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Abstract

We have implemented parallel algorithms for density-functional-theory (DFT) based electronic-structure calculations. These
include a plane-wave based algorithm, a real-space-grid algorithm based on a high-order finite difference method, and a
linear-scaling real-space algorithm using localized orbitals. Parallelization schemes are described for these algorithms, and
the computational complexity and the communications involved in the resulting parallel algorithms are analyzed. Scalability
tests of these algorithms on massively parallel computers show that the linear-scaling DFT algorithm is highly scalable. For a
110,592-atom gallium arsenide system on 1024 IBM SP3 processors, the parallel efficiency is as high as 93%. 2001 Elsevier
Science B.V. All rights reserved.
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1. Introduction

Density-functional-theory (DFT) has reduced the exponentially complex quantumN -body problem to a self-
consistent eigenvalue problem that can be solved with O(N3) operations [1,2]. Electronic-structure calculations
based on DFT have been applied to various materials and have had tremendous impact on solid state physics,
chemistry and other areas. In particular, Car and Parrinello [3] have combined DFT with molecular-dynamics
(MD) simulation to obtain the phase space trajectories of the system (positions and velocities of all atoms at all
time), thereby enabling first-principles study of dynamic processes in materials. In this approach, the electronic
structure is calculated within the Born–Oppenheimer approximation, which separates ionic and electron degrees-
of-freedom, and electron–ion interaction is calculated using the pseudopotential method [4,5]. The DFT-based MD
approach not only obtains accurate interatomic forces from the Helmann–Feynman theorem but also calculates
electronic information such as charge distribution as a function of time.
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In the calculation of electronic states of condensed matter, the plane-wave (PW) basis has been used most
widely [6–13], because the formulation is simple and the atomic forces are easily calculated. In the PW algorithm,
the fast Fourier transform (FFT) is usually used to calculate convolution. However, implementation of the FFT
algorithm on parallel computers involves global operations, and hence its scalability becomes problematic on
massively parallel computers. Because of the limited scalability, the number of atoms studied by the PW-based
DFT algorithm has been limited to a few hundred. Chelikowsky, Troullier, and Saad [14–16] have developed a
DFT algorithm that is more scalable on parallel computers. Their real-space-grid algorithm uses a high-order finite
difference method to calculate derivatives such as the kinetic-energy operator. In this real-space (RS) algorithm, all
operations are inherently short-ranged, resulting in superior scalability on parallel computers. As a result, the RS
algorithm has made it possible to carry out DFT calculations involving∼1000 atoms [17]. Implementation of the
real-space grid based DFT algorithm is discussed extensively in Refs. [18–25].

Because of the orthonormalization constraint on one-electron wave functions, computations in both PW and
RS algorithms scale asymptotically as O(N3). The O(N3) orthonormalization procedure becomes a bottleneck
for systems containing more than a few hundred atoms. To overcome this bottleneck, various linear-scaling DFT
algorithms have been proposed recently [26–38]. These algorithms exploit the locality of physical quantities such
as electronic wavefunctions and density matrices. In a linear-scaling (LS) DFT algorithm based on localized wave
functions [29–32], each one-electron wave function is constrained in a local region, and orthogonalization of wave
functions is avoided. For predictive materials simulations involving more than thousands of atoms, scalable and
portable parallel implementation of DFT is indispensable.

In this paper, we develop a parallel O(N) DFT algorithm based on localized wave functions combined with
a real-space grid approach. We present parallelization strategies for the PW, RS, and LS algorithms for DFT
calculations and analyze their scalability on parallel computers. Benchmark tests are performed on 1024 Cray
T3E and IBM SP3 processors. This paper is organized as follows. In Section 2, we describe the DFT algorithm
based on the real-space grid approach. Section 3 presents the linear scaling algorithm based on localized wave
functions on a real-space grid. Parallel implementation is discussed for the real-space algorithms as well as for a
PW method in Section 4. The results of numerical tests are given in Section 5, and Section 6 contains conclusions.

2. Real-space density-functional-theory calculations

In DFT, the energy of a system is expressed as a functional ofN atomic positions,�rN = {�rI |I = 1, . . . ,N} and
one-electron wave functions forNbandbands,ψNband= {ψn(�x; �rN)|n= 1, . . . ,Nband}:

E(�rN ;ψNband) = 2
Nband∑
n=1

{∫
d�x ψ∗n (�x; �rN)

(
− h̄2

2me

∂2

∂ �x∂ �x
)
ψn(�x; �rN)

+
∫

d�x ψ∗n (�x; �rN)Vion(�x)ψn(�x; �rN)
}

+ 1

2

∫
d�x ρ(�x; �rN)VH(�x)+EXC

[
ρ(�x; �rN)]+ N−1∑

I=1

N∑
J=I+1

ZIZJ e
2

|�rI − �rJ | , (1)

where,me is the mass of an electron andZI is the valence of theI th ion. In Eq. (1),Vion(�x),VH(�x), andEXC(ρ)

are the valence electron–ion interaction potential, Hartree potential, and exchange-correlation energy functional,
respectively. The electron number density,ρ(�x; �rN), is calculated as

ρ(�x; �rN)= 2
Nband∑
n=1

∣∣ψn(�x; �rN)
∣∣2. (2)
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The ground-state energy of the system,E(�rN), with given atomic positions, is obtained by minimizing
E(�rN ;ψNband) with respect toψNband subjected to orthonormality constraints,∫

d�x ψ∗n (�x; �rN)ψn′(�x; �rN)= δnn′ ≡
{

1 (n= n′),
0 (n �= n′).

(3)

Under the orthonormality constraint, variation with respect toψNband leads to the following Kohn–Sham equations,

Ĥψn(�x; �rN)= εnψn(�x; �rN) (n= 1, . . . ,Nband), (4)

whereεn is the eigenvalue fornth electronic state. In Eq. (4), the Hamiltonian operator,Ĥ , is obtained as

Ĥψn(�x; �r) ≡ δE(�rN ;ψNband)

δψ∗n (�x; �r)
=

{
− h̄2

2me

∂2

∂ �x∂ �x + Vion(�x)+ VH(�x)+ VXC(�x)
}
ψn(�x; �rN), (5)

whereVXC(�x) = δEXC[ρ]/δρ is the exchange-correlation potential. Using the eigenvalues,εn, the ground-state
energy is expressed as

E(�rN) =
∑
n

εn − 1

2

∫
d�x ρ(�x; �rN)VH(�x)+EXC[ρ]

−
∫

d�x ρ(�x; �rN)VXC(�x)+
N−1∑
I=1

N∑
J=I+1

ZIZJ e
2

|�rI − �rJ | , (6)

where the first term is the band-structure energy. Our DFT algorithms use either the local density approxima-
tion [39] or the generalized gradient approximation [40] forEXC(ρ) and norm-conserving pseudopotentials [5] for
Vion(�x) in a fully separable form [41].

Our DFT algorithms use a real-space grid approach combined with a high-order finite difference method for
calculating the derivatives (i.e. kinetic-energy operator) in Eq. (1) [14–16]. In this algorithm,ψn(�x; �rN) and
ρ(�x; �rN) are represented by numerical values on real space grid points. The kinetic energy operator is expanded
using the finite difference method as

∂2ψn(�x; �rN)
∂x2

∣∣∣∣�x=(xi ,yj ,zk)=
L∑

l=−L
Clψn(xi + lh, yj , zk; �rN)+O(h2L+2), (7)

whereh is the grid spacing, andL is the order of the finite difference method. Since the calculations are performed
entirely in real space, this method is suitable for localized configurations such as clusters. Since the finite difference
expansion involves only short-ranged operations, an efficient implementation on parallel computers is possible.

The minimization ofE(�rN ;ψNband) with respect toψNbandis performed by searching for an energy-minimum
iteratively based on the conjugate-gradient (CG) method [8,9]. The minimization loop consists of the following
steps:

(i) Calculate the electronic potentials,Vion(�x),VH(�x), andVXC(�x), usingρ(�x; �rN) from the previous step or
starting value.

(ii) Perform a unitary transformation ofψNband to diagonalize the corresponding Hamiltonian matrix,∫
d�x ψ∗nHψm.

(iii) Improve {ψn(�x; �rN)|n= 1, . . . ,Nband} iteratively.
(iv) Calculateρ(�x; �rN) using the updatedψNband.

These steps, (i)–(iv), are repeated until the self-consistency betweenψn(�x; �rN) andρ(�x; �rN) is achieved within an
error tolerance. The step (iii) includes two inner loops: One is associated with the band indexn and the other is the
CG iteration for each band involving a loop index,i:
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1 for n← 1 toNbanddo
2 i← 1
3 orthogonalizeψ(i)

n to ψm (m= 1,2, . . . , n− 1)

4 calculateε(i)n ←
∫

d�x ψ(i)∗
n Hψ

(i)
n

5 while ε(i)n is not convergentdo
6 calculate the gradient,g(i)n ← (ε

(i)
n −H)ψ

(i)
n

7 calculate the preconditioning vector,g̃
(i)
n ← P̂ g

(i)
n

8 calculate the conjugate gradient,h
(i)
n ← g̃

(i)
n + βh

(i−1)
n ,

where

β =




∫
d�x g(i)∗n g(i)n

/∫
d�x g(i−1)∗

n′ g
(i−1)
n′ for i > 1,

0 for i = 1

9 orthogonalizeh(i)n to ψm (m= 1,2, . . . , n− 1)
10 improveψ(i+1)

n ←C(λ)(ψ
(i)
n + λh

(i)
n ) so as to minimize the band energy,

whereC(λ) is the normalization constant

11 calculate the new band energy,ε
(i+1)
n ← ∫

d�x ψ(i+1)∗
n Ĥψ

(i+1)
n

12 i← i + 1

To accelerate the convergence, the gradients (residual vectors),gn(�x), are preconditioned by taking an average
over the neighbor grid points as

g̃n(xi, yj , zk) = P̂ gn(xi, yj , zk)

≡
1∑

l1=−1

1∑
l2=−1

1∑
l3=−1

dl1l2l3gn(xi + l1h,yj + l2h, zk + l3h), (8)

wheredl1l2l3 are constants. This enhances the convergence rate of short-wavelength components of the residual.
To reduce long wavelength components of the residual, we use the multigrid method [20,21,23,42]. On a coarser

grid, the following equations are solved,2{
− h̄2

2me

∂2

∂ �x∂ �x + V (�x)
}
ϕn(�x)= gn(�x). (9)

In this method, the electronic potential,V (�x), as well as the residual vector,gn(�x), on a fine grid are restricted
to a coarser grid by using restriction operations [42]. The solution,ϕn(�x), is prolongated to the fine grid, and
is added toψn(�x; �rN). In our algorithm, not only the Kohn–Sham equations but also the Poisson equations to
obtainVH(�x) are solved by the multigrid method. Recent developments involving the multigrid-accelerated solver
for the Kohn–Sham equations are found in Refs. [23,43]. Wang and Beck [43] have demonstrated a higher-order
multigrid scheme by adopting a nonlinear full approximation scheme with the full multigrid algorithm [42]. In their
scheme, the convergence rate in the self-consistency iterations is relatively insensitive to the initial values of the
wave functions and charge density. Starting with random orthonormalized functions, the ground-state electronic
structure is obtained in 2 to 4 self-consistency iterations [43].

We analyze the computational complexity of the real-space (RS) DFT algorithm. Since the most time consuming
part is step (iii), we concentrate on the computational complexity of this step. The orthogonalization in step (iii)

2 In previous studies [20,21], only the kinetic energy operator (the first term of the left-hand side of Eq. (9)) has been taken into account for
the multigrid procedure.
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requires O(N2
bandNgrid) operations, whereNgrid is the number of real-space grid points. Since bothNband and

Ngrid are proportional toN , this operation scales as O(N3). All calculations except for the orthogonalization in
step (iii) require O(NbandNgrid)∼O(N2) operations. Although the orthogonalization step, which scales as O(N3),
is negligible for relatively small systems (Nband< 100), it becomes the bottleneck for larger systems containing
over 1000 electronic bands.

3. Linear-scaling real-space density-functional-theory calculations

In the conventional real-space DFT algorithm described in Section 2, we obtain a set of eigenfunctions of the
Hamiltonian, which extend over the entire system. However, it is always possible to transform the eigenfunctions
to a set of localized orbitals by a unitary transformation. If a localization constraint is imposed on electron orbitals,
each orbital overlaps only with a finite number of neighboring orbitals, independent of the size of the system,
thereby enabling a linear-scaling algorithm.

We use the energy-functional minimization approach proposed by Mauri and Galli [29], which requires neither
explicit orthogonalization nor inversion of an overlap matrix. It can be proven thatunconstrained minimization of
the energy functional,

Ẽ(�rN ;ψNwf )= 2
Nwf∑
m=1

Nwf∑
n=1

Qmn(Hnm − ηSnm)+ ηNel, (10)

with

Hmn =
∫

d�x ψ∗m(�x; �rN)Ĥψn(�x; �rN), (11)

Smn =
∫

d�x ψ∗m(�x; �rN)ψn(�x; �rN), (12)

Qmn = 2δmn − Smn, (13)

produces the identical solution to that in constrained minimization of Eq. (1) [29–31]. It can also be proven that
the minimizedẼ coincides with the band structure energy in Eq. (6) [29–31]. TheNwf , η andNel are the number
of wave functions, the chemical potential and the number of electrons, respectively. In this algorithm, each wave
function is localized in a local region and therefore interacts with only those wave functions in the neighboring
local regions. The energy functional is minimized iteratively using the CG method, and the minimization loop
consists of the following steps:

(i) Calculate the electronic potentials,Vion(�x),VH(�x), andVXC(�x), using ρ(�x; �rN) from previous step or
starting value.

(ii) Improve{ψn(�x; �rN)|n= 1, . . . ,Nwf} iteratively.
(iii) Calculateρ(�x; �rN) using the updatedψNwf .

In contrast to the conventional RS algorithm in Section 2, step (ii) in this linear-scaling (LS) algorithm includes
one inner loop for the CG iteration (controlled by a loop index,i); all wave functions are improved concurrently in
this algorithm rather than in a sequential manner as in the RS algorithm:

1 i← 1
2 calculateH(i)

mn , S(i)mn, andẼ(i)

3 while the energỹE(i) is not convergentdo
4 calculate the gradient,

g(i)n ←−2
∑
m

[
(Ĥ − η)ψ(i)

m Q(i)
mn −ψ(i)

m (H (i)
mn − ηS(i)mn)

]
(n= 1, . . . ,Nwf)
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5 calculate the preconditioning vectors,g̃
(i)
n ← P̂ g

(i)
n (n= 1, . . . ,Nwf)

6 calculate the conjugate gradient,h
(i)
n ← g̃

(i)
n + βh

(i−1)
n (n= 1, . . . ,Nwf)

where

β =




∑
n

∫
d�x g(i)∗n g(i)n

/∑
n′

∫
d�x g(i−1)∗

n′ g
(i−1)
n′ for i > 1,

0 for i = 1

7 improveψ(i+1)
n ← ψ

(i)
n + λh

(i)
n (n= 1, . . . ,Nwf) so as to minimize the band structure energy

8 calculateH(i+1)
mn , S

(i+1)
mn , andẼ(i+1)

9 i← i + 1

We now analyze computational complexity of the LS algorithm. All operations in step (ii) scale as
O(NwfÑwfÑgrid), whereÑwf is the number of wave functions interacting with each wave function, andÑgrid
is the number of real-space grid points in the local region. Note that bothÑwf and Ñgrid are independent of
the system size. Since the energy-minimization loop contains neither a subspace diagonalization nor the Gram–
Schmidt orthonormalization, the computation scales as O(N).

4. Design and analysis of parallel density-functional-theory algorithms

In this section, we describe the parallelization of the RS DFT algorithm (Section 2), the LS DFT algorithm
(Section 3), as well as a PW-basis DFT algorithm.

As mentioned in Section 1,ψn(�x; �rN) is expanded in terms of plane waves in most DFT algorithms. To
implement the PW method, the FFT is usually used to calculate convolutions [3,6–13]. There are at least two
ways to parallelize the PW method [12,13]: The band decomposition and the reciprocal-space decomposition. In
the band decomposition scheme, wave functions with different band indices are assigned to different processors.
The CG iteration to improve the wave function for each band can be performed independently. However, there
is a drawback in the memory requirement, since all processors must have the charge density of the entire system
redundantly. Also, enormous communication is required to calculate the scalar products between the wave functions
for the Gram–Schmidt orthonormalization, since entire components of each band have to be sent to all processors.
On the other hand, in the reciprocal-space decomposition scheme, the reciprocal vectors of each band as well as the
charge density are distributed to processors. Although none of the drawbacks in the band decomposition scheme
mentioned above is involved, the reciprocal-space decomposition requires the FFT algorithm on parallel computers
that involves complex communications with varying strides.

In this study, we combine these two schemes in a manner similar to the one used by Tuckerman et al. [13].
In this hybrid decomposition scheme, the CG iterations to improve the wave functions and the calculation of the
charge density are parallelized using the band decomposition scheme. On modern computers with large memory,
the redundant memory allocation imposes little problem. The Gram–Schmidt orthonormalization and the unitary
transformation are executed in the reciprocal-space decomposition scheme. To switch between these two schemes,
all-to-all communications are required. Let us denote the number of reciprocal vector components for each band
asNPW. The number,NPW, scales linearly withN . Since each processor sendsNPWNband/P reciprocal-vector
components to the other(P − 1) processors and receives the same number of reciprocal-vector components from
other processors, these all-to-all communications scale as O(N2). In addition, global communication is necessary
to calculate the scalar products between the wave functions. The data size in the global communications scales as
O(N2 logP), since the total pair of wave functions isN2

band, and each global sum is performed in logP steps.
The parallelization of the real-space-grid-based algorithm is relatively simple compared to that of the PW

algorithm. Spatial decomposition is used to parallelize both the RS and the LS DFT algorithms. Grid points



F. Shimojo et al. / Computer Physics Communications 140 (2001) 303–314 309

Fig. 1. Spatial decomposition scheme for the parallel implementation of the conventional RS DFT algorithm. The dots show the real-space
grids. ThePi,j,k denotes the(i, j, k)th processor fori = 1. . . I , j = 1. . . J , k = 1. . . K with IJK being the total number of processors. Each
processor is assigned the corresponding sub-region. To perform the finite differencing operation in thePi,j,k processor, the grid data in the
hatched regions have to be sent from the neighboring processors.

representingψn(�x; �rN) andρ(�x; �rN) are divided into spatial sub-regions, and are distributed amongP processors.
Finite differencing ofψn(�x; �rN) as well as the preconditioning operation in Eq. (8) necessitate interprocessor
communication of the grid data because of non-local operations. (We use the sixth-order expansion formula for the
kinetic-energy operator [15].) Message passing of grid data is required only between neighboring processors, in
the same way as in the classical MD algorithm [44].

Fig. 1 illustrates the spatial decomposition scheme to parallelize the RS algorithm. Processors are arranged as
a three-dimensional array,{Pi,j,k | 1 � i � I, 1 � j � J, 1 � k � K}, and each processor,Pi,j,k , is assigned
the corresponding sub-region. To perform the finite differencing operation in the processorPi,j,k , the grid data in
the hatched regions in Fig. 1 have to be cashed from the neighboring processors, which involves considerable
communication that scales as O(N(N/P)2/3). This communication overhead can be derived as follows: The
number of surface grid points that must be cached to other processors is proportional to(N/P)2/3, and the number
of communication isαNband, whereα is the average number of the CG iteration for each band. In addition to
the surface-data caching, global communication, which scales as O(N2 logP), is necessary to evaluate the scalar
products between differentψn(�x; �rN)’s in the same way as in the PW method.

Although basic strategy for parallelizing the LS algorithm is similar to that for the RS algorithm, communication
scales quite differently. Fig. 2 shows the spatial decomposition scheme for the parallel LS algorithm. The large
circle denotes the local region for a wave function, which is divided into four regions I, II, III, and IV, and distributed
to the corresponding processors. For the kinetic-energy operation in the region I, interprocessor communication of
the grid data in the hatched regions is needed. In the parallel LS algorithm, data structures to store discretized
ψn(�x; �rN) are the following arrays. We use a one-dimensional array, which has sufficient size to store the total
number of grid points forψn(�x; �rN) assigned to each processor. Pointers are used for each band to specify the
starting and ending array indices for grid points stored in the array. The number of surface grid points per sub-
region is proportional to(N/P)2/3 in the same way as in the RS algorithm, while the number of wave functions
associated with each grid point is independent of the system size. Therefore, the communication data size between
neighboring nodes scales as O((N/P)2/3), which is much smaller than the O(N(N/P)2/3) communication in the
RS algorithm. Global communication for calculating the scalar products between differentψn(�x; �rN)’s, which
scales asN2 logP in the RS algorithm, is unnecessary in the LS algorithm.
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Fig. 2. Spatial decomposition scheme for the parallel LS method. The large circle shows the local region for a wave function, which is divided
into four sub-regions I, II, III, and IV, and distributed to the corresponding processors. For the kinetic-energy operation in the sub-region I, the
interprocessor communication of the grid data in the hatched regions is needed.

Table 1
Runtime (computation and communication times) and the memory requirement of the PW, RS,
and LS algorithms for anN atom problem onP processors

Computation Interprocessor Global Memory

communication communication requirement

PW N3/P N2 N2 logP N2

RS N3/P N(N/P )2/3 N2 logP N2/P

LS N/P (N/P )2/3 – N/P

Table 1 summarizes the numbers of computational operations and communications required in the PW, RS, and
LS algorithms. Table 1 also shows the memory requirement of the three algorithms.

5. Performance tests

Benchmark tests of the three parallel DFT algorithms — PW, RS, and LS — have been performed on the Cray
T3E and the IBM SP3 computers at the U.S. Naval Oceanographic Office (NAVO) Major Shared Resource Center
using up to 1024 processors. All programs are written in Fortran 77 with MPI (Message Passing Interface) for
massage passing [45]. (As a compiler option, the -O3 optimization level is used.) The T3E at NAVO consists
of 1088 Digital Alpha processors with clock speed 450 MHz and 258 GB memory. It runs UNICOS/mk 2.0.3
operating system and cf90 3.3.0 Fortran compiler. The IBM SP3 at NAVO is configured with 375 MHz Power3
CPUs and has 334 nodes with 4 CPUs and 4 GB of memory per node. It runs AIX 4.3 operating system and IBM
XL Fortran 7.1 compiler.

We have performed electronic-structure calculations for gallium arsenide (GaAs) crystals in the zinc-blende
structure [46]. The grid spacing is chosen asa/24 (a = 5.6532 Å is the size of the zinc-blende cubic unit cell).
This grid corresponds to a PW cutoff of 12.4 Ry.

First, we performed the DFT electronic-structure calculation with the PW basis, which was applied to a 216
atom GaAs system as shown in Fig. 3. The speedup for 256 processors reaches only 19 when compared with



F. Shimojo et al. / Computer Physics Communications 140 (2001) 303–314 311

Fig. 3. Wall-clock time per self-consistent iteration (squares) and speed-up over 8 processors (circles) of the parallel PW algorithm as a function
of the number of processors. The system is a 216-atom supercell of gallium arsenide. The straight solid line represents the perfect speed-up.

Fig. 4. Wall-clock (circles) and communication (squares) times per self-consistent iteration as a function of the number of atoms for the parallel
RS algorithm on Cray T3E. The system is gallium arsenide crystal in the zinc-blende structure. The number of processors is 1024. The dashed
line shows the O(N3) scaling. Communication time excludes the O(N2)-scaled global communication.

8 processors (the ideal value is 32). This implies computational efficiency of only 59% when the number of
processors is increased from 8 to 256. Thus, the scalability of the PW method becomes problematic on massively
parallel computers because of the global all-to-all communications. It is also difficult to scale up the problem size
with the present parallel implementation, because each processor must store information on all the bands; see
Table 1.

Fig. 4 shows the performance of the RS algorithm on 1024 T3E processors. The circles and squares are the
wall-clock and interprocessor-communication times, respectively, per one self-consistent loop. (They are estimated
assuming four CG iterations for each band.) The dashed line shows the O(N3) scaling. The asymptotic O(N3)

behavior becomes dominant forN > 1000 in the total wall-clock time. The best fit of the measured data shows that
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Fig. 5. Wall-clock (circles) and communication (squares) times per CG step as a function of the number of atoms for the parallel LS algorithm
on Cray T3E and IBM SP3 computers. The system is gallium arsenide crystal in the zinc-blende structure. The number of processors is 1024.
The dashed line shows the linear scaling.

Fig. 6. Wall-clock (circles) and communication (squares) times of the parallel LS algorithm with scaled workloads — 96∗P atom gallium
arsenide systems onP processors(P = 4, . . . ,1024).

the interprocessor communication time scales withN as O(N1.57), which agree well with the theoretical scaling,
O(N5/3), shown in Table 1.

In the LS calculations for GaAs systems, the localization region for the wave functions is defined as a sphere with
radius 4.4 Å, where the center of each localization region is placed at the center of a Ga–As bond. The performance
of the LS algorithms on 1024 T3E and SP3 processors is shown in Fig. 5. The circles and squares are the wall-clock
and interprocessor-communication times, respectively, for one CG iteration. The open and solid symbols denote
the timings on T3E and SP3, respectively. The dashed line shows the linear scaling. The wall-clock time of the LS
algorithm scales linearly withN aboveN ∼ 10,000. For the largest system (N = 110,592), one CG iteration takes
280 s. For this system, the parallel efficiency is estimated to be 93%. The interprocessor communication time scales
as O(N0.6) for N > 10,000. When the number of atoms is less than∼4000, the wall-clock time deviates from the
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linear scaling because the communication time is not negligible compared with the computation time. Fig. 6 shows
the wall-clock (circles) and communication (squares) times of the LS algorithm with scaled workloads — 96∗P
atom GaAs systems onP processors. The number of processors is varied from 4 to 1024. It is shown that the
wall-clock time remains nearly constant, with the communication time increasing withP only slightly.

6. Conclusion

We have developed parallel density-functional-theory algorithms for electronic-structure calculations based
on real-space grids and analyzed their scaling properties. Both the conventional and linear-scaling real-space
algorithms scale superior to a plane-wave-based parallel DFT algorithm. In the conventional parallel real-space
DFT method, where the number of operations is proportional to O(N3/P ), the interprocessor communication
scales as O(N(N/P)2/3) and O(N2 logP) global communication is involved. In the linear-scaling parallel DFT
algorithm, where the number of operation is O(N/P), interprocessor communication scales as O((N/P)2/3).
Scalability of both the conventional and the linear-scaling real-space DFT algorithms as well as that of a plane-wave
based DFT algorithm have been tested for crystalline gallium arsenide. The parallel real-space DFT algorithms have
been shown to be highly scalable. Using the linear-scaling real-space DFT algorithm, large electronic-structure
calculation containing more than hundred thousand atoms are feasible.
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