the
simulations.
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