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Abstract 

We propose a reservation-based sustainable adaptive 
Grid supercomputing paradigm to enable tightly coupled 
computations of considerable scale (involving over 1,000 
processors) and duration (over tens of continuous days) on 
a Grid of geographically distributed parallel 
supercomputers. The paradigm is demonstrated for an 
adaptive multiscale simulation application, in which 
accurate but compute-intensive quantum mechanical (QM) 
simulations are embedded within a classical molecular 
dynamics (MD) simulation only when and where high 
fidelity is required. Key technical innovations include: 1) an 
embedded divide-and-conquer algorithmic framework to 
maximally expose data and computation localities for 
enhanced scalability; 2) a buffered-cluster hybridization 
scheme to adaptively adjust MD/QM boundaries to 
maintain the model accuracy; and 3) a hybrid Grid remote 
procedure call (GridRPC) + message passing interface 
(MPI) Grid application framework to combine flexibility 
(adaptive resource allocation and migration), fault tolerance 
(automated fault recovery), and efficiency (scalable 
management of large computing resources). We have 
achieved an automated execution of multiscale MD/QM 
simulation on a Grid consisting of 6 supercomputer centers 

in Japan and the US (in total of 150 thousand processor-
hours) for the dynamic simulation of implanted oxygen 
atoms in a silicon substrate, in which the number of 
processors changes dynamically on demand and resources 
are allocated and migrated dynamically according to both 
reservations and unexpected faults. The simulation results 
reveal a strong dependence of the oxygen penetration depth 
on the incident oxygen-beam position, which is useful 
information to further advance SIMOX (separation by 
implanted oxygen) technique to fabricate high speed and 
low power-consumption semiconductor devices. 
 
Keywords: Grid application, multiscale simulation, 
molecular dynamics, quantum mechanics, density 
functional theory, Grid remote procedure call, message 
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1 Introduction 

Grid computing [1] is playing increasingly more 
critical roles in advancing science and engineering [2-4]. 
The use of a Grid of geographically distributed parallel 
supercomputers to scientific computing has traditionally 
been limited to embarrassingly parallel applications such as 
replica-based Monte Carlo simulations [5], because of the 
limited network bandwidth and large latency of Grid. 
Fortunately recent extensions [6,7] of divide-and-conquer 
algorithms promise to make a wide variety of tightly 
coupled parallel applications scalable even in Grid 
environments. One promising simulation approach has 
emerged at the forefront of computational sciences, with 
broad applications in biology, materials science, and 
nanotechnology. In the multiscale simulation [8,9], accurate 
but compute-intensive quantum mechanical (QM) 
simulations are embedded to handle chemical reactions 
(below a length scale of 10-8 m) within a classical molecular 
dynamics (MD) simulation to describe large-scale atomistic 
processes (up to a length scale of 10-6 m), only when and 
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where high fidelity is required. For example, we have 
developed a highly scalable multiscale MD/QM simulation 
algorithm based on a divide-and-conquer approach, thereby 
achieving a parallel efficiency as high as 0.94 on three 
Linux clusters in the US and Japan [10]. 

Our previous multiscale MD/QM simulation [10] was 
implemented using the Grid-enabled message passing 
interface (MPI), MPICH-G2 [11]. However, recent 
advancements in multiscale simulation technologies have 
made this approach inadequate, posing several technical 
challenges: 

Flexibility: Our latest adaptive multiscale MD/QM 
simulation approach allows the size of embedded QM 
simulations to change automatically during the simulation 
so as to maintain the model accuracy. This will require the 
number of processors change dynamically on demand, and 
accordingly, resources be allocated and migrated 
dynamically, which was not possible with the MPICH-G2 
implementation. 

Scalability: Advanced multiscale simulations are run 
on thousands of processors for months. While such 
“sustained” supercomputing is typically performed on a 
limited number of highest-end computers, it is extremely 
difficult to obtain such sustained access to large 
computational resources, especially for university-based 
researchers. While a Grid could in principle provide 
requisite computing resources, it is a challenge to achieve 
scalability on thousands of processors distributed globally 
(hence large latency ~ 100 ms and low bandwidth < Gbps) 
for tightly coupled parallel applications. 

Fault tolerance: It is necessary to automatically 
recover from faults, the probability of which increases for 
thousands of processors distributed over wide-area 
networks during months of sustained Grid computing. 

To address these challenges, we propose a reservation-
based sustainable Grid supercomputing paradigm, in 
which supercomputers that constitute the Grid are changed 
dynamically according to a reservation schedule. Key 
technical features of our approach include: 
•  An embedded divide-and-conquer algorithmic 

framework to maximally expose data and computation 
localities, thereby enabling highly scalable MD and 
QM simulations in Grid environments. 

•  A buffered-cluster hybridization scheme to enable 
adaptive multiscale simulations, in which the size of 
embedded QM simulations is automatically changed 

during the simulation so as to maintain the model 
accuracy. 

•  A hybrid Grid remote procedure call (GridRPC) + MPI 
Grid application framework to combine flexibility and 
scalability. 
We have achieved an automated execution of 

multiscale MD/QM simulation on a Grid consisting of 6 
supercomputer centers in Japan and the US (in total of 150 
thousand processor-hours), in which the number of 
processors change dynamically on demand and resources 
are allocated and migrated dynamically according to both 
reservations and unexpected faults. 

The Grid simulation addresses a problem of significant 
technological importance. Modern design of high-
performance devices focuses on controlling structures at 
diverse length scales from atomic to macroscopic, and thus 
multiscale simulations are expected to play an important 
role in scaling down engineering concepts to nanometer 
scales. An example is the SIMOX (separation by 
implantation by oxygen) technique for fabricating silicon on 
insulator (SOI) structures consisting of a thin layer of Si 
separated from the bulk substrate by a thin insulator layer of 
SiO2 (Fig. 1). The integrated circuits fabricated on the thin 
Si layer can operate at a high clock speed with a low power 
supply, due to the absence of leak current through the 
insulator layer, and hence are suitable for portable products, 
such as laptops, hand-held devices, and other applications 
operated by battery power. Oxygen beams with mean 
implantation energy of 102-3 keV have been used to 
fabricate SiO2 layers at the depth of 10-5 m. Advancement 
of the SIMOX technique to create a thinner Si layer of 10-8 
m width on the SiO2 layer will require microscopic 
understanding of the migration processes of oxygen at a 
much smaller implantation energy, 102-3 eV. Our Grid 
MD/QM simulation for implantation of oxygen atoms 
toward a Si substrate has revealed a strong dependence of 
the oxygen penetration depth on the incident beam position. 

This paper is organized as follows. In the next section, 
we describe our scalable and adaptive multiscale MD/QM 
simulation algorithms. Section 3 discusses the hybrid 
GridRPC + MPI Grid application framework. Results of 
test-bed experiments based on the reservation-based Grid 
supercomputing paradigm are given in Sec. 4, and Sec. 5 
contains conclusions. 

Figure 1: Schematic of the SIMOX technique to create SOI structures. The IC chips fabricated on the insulator layer 
exhibit excellent performance due to the absence of leak current. 
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Figure 2: A flowchart of parallel computation in the 
multiscale MD/QM simulation. 

2 Scalable and adaptive multiscale 
simulation algorithms 

We have designed a scalable multiscale MD/QM 
simulation algorithm based on an embedded divide-and-
conquer (EDC) algorithmic framework [12]. In EDC 
algorithms, spatially localized subproblems are solved in a 
global embedding field, which is efficiently computed with 
tree-based algorithms. Examples of the embedding field are 
the electrostatic field in MD simulations and the self-
consistent Kohn-Sham potential in QM simulations based 
on the density functional theory (DFT) [13,14]. We have 
used the EDC framework to design linear-scaling 
algorithms for: 1) DFT calculation on adaptive multigrids 
[7]; 2) chemically reactive MD based on a fast ReaxFF (F-
ReaxFF) algorithm [12]; and 3) classical MD based on a 
space-time multiresolution MD (MRMD) algorithm [15]. 
The EDC-DFT algorithm employs multigrid 
preconditioning [16] of an iterative solver for electronic 
wave functions represented on real-space grid points [17], 
which are augmented with adaptively generated fine grids 
around the atoms to accurately operate ionic 
pseudopotentials. 

In recent benchmark tests on 1920 Intel Itanium2 
processors, we have demonstrated 1.4 million-atom (0.12 
trillion grid points) DFT, 0.56 billion-atom F-ReaxFF, and 
18.9 billion-atom MRMD calculations. The EDC 
algorithms expose maximal data and computation localitites 
and consequently have achieved parallel efficiency as high 
as 0.953 on 1920 processors [12]. 

The EDC framework has also been used to design 
scalable multiscale MD/QM simulation algorithms, in 
which divide-and-conquer DFT calculations (or a number 
of QM cluster calculations) are embedded in an MD 
simulation. In our additive hybridization scheme [18-23], 
the total energy is a linear combination of MD and QM 
energies, 

 E = EMD
system + [EQM

cluster({rQM}) −EMD
cluster({rQM})]

cluster
∑ ,  (1) 

where EMD
system  is the classical MD energy for the entire 

system, EQM
cluster  is the QM energy for an atomic cluster, 

and EMD
cluster  is the MD potential energy of the cluster. In Eq. 

(1), {rQM} is the set of positions of the QM atoms. Other 
physical quantities, such as interatomic forces, are derived 
from Eq. (1) as a linear combination as well. This modular 
hybridization scheme not only allows the reuse of existing 
MD and QM codes but also minimizes the interdependency 
and communication between MD and QM modules. 

We have also developed a buffered-cluster method [23] 
for accurate hybridization of the MD and QM regions. In 
this method, buffer atoms are introduced on the surface of 

the cluster for the calculations of EQM
cluster  and EMD

cluster to 
minimize errors arising from the finite size of the QM 

region. The positions of the buffer atoms in calculating 
EMD

cluster  are determined to minimize EMD
cluster for a given set 

of {rQM}, which are exploited to set buffer atoms in 
calculating EQM

cluster  in a similar manner. The buffered-
cluster method is applicable to a wide range of ceramics 
and semiconductor materials for any reasonable choice of 
the QM region. The accuracy of the buffered-cluster 
method has been tested for crystalline Si and alumina 
systems, where little difference around the MD-QM 
boundaries was found in both relaxed configurations of the 
atoms and recoil forces on them due to their trial 
displacements. The insensitivity of the atomic forces to the 
choice of the QM region in the buffered-cluster method 
allows the QM region to be redefined adaptively during a 
hybrid simulation run [20-23]. 

The multiscale MD/QM simulation algorithm has been 
implemented on parallel computers, by first dividing 
processors into the MD and QM calculations (task 
decomposition) and then using spatial decomposition within 
each task. The additive hybridization scheme makes the 
MD and QM subtasks entirely independent except for the 
exchange of cluster-atom coordinates and calculated forces, 
as shown in the flowchart in. 2. The MD processors 
compute the energy and forces of the entire system and 
send the atomic coordinates of the QM clusters with the 
buffer atoms to each of the QM processor groups. 
Subsequently, the MD and QM processors independently 
perform the MD and QM computations on the atomic 
clusters. The QM energy and forces are then returned to the 
MD processors, where the total energy and corresponding 
forces are calculated and the equations of motion are 
integrated to update the atomic positions and velocities. The 
communications between the MD and QM processors are 
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Figure 3: Program structure of the Grid-enabled 
multiscale MD/QM code based on the combined 
GridRPC + MPI approach. The simulation is performed 
by loosely coupling an MD client and QM servers using 
GridRPC. Each simulation is performed in parallel on a 
cluster using MPI. MD client also behaves as a GridRPC 
client to enable dynamic allocation, migration, and fault 
recovery of QM servers. 

minimal, since the MD processors only need to send several 
hundred atomic coordinates to each QM cluster, which in 
return sends back the calculated several hundred force 
components. 

3 Grid implementation 

3.1 Requirements for large-scale, long-run, 
and adaptive applications 

Our goal is to enable Grid applications that: 1) require 
hundreds to thousands of processors distributed over wide 
areas; 2) run over a long period, typically for a month to a 
year; and 3) change problem sizes during the simulation. To 
support such large-scale, long-run, and adaptive Grid 
applications, the following three requirements should be 
satisfied: 

Flexibility: The application should be able to allocate 
computing resources dynamically and switch target 
computing resources according to their availability, which 
changes dynamically during the simulation. In addition, the 
application should be able to adjust computing power, i.e., 
add or subtract computing resources, according to its 
computational needs. 

Fault tolerance: The application should detect not only 
explicit faults such as systems of clusters getting down and 
networks disconnected, but also implicit faults such as a job 
stuck in a queue for a long time. Furthermore, the 
application should recover from these faults automatically. 

Scalability: The application should be able to manage a 
large number of computing resources efficiently. 

3.2 Combined GridRPC + MPI approach 
Although several Grid programming models have been 

proposed previously, it is not trivial for these models to 
satisfy all the three requirements at the same time. For 
example, Grid-enabled MPI does not provide mechanisms 
for flexibility and fault tolerance. Due to the lack of these 
mechanisms, applications using Grid-enabled MPI suffer 
from troubles such as co-allocation and system down. 

In order to implement a flexible, fault tolerant and 
scalable Grid application, we propose a new programming 
approach, combining GridRPC with MPI. GridRPC [24] is 
a programming model based on a remote procedure call 
(RPC) mechanism tailored for the Grid. When viewed at a 
very high abstraction level, the programming model 
provided by GridRPC is that of standard RPC plus 
asynchronous, coarse-grained parallel tasking. At a more 
practical level, GridRPC provides a variety of features that 
hide the dynamic, insecure, and unstable aspects of the Grid 
from programmers. By providing simple, yet powerful, 
client-server-based frameworks for programming on the 
Grid, GridRPC has been used successfully in various Grid 
applications such as Monte Carlo simulations of cellular 
micro-physiology [25], short- to medium-term weather 

forecasting on an international Grid test bed [26], and 
molecular simulations using replica exchange Monte Carlo 
methods [27].  

The proposed approach combines two complementary 
programming models, MPI and GridRPC, to satisfy the 
three requirements. First, GridRPC provides functions for 
dynamic execution of server programs, for detection of 
network/server errors, and for time outing to avoid 
unexpected waiting for a long time. These functions are 
used to satisfy the first two requirements, flexibility and 
fault tolerance. On the other hand, MPI is used to support 
efficient execution of a Grid application run in parallel on 
clusters. 

Figure 3 shows a schematic of the system configuration, 
when applying the combined GridRPC + MPI approach to 
our multiscale MD/QM application. Each QM or MD 
simulation is allocated a cluster and is executed in a highly 
parallel manner using MPI. At the same time, MD 
simulation is tailored as a GridRPC client to allocate QM 
simulation dynamically and recover from faults of QM 
simulations. Such configuration allows us to: 1) change the 
target cluster and the number of processors; 2) reduce the 
possibility of critical faults; and 3) provide high 
performance of highly parallel MD/QM simulations. 

3.3 Implementation of Grid-enabled hybrid 
MD/QM code 

On the basis of the combined GridRPC + MPI approach, 
we have implemented the Grid-enabled multiscale MD/QM 
code using Ninf-G [28,29] and MPICH [30], which are 
widely used implementations of GridRPC and MPI, 
respectively. 

In Grid-enabling the code, we have first extracted the 
code section to calculate QM forces in the clusters from the 
original multiscale MD/QM simulation code and have 
tailored it as a GridRPC server code. The code for 
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Figure 4: A flowchart of the Grid-enabled multiscale MD/QM simulation. Horizontal lines between MD client and QM 
servers denote GridRPC calls. A Dotted line shows a feed back loop of fault recovery, dynamic allocation, migration, and 
adjustment of computing power. 

initialization, in which information such as the number of 
processors used and the rank of each process are set, is also 
included in the server code. In the next step, scheduling 
code has been added to the MD code to implement 
mechanisms for flexibility and fault tolerance as follows. 

Flexibility 
Mechanisms for flexibility are implemented using 

dynamic invocation functions of Ninf-G. They are triggered 
when QM simulation exceeds reservation time, or when 
QM simulation requires more processors than currently 
available due to the growth of the QM region. For the 
former case, the scheduling layer checks the reservation 
time in the configuration file at the beginning of QM 
simulation phase. For the latter case, MD client redefines 
QM regions, checks the resulted number of QM atoms, 
calculates the necessary number of processors, and notifies 
the change to the scheduler after updating the atomic 
positions and velocities. 

When the above events take place, the scheduler rolls 
back the status to the invocation phase to select a target 
cluster, denoted as a dotted line in Fig. 4. Target machine is 
determined by considering both the computational cost of 
the QM simulation and the performance of clusters. 

If the new target cluster is different from the previous 
one, the code is newly invoked and restarted on it. In order 
to continue simulation from the last time step, the scheduler 
keeps the initialization data and the snapshot data. In case 
of migration, the self-consistent field (SCF) calculation is 
initialized randomly so as to minimize the size of snapshot 
data, which is transferred between the MD client and the 
QM server at every time step. As a result, the amount of 
snapshot data is reduced to few MB (otherwise about 1GB 

data would have been transferred for the complete 
snapshot). 

Fault tolerance 
We implement mechanisms for fault detection and fault 

recovery. The fault detection mechanism is implemented 
using two kinds of Ninf-G functions. The first function 
detects explicit errors such as unexpected termination of 
server processes and network troubles through network 
disconnection between the client and servers. Another 
error-detection function is based on time outing. Ninf-G 
provides three kinds of timeout mechanisms: invocation 
timeout, execution timeout, and heartbeat timeout. The first 
mechanism detects timeout for server process invocation. If 
a remote program is not activated within a time specified by 
the user, Ninf-G returns an error to the client program. 
Execution timeout detects an excessive execution time. The 
last mechanism is used to detect the degradation of network 
performance. When the heart beat timeout is set, a server 
program sends keep-alive messages to the client 
periodically. If the client does not receive the message over 
a specified period, Ninf-G returns an error. All timeout 
mechanisms can be used by setting attributes such as 
job_MaxWallTime in the configuration file. We set these 
attributes and implement error check routines for all the 
Ninf-G functions in the scheduling code. 

When an error is detected, the scheduler starts fault 
recovering. As in the migration of QM simulation, the 
scheduler selects the target cluster and restarts the QM 
simulation in the roll back loop. Machine selection 
algorithm is, however, different from that used for 
migration. The scheduler first tries to re-allocate the code  



6 

Table 1: Computing resources used for QM simulations in 
the Grid experiment. 

 
Table 2: Reservation schedule of the clusters for the Grid experiment 

on the same cluster, because allocating the code on a 
different machine would use a random initial guess, which 
results in a larger computational cost for the QM simulation. 
If re-allocation fails, the scheduler tries to switch the cluster 
as in the migration case. 

4 Grid test-bed experiments 

4.1 Target simulation 
The target simulation is SIMOX semiconductor 

processing, in which five oxygen atoms with energy 240 eV 
is impacted on different crystalline positions of a silicon 
substrate consisting of 110,000 atoms. Initially, five QM 
regions are defined, four of which contain one oxygen atom 
and 12 silicon atoms, and the last region contains one 
oxygen atom and 14 silicon atoms. As oxygen atoms 
penetrate deeper into the substrate, the number of silicon 
atoms, which interact with oxygen atoms, increases. In 
order to maintain model accuracy, each QM region size 
should grow as the simulation proceeds.  

4.2 Grid test bed 
The SIMOX simulation has been performed on a Grid 

consisting of six supercomputer centers in Japan and the 
US: National Institute for Advanced Industrial Science and 
Technology (AIST), University of Tokyo (U-Tokyo), 
Tokyo Institute of Technology (TITECH), National Center 
for Supercomputing Applications (NCSA), Pittsburgh 
Supercomputing Center (PSC), and the University of 

Southern California (USC). Table 1 lists the computing 
resources used in our experiment. These clusters were used 
to run QM servers, while one small cluster was dedicated 
for a MD client. 

Before starting the experiment, we configured these 
clusters as 20 virtual clusters, each of which has 128 CPUs, 
and reserved them manually according to the schedule 
shown in Table 2. We prepared 5 virtual clusters for QM 
simulations and saved 1 virtual cluster for possible trouble 
or the anticipated increase of the number of QM regions. 
The schedule is divided into 5 phases. In the first 10 days, 
we allocated all QM simulations on P32 subsystem of the 
AIST Super Cluster (ASC). Then, M64 subsystem of ASC 
was added for the simulation in the next 2 days and also 
added 2 TeraGrid clusters at NCSA and PSC in the third 
phase. In the fourth phase, we mainly used a cluster at USC. 
Finally, we used 4 Japanese clusters—P32, M64, Presto, 
and ISTBS—for 2 days. At the end of each phase, QM 
simulations were migrated to the next target clusters. 

4.3 Results and discussions 
The number of simulation time steps performed in the 

experiment was 270, which corresponds to a simulated time 
of 54 femtoseconds. The total CPU time amounted to 
150,000 processor-hours. It is extremely difficult to execute 
a program on a single computing resource exclusively for 
such a long duration. This result suggests that our 
reservation-based sustainable Grid supercomputing 
framework provides a viable way to execute large-scale 
long-run applications. 

In the following, we evaluate the results from three 
points of view, flexibility, fault tolerance, and scalability. 

Flexibility 
Figure 5 shows the time chart of the experiment in the 

last 10 days. The blue line denotes the execution of the QM 
simulation, red, light green, and light blue lines show the 
failure in the invocation, initialization, and simulation, 
respectively. As shown in the figure, our application 
automatically changed the target cluster according to the 
reservation schedule. It should be noted that the number of 
used clusters sometimes increased from 5 to 6, e.g. the 
simulation from the 12th day to the 13th day. This was 
because one QM region was divided into two due to the 
increased computational requirement. 

Figure 6 shows the time evolution of the number of 
QM atoms and the number of CPUs used for the simulation, 

 Cluster Site Max No. of CPUs used 
1 P32 AIST 128×6 
2 M64 AIST 128×2 
3 F32 AIST 128×2 
4 NCSA NCSA 128 
5 TCS PSC 128×2 
6 USC USC 128×4 
7 ISTBS U-Tokyo 128 
8 Presto TITECH 128×2 

 Phase 0 Phase 1 Phase 2 Phase 3 Phase 4 
 1-9 days 10 day 11 day 12 day 13 day 14 day 15 day 16 day 17 day 18 day 19 day

Cluster 1 P32-1 P32-1 P32-1 P32-1 P32-1 P32-1 USC-1 USC-1 USC-1 ISTBS ISTBS
Cluster 2 P32-2 P32-2 P32-2 NCSA NCSA NCSA USC-2 USC-2 USC-2 Presto Presto
Cluster 3 P32-3 M64-1 M64-1 M64-1 M64-1 M64-1 M64-1 M64-1 M64-1 M64-1 M64-1
Cluster 4 P32-4 M64-2 M64-2 TCS-1 TCS-1 TCS-1 USC-3 USC-3 USC-3 P32-1 P32-1 
Cluster 5 P32-5 P32-4 P32-4 TCS-2 TCS-2 TCS-2 USC-4 USC-4 USC-4 P32-2 P32-2 

Spare P32-6 P32-3 P32-3 P32-2 P32-2 P32-2 P32-1 P32-1 P32-1 F32-1 F32-1 
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Figure 5: Time chart (bottom) of the multiscale MD/QM simulation of SIMOX, performed on geographically distributed 
parallel supercomputers in Japan and the US. The blue line denotes the execution of the QM simulation, the red line 
shows the failure in the initialization phase, and the light blue line the failure in the simulation phase. 

where the number of QM atoms is shown as a red line and 
the number of CPUs as a blue line. Initially, the number of 
QM atoms was only 62. As the simulation proceeded, 
however, the number gradually increased to 341. The 
resulting increase in the computational requirement led to 
the automatic adjustment of the number of CPUs from 10 
up to 702 and the migration of QM simulations 244 times. 
The abrupt increases of the number of CPUs in Fig. 6 are 
due to the increase of QM regions from 5 to 6, which are 
also the results of automatic adjustment. Figures 5 and 6 
clearly show that the application is flexible enough to 
change the target cluster and adjust the number of CPUs 
automatically. 

Fault tolerance 
We observed faults in total of 770 times during the 
experiment, most of which took place in the invocation   
phase. Causes of the failure included: job manager of 
Globus was down; MPI process failed to get memories for 
inter-process communication; batch queue was not 
activated; and disk usage exceeded the quota limit. 
Although our application tried to reallocate the QM 
simulation on the same cluster, the possibility of success in 
reallocation was very low—less than 5%. It was because 
most causes of troubles described above were not resolved 
until we investigated the troubles and manually resolved 
them. In such cases, the code switched the target to the 
spare cluster.  

Figure 7 shows the typical behavior of the code in 
trouble. A vertical red line shows the end of a simulation 
step. Although the code tried to change target clusters for 
two QM simulations due to the expiration of reservation 
time, one of them failed in the invocation phase. After 

trying to re-allocate the simulation on the same cluster, the 
code decided to migrate the simulation again to the spare 
cluster, which fortunately succeeded in invoking the MPI 
processes. 

In the worst cases, the code allocated multiple QM 
simulations on the same virtual cluster, because the number 
of available clusters became less than the number of QM 
regions due to troubles. In such cases, we sometimes 
stopped and restarted the simulation manually, because 
serial execution of QM simulations severely degrades the 
performance. In spite of these accidents, our code continued 
running over 5 days without intervention in the best case, 
which corresponds to phase 3 and phase 4 in Fig. 5. 

Figure 6: Time evolution of the number of QM atoms 
and the number of processors used for QM simulations. 
Blue and magenta lines show the number of CPUs and 
the number of QM atoms, respectively. 
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Figure 7: Diagram showing intended and unintended migrations. A vertical red line is the end of a time step. 
 
During the simulation, time outing mechanisms of 

Ninf-G could detect 110 failures, which amounted to about 
15% of the total failures. For example, jobs stuck in a batch 
queue and exceeding the disk quota limit were detected by 
the time outing mechanism. This confirms that the detection 
mechanism for implicit errors is as important as that for 
explicit errors for sustainable Grid supercomputing. 

Scalability 
It should be pointed out that managing hundreds of 

processes efficiently is difficult using only GridRPC, 
because a single GridRPC client must send data to and 
retrieve results from many GridRPC servers [26]. Our 
approach manages hundreds of processes by organizing 
them into several MPI process groups, which resulted in the 
management cost less than few percent of the total cost in 
our experiment. This result suggests that our approach is 
scalable even if the number of processes increases to 
thousands, when scalable parallel algorithms are assigned to 
GridRPC servers. 

The execution efficiency of total simulation was about 
60%. The main reason of the performance degradation is 
the load imbalance among QM simulations. Since all the 
QM simulations need to be synchronized at each time step, 
most QM simulations have to wait for the completion of the 
last QM simulation. There are two causes of the load 
imbalance: the difference in the number of atoms among 
QM regions and the difference in the performance of target 
clusters. Since the computational cost of the QM simulation 
scales as O(N3), where N denotes the number of QM atoms, 
different number of QM atoms results in the different 
simulation time. Even if all QM simulations have the same 
number of QM atoms, different performance of clusters 
leads to the different simulation time. In order to alleviate 
the load imbalance, the scheduler allocated the QM 
simulation with the larger number of QM atoms on the 
faster cluster. However, more sophisticated method will be 
required to fully balance the load. 

The costs of fault detection and fault recovery were 
another source of performance degradation. For example, 
we observed that the cost of fault detection in the QM 
simulation phase became non-negligible as the simulation 
proceeded, because we had to set the value of the execution 
timeout larger than the simulation time for one time step. 
Callback function of Ninf-G, which provides a way to send 

the event back to the GridRPC client, may solve this 
problem. 

4.4 Lessons learned 
We gained the following insights through the 

experiment.  
Necessity of systematic cross-site reservation system: 

In this experiment, fault detection, fault recovery and 
migration based on a reservation schedule were automated, 
but the cross-site reservations were performed manually 
before the experiment was started. In some cases, the 
manual reservation caused troubles. For example, our 
submitted jobs were not activated (stuck in a queue) even 
after the reservation time started. This is not a technical 
problem, rather a human error. More easy/systematic 
operation for cross-site run is desirable so as to avoid mis-
configuration of the system.  

Support for dynamic scheduling: When our 
application detects faults, it tries to re-allocate the 
simulation on the same cluster. But the re-allocation often 
failed, because some causes of the failure, such as batch 
system was not activated and disc system was full, were not 
recovered at the re-allocation. We also encountered troubles 
in MPICH, which quitted the program without releasing 
resources for IPC and resulted in the memory fault at the re-
allocation. Although we reserved a spare cluster for such 
situations, it is generally difficult for users to reserve spare 
clusters. Finding and reserving idle clusters dynamically 
may alleviate the difficulty. There are some on-going 
researches on providing scheduling systems as a Grid 
service [31], [32]. Integrating these systems with our 
application to realize dynamic and fully-automated 
scheduling will be our future work.  

Support for coping with heterogeneity: Although Grid 
middleware hides heterogeneity in the Grid such as 
hardware or operating systems, we encountered troubles 
caused by heterogeneity lying in the system configuration. 
For example, PSC cluster requires the use of Application 
Gateway for enabling communication between backend 
nodes and the Internet. Also, max wall clock time for batch 
jobs, disk quota limit, firewall, etc., are different from site 
to site. Although we were able to overcome these 
differences by adapting Ninf-G, it would not be so easy to 
do the same for application users. We need to accumulate 

reservation 
 expired 

Intended migration

unintended migration
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and share information on such troubles among not only 
Grid middleware developers but also application users, and 
feed them back to the research on innovative technologies 
such as virtual machine. 

Necessity of general API for reservation-based 
sustained Grid supercomputing: A hybrid GridRPC + MPI 
approach is not specific to the multiscale MD/QM 
simulation but general for large-scale long-run applications 
which loosely couple several numbers of fine-grained 
parallel programs to calculate the result. For example, 
parameter survey applications such as genetic algorithm-
based optimization [33] as well as multi-disciplinary 
simulation such as fluid-structure coupled simulation [34] 
will be good candidates. Both examples execute parallel 
simulation programs on clusters that constitute the Grid. 
These simulations, implemented based on our approach, can 
be flexible, robust and scalable. Simulation programs based 
on divide-and-concur algorithm with varying computing 
load such as shock wave simulation [35] based on the 
adaptive mesh refinement method [36] will be another 
candidate for our approach. If the simulation program is 
allocated dynamically using GridRPC from a client that 
controls the execution of the simulation, the application can 
be tailored to automatically increase/decrease the number of 
CPUs according to the computing load. In order to facilitate 
the construction of such large-scale long-run Grid 
applications in various scientific domains, it is important to 
design a general API for reservation-based sustained Grid 
supercomputing. Such an API enables application 
programmers to Grid-enable their applications without 
worrying about low-level logics of resource allocation, 
migration, fault detection and fault recovery. One of our 
future works is to provide Grid services for sustainable 
adaptive Grid supercomputing via a general API which is 
implemented by integrating various Grid middleware such 
as Ninf-G and a Grid scheduling system. 

 
 
 

4.5 Application results  
Present multiscale MD/QM simulation provides useful 
information to improve the SIMOX technique. We have set 
the same incident velocity to all the five oxygen atoms but 
found that the migration of oxygen is highly sensitive to the 
incident position. In two cases at regions R1 and R3 in Fig. 8, 
the oxygen atoms are rather ballistic and lose only 5-15% of 
the incident velocity at 54fs, whereas in other three cases 
(R2, R4, and R5), the oxygen atoms change their direction of 
motion toward 〈111〉 and lose 30-60% of the incident 
velocity at 54fs, accompanied by recoil motion of a few Si 
atoms hit by the oxygen atoms. These results indicate that 
the eventual penetration depths will differ substantially in 
the five cases. Such high sensitivity of oxygen penetration 
depth should be taken into consideration in extending the 
SIMOX technique to lower incident energies. 

5 Conclusions 
We have demonstrated a large adaptive multiscale 

MD/QM simulation of considerable scale (involving over 
1,000 processors) and duration (over tens of continuous 
days) on a Grid of geographically distributed parallel 
supercomputers in Japan and the US, in which the number 
of processors change dynamically on demand and resources 
are allocated and migrated dynamically according to both 
reservations and unexpected faults. The proposed 
reservation-based sustainable adaptive Grid 
supercomputing paradigm has been proven to be a 
promising approach towards sustained Grid supercomputing 
— when combined with enabling algorithmic and systems 
techniques: scalable algorithms based on the embedded 
divide-and-conquer framework; adaptive MD/QM 
boundary management to maintain the model accuracy 
based on the buffered-cluster hybridization scheme; and the 
combined GridRPC + MPI Grid application framework to 
achieve flexibility (adaptive resource allocation and 

Figure 8: Snapshots of the multiscale MD/QM simulations of SIMOX at time 20fs (left) and 54fs (right), where red and 
blue spheres are quantum and classical Si atoms, respectively and yellow spheres are oxygen atoms. Five oxygen atoms 
are injected at the kinetic energy of 240eV perpendicular to Si(100) surface, where all the surface dangling bonds are 
saturated by hydrogen atoms. Five QM regions R1-R5 (indicated with arrows) are assigned, corresponding to the five 
oxygen atoms. Each QM region expands and changes its shape following the migration of the oxygen atom and the 
breakage and reconstruction of Si-Si bonds. 
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migration), fault tolerance (automated fault recovery), and 
scalability. Such ultrascale atomistic simulations are 
expected play an important role in the design of future high 
speed and low power-consumption semiconductor devices, 
as the present simulation results on SIMOX (separation by 
implanted oxygen) processing of semiconductor devices 
indicate. 
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