

ParaViz: A Spatially Decomposed Parallel Visualization
Algorithm Using Hierarchical Visibility Ordering

Cheng Zhang1, Scott Callaghan2, Thomas Jordan2, Rajiv K. Kalia1,

Aiichiro Nakano1*, Priya Vashishta1

1 Collaboratory for Advanced Computing and Simulations, Department of Computer Science, Department of
Physics & Astronomy, Department of Chemical Engineering & Materials Science,

University of Southern California, Los Angeles, CA 90089-0242, USA
{chengz,rkalia,anakano,priyav}@usc.edu

2 Southern California Earthquake Center, University of Southern California,
Los Angeles, CA 90089-0742, USA

{scottcal,tjordan}@usc.edu

Abstract. A scalable parallel visualization algorithm has been designed to visualize large
datasets that are spatially decomposed onto processors of a massively parallel computer. The
ParaViz algorithm, which is based on hybrid sort-first/sort-last parallel visualization, employs
distributed visibility ordering to implement a scalable hierarchical depth buffer. A visibility
rank is computed for each processor depending on its relative position from the viewpoint.
After each processor rasterizes its own primitives, individually rendered sub-images are hier-
archically reduced to a final image using their visibility ranks. This technique allows on-the-
fly visualization of parallel simulation data without data migration. The algorithm has been
tested on 8–1,024 processors for molecular-dynamics simulation data. In a weak-scaling test
consisting of 64,000 spherical objects (atoms) per processor, the image integration time of the
ParaViz algorithm is 40–50% less than that of the conventional global Z-buffer approach. A
strong-scaling test involving 16,777,216 atoms achieves a parallel efficiency of 0.98 on 1,024
processors.

Keywords: parallel visualization, distributed visibility ordering, sort-first and sort-last schemes,
Z-buffer, hierarchical communication scheme, molecular dynamics simulation.

* Corresponding Author. Email: anakano@usc.edu.

International Journal of Computational Science
1992-6669 (Print) 1992-6677 (Online) © Global Information Publisher
2007, Vol. 1, No. 4, 407-421

A Spatially Decomposed Parallel Visualization Algorithm

407GLOBAL INFORMATION PUBLISHER

1 Introduction

Computer visualization is an important tool for data analysis and presentation in computational
sciences, where it is used to effectively extract and convey information contained in large datasets.
However, continued growth in computing power has led to ever-larger scientific datasets that
conventional single-processor visualization cannot support. Consequently, various parallel-rendering
schemes have been proposed to decompose the visualization load onto multiple processors [1].
Software solutions utilize task parallelism [2] or data parallelism, which include sort-first, sort-
middle, and sort-last schemes for spatial distribution of data [3]. Sort-first schemes redistribute
raw primitives during geometry processing; sort-middle schemes redistribute screen-space primi-
tives between geometry processing and rasterization; and sort-last solutions redistribute pixels
during rasterization. Corresponding hardware solutions utilize distributed- or shared-memory
systems to replace single graphics workstations. Open-source parallel visualization toolkits (such
as VTK [4, 5]) and parallel scientific visualization applications (such as ParaView [6] and Data-
View [7]) are also available. VTK [4, 5] is a multi-platform parallel class library that uses a higher
level of abstraction than OpenGL to render complex systems on cluster computers. ParaView [6]
is a versatile parallel renderer and viewer implemented with the message passing interface (MPI)
for various types of distributed systems. DataView [7] performs interactive rendering of large-
scale scientific data using a client-server model implemented on a PC cluster.

A number of parallel rendering algorithms have been designed to utilize clusters containing
graphics processing units (GPUs). Samanta et al. [8] proposed a hybrid sort-first and sort-last
approach to render polygons on GPUs, which assigns each processor a partition of objects and a
partition of image space. Liang et al. [9] used dynamic data distribution on a Sepia cluster to sup-
port interactive investigation of fine structures in large particle datasets. Magallón et al. [10] pro-
posed a commodity off the shelf (COTS) sort-last solution for inexpensive distributed volume
rendering. This approach was extended by Strenger et al. [11] to include wavelet compression and
depth-sorted blending based on volume brick footprints to minimize blending operations. How-
ever, as the majority of existing multi-teraflops and future petaflops computers lack GPUs in the
computing nodes, it is essential to use their central processing units (CPUs) for both computing
and visualization. Mitra and Chiueh [12] have explored this idea by implementing a parallel ver-
sion of the Mesa graphics library to handle communication and image composition on large com-
putational clusters.

All parallel visualization algorithms require a data decomposition/sub-image compositing
scheme [1]. For example, the image-space decomposition scheme distributes primitives using their
screen coordinates and directly patches sub-images into a final image. Alternatively, object-space
decomposition distributes primitives using their spatial world coordinates, and thus it requires
depth comparison of sub-images for compositing. For large-scale simulation data, which are often
spatially decomposed with a unique region assigned to each processor, object-space decomposi-
tion is more efficient, since sub-image sorting is much less time consuming than redistributing
large datasets. Parallel visualization exploiting spatial decomposition has been implemented in

International Journal of Computational Science

GLOBAL INFORMATION PUBLISHER408

2 ParaViz Algorithm

2.1 Basic Methodology

The fundamental challenge in visualizing a spatially decomposed dataset on a parallel computer is
the hidden-surface problem, that is, the task to determine which primitives are visible and which
are obscured. The traditional hidden-surface algorithms, summarized by Sutherland et al. [18]
decades ago, have proved efficient for moderate-sized data stored in a single computer. However,
the standard solution of maintaining a single depth buffer for the entire system, though simple,
does not scale well to large numbers of processors. Additionally, it requires the depth buffer size
to increase with the system size in order to maintain adequate precision.

Our approach exploits the features of spatial decomposition and uses a visibility ordering of
processors instead of a global Z-buffer, allowing for substantial savings in integration time. Visi-
bility ordering of objects was pioneered by Schumacker et al. and reviewed in [18] and Newell et
al. [19], and has been employed and extended in a number of visualization algorithms [20-23]. By
definition, visibility ordering is a topological ordering of objects with planar interfaces for correct
hidden-surface elimination. The ordering sequence depends on the viewpoint position. We extend

A Spatially Decomposed Parallel Visualization Algorithm

409GLOBAL INFORMATION PUBLISHER

GeoFEM [13], a large-scale finite element analysis platform that uses the Earth Simulator to visu-
alize volumetric data, and in SLIC [14], a sort-last algorithm that classifies rendered pixels and
creates a compositing schedule for each processor.

Multiple techniques have been used for performing depth comparisons during integration. Mitra
and Chiueh [12], Samanta et al. [8], and Li et al. [15] used a global Z-buffer, while others such as
Chen et al. [13], Bethel et al. [16], and Strengert et al. [11] used a similar approach with larger granu-
larity, assigning depth buffer values to groups of primitives. These global Z-buffer implementations
can become a critical bottleneck when visualizing large systems on high-end parallel computers, e.g.,
a quantum-mechanical simulation involving 1.04 trillion grid points or a molecular dynamics (MD)
simulation of 134 billion atoms on 131,072 BlueGene/L processors [17]. In this paper, we propose
an algorithm named ParaViz, which is scalable on high-end parallel computers as well as on future
multi-petaflops computing platforms. The algorithm requires no migration of data, which would
be extremely expensive on various emerging architectures such as cell-processor systems. Fur-
thermore, the algorithm enables concurrent visualization and computation with a hierarchical
depth buffer based on visibility ordering and a hybrid sort-first/sort-last scheme.

The main contributions of this paper are an efficient algorithm for large-scale parallel visualiza-
tion of spatially decomposed datasets, and its simple implementation that is faster than the conven-
tional Z-buffer implementation and exhibits excellent scalability. The rest of the paper is organ-
ized as follows. Section 2 describes the ParaViz algorithm, and numerical results are presented in
Section 3. Conclusions and future directions are contained in Section 4.

this concept to implement visibility ordering of parallel processors in a spatially decomposed sys-
tem. Assuming two adjacent processors with a planar interface (common in spatial decomposition
for parallel computing), one processor is “in front”, i.e., on the same side of the interface with the
viewpoint. Primitives contained in the front processor may occlude those in the other, but not vice
versa. If the viewpoint happens to be on the interface, either processor can be defined as frontal.
By definition, any total ordering assigning a smaller visibility rank to the front processor in each
adjacent pair is a visibility ordering [21], where a processor may occlude one with a larger rank,
but not one with a smaller or equal rank (see the theorem below). With a processor visibility or-
dering, one can easily sort sub-images generated by individual processors in depth. However, in
practice, it is costly and impractical to compute visibility ordering through pair-wise comparisons.
Instead, we exploit features of common spatial decomposition and have each processor compute
its own visibility order independently.

Theorem:
In a visibility ordering, a processor cannot occlude one with a smaller or equal visibility rank.
Proof:
Let P1 and P2 be two adjacent processors with a planar interface in a visibility ordering, where

P1 is on the same side with the viewpoint and has a smaller visibility rank than P2. Suppose that
P2 occludes P1, which implies a line of sight starting from the viewpoint and passing through P2
into P1. Therefore, the line must pass through P2 before it crosses the interface. This contradicts
that P2 is on the other side of the interface from the viewpoint; therefore, P2 cannot occlude P1.
Due to transitive nature of both occlusion relation and inequality relation in a total ordering, the
occlusion relation applies to any pair of processors with visibility rank inequality and thus it com-
pletes the proof.

After computing its own visibility rank, each processor proceeds to render primitives in its as-
signed region using universal visualization parameters (such as view angle and frustum planes).
The spatial localization of primitives makes ParaViz partially sort-first. Subsequently, the indi-
vidually rendered sub-images are assigned the visibility rank of their native processors and inte-
grated in a hierarchical fashion. At each step, the opaque pixels of the front sub-image (lower
visibility rank) are superimposed on the back sub-image to generate the new sub-image, whose
visibility rank is set to the lower of the two. This process is repeated recursively until all sub-
images are reduced to a final image that contains the entire rendered system. This makes ParaViz
partially sort-last, since pixels must be sorted in image composition. Overall, ParaViz is a hybrid
sort-first and sort-last approach, allowing us to capitalize on spatial decomposition without main-
taining a costly global Z-buffer.

The present algorithm has a lower time complexity than the traditional Z-buffer approach. In
order to render N primitives on P processors, each processor on average renders N/P primitives.
Since the traditional Z-buffer approach needs logN bits to store the depth information correctly for
the global system, the computational cost for each processor to sort the primitives is O((N/P)logN).
The ensuing hierarchical communication consists of logP levels, and O(logN) bits must be com-
municated at each level. On the other hand, ParaViz only requires log(N/P) bits to maintain a local

International Journal of Computational Science

GLOBAL INFORMATION PUBLISHER410

Z-buffer. Its computational cost for sorting primitives is O((N/P)log(N/P)). In image integration,
only a single value of depth information, the visibility rank, is communicated, reducing communi-
cation cost to O(logP). The resulting time complexity of the ParaViz algorithm is O((N/P)log(N/P)
+logP), which is significantly lower than the O((N/P)logN+logPlogN) complexity of the Z-buffer
approach.

2.2 Implementation

Our implementation of ParaViz is written in the C language, with the message passing interface
(MPI) library [24] for interprocessor communication. It also uses the Mesa [25] implementation of
OpenGL for software rendering, which enables it to run on clusters that are not equipped with
GPUs. Although ParaViz works for any system decomposed into a 3D parallelepiped mesh, the
implementation presented below is for a regular orthogonal 3D mesh — a common decomposition
scheme in parallel computing.

Each processor first computes its visibility rank as shown in Table 1.

Table 1. Visibility-rank algorithm

Algorithm visibility_rank
Input:

local processor position indices zi (i ∈ {1, 2, 3} for the x, y, and z directions)
viewpoint coordinates Xi
cell dimensions Li

Output
visibility rank R

Steps:
for i = 1 to 3

Di ← ⎢zi – ⎣Xi / Li⎦⎟
end for

3

1
i

i

R D
=

←∑

In the general case with a parallelepiped mesh, each processor calculates the global processor
coordinates (integers) of the viewpoint, using the viewpoint location and metadata regarding the
spatial decomposition (see Fig. 1). If the viewpoint lies outside the system, one or more indices
will be negative. The rank is calculated by summing the absolute differences between the view-
point’s integer coordinates and the processor’s integer coordinates in each dimension. Because
such an ordering is a topological ordering (thus a total ordering) and consistent with the occlusion
relation for neighboring pairs, it is a visibility ordering. In our implementation, processors of
lower visibility ranks are in front of those of higher ranks. While multiple processors can have the
same visibility rank, they are guaranteed to have no overlap from the viewer’s perspective and
therefore no conflict when integrating.

A Spatially Decomposed Parallel Visualization Algorithm

411GLOBAL INFORMATION PUBLISHER

Fig. 1. (a) A 2-dimensional illustration, in which each processor determines the integer coordinates (brack-
eted) of the viewer’s position using the viewer’s location and the spatial decomposition parameters.
Its own integer coordinates (i.e., global indices; bracketed) are already known from the system setup
(b) In each dimension, the integer distance between the viewer and the processor is calculated and
summed to obtain the processor’s visibility rank (variable d in the figure, the total integer distance
from the viewpoint). In this example lower visibility ranks correspond to front processors (filled with
lighter shade)

Subsequently, each processor renders its own primitives into a memory buffer of the size with
the final image. We use back-face culling to speed up the rendering process, and future versions of
ParaViz will include probabilistic occlusion culling and other advanced optimizations [26].

After the individual primitives are rendered, the buffers from each processor are integrated us-
ing a hierarchical scheme. Reduction is done first in the x dimension, then y and z, compressing
the 3D system first onto a plane of processors, then a rcolumn, and finally a single processor that
produces the final image. In each dimension, the reduction process follows a hierarchical scheme
illustrated in Fig. 2, which works for an arbitrary number of processors in each dimension (see
Table 2). For every communicating pair, the lower indexed processor merges two sub-images,

International Journal of Computational Science

GLOBAL INFORMATION PUBLISHER412

using visibility ranks for pixel sorting (see Table 3). To reduce integration time, we identify the
first and last non-empty pixels in each sub-image buffer (a 1D array in memory). Only those pix-
els within the range are sent and integrated, avoiding communication and comparison of empty
margin pixels.

Table 2. Image reduction algorithm

 Algorithm image_reduction
Input:
 local processor position indices zi (i ∈ {1, 2, 3} for the x, y, and z directions)
 number of processors in ith dimension Pi (i ∈ {1, 2, 3})
 sub-images and visibility ranks from individual processors
Output:
 globally-reduced total image
Steps:
 done ← 0
 for i = 1 to 3
 n ← 1
 while 2n <= Pi do
 if done = 0
 if the nth bit of zi is 0
 qi ← zi + 2n−1
 if qi < Pi
 receive sub-image and visibility rank from qi
 integrate the two image buffers
 end if
 else
 qi ← zi − 2n−1
 send its sub-image buffer and visibility rank to qi
 done ← 1
 end if
 end if
 n ← n + 1
 end while
 end for

A Spatially Decomposed Parallel Visualization Algorithm

413GLOBAL INFORMATION PUBLISHER

Fig. 2. Illustration of the hierarchical communication scheme for eight processors in 1D. For each of n =
logP steps, processors with ID mod 2n = 0 receive the sub-image from the processor whose ID differs
only in the nth bit. The communication scheme also works for an arbitrary number of processors in
each dimension

Table 3. Buffer integration algorithm

 Algorithm buffer_integration
Input:
 visibility rank of local buffer Rlocal
 visibility rank of received buffer Rreceived
Output:
 integrated image
Steps:
 determine the union of pixel bounding ranges of two sub-images
 if Rlocal < Rreceived
 for all pixels in the union range
 if the pixel in the local sub-image is empty
 replace it by the corresponding pixel in the received sub-image
 end if
 end for
 else
 for all pixels in the union range
 if the pixel in the received sub-image is non-empty
 replace the corresponding pixel in the local sub-image
 end if
 end for
 end if
 Rlocal ← min(Rlocal, Rreceived)

International Journal of Computational Science

GLOBAL INFORMATION PUBLISHER414

Upon completion of the integration stage, the combined image buffer resides on the head proc-
essor (processor with index 0 in all three dimensions). This image could then be written to disk or
transferred through a network to display on a client machine.

3 Results

We test the ParaViz algorithm on a Linux cluster consisting of 256 nodes, each with two dual-core
Opteron 2GHz processors and 4GB RAM (totaling 1,024 cores and 1TB RAM). We compare the
performance of ParaViz to that of a conventional global Z-buffer implementation for a molecular
dynamics (MD) simulation dataset consisting of millions of atoms. Both ParaViz and the global Z-
buffer implementation use the same software rendering code, which renders each atom as a sphere.

We first perform weak-scaling tests, in which the number of spherical objects (atoms) per proc-
essor is fixed as 64,000 while varying the number of processors P from 8 to 1,024. Figure 3 shows
that ParaViz is 40−50 percent faster than the global Z-buffer implementation in sub-image integra-
tion. The dips in the integration time curve at 128 and 1,024 processors are due to viewpoint repo-
sition for a fixed horizontal viewing angle. When the system expands in the horizontal direction,
the viewpoint is moved away from the system. This causes fewer pixels to be rendered by each
processor and less data sent and processed during integration. To keep the system as close to cubic
as possible, the number of processors is doubled each step in a cyclic order of width, depth and
then height. From 64 to 128 (and from 512 to 1,024) the number of processor is doubled in the
horizontal direction (width), therefore the viewpoint is repositioned and integration time decreases
correspondingly. Expansion in other dimensions does not result in a viewpoint shift; thus the inte-
gration time increases due to more communication.

Since ParaViz uses the same rendering code as the Z-buffer implementation, they have similar
rendering time, which can be reduced using advanced techniques such as occlusion culling. How-
ever, this paper focuses on reducing the integration time—the bottleneck to achieve scalable visu-
alization on a large number of processors. The results presented in this section show that the
ParaViz algorithm is significantly faster than the global Z-buffer implementation in integration
time for intermediate to large numbers of processors. For small numbers of processors, on the
other hand, the advantage of ParaViz is less significant. The speed difference is expected to in-
crease for larger numbers of processors, e.g., on the 131,072-processor IBM BlueGene/L men-
tioned previously. This can be deduced from the two algorithms’ different parallel computational
complexities shown in the previous section. In addition, on each processor, ParaViz uses fewer
bits for pixel depth than the global Z-buffer implementation, because it only maintains depth
metadata within individual subspaces. This allows for improved depth resolution with the same
memory resources, a negligible advantage for small systems but significant for systems with large
numbers of pixels. For both implementations, the integration time increases with the number of
processors due to increased communication. However, the rendering time decreases, because each
processor renders fewer pixels as the number of processors increases.

A Spatially Decomposed Parallel Visualization Algorithm

415GLOBAL INFORMATION PUBLISHER

Fig. 3. The integration (a) and rendering (b) times of the global Z-buffer approach and ParaViz on 8–1,024
processors for 64,000 atoms per processor. The integration time of ParaViz is consistently shorter by
40–50%

Next, we perform strong-scaling tests, in which ParaViz is used to visualize a MD simulation
dataset of 16,777,216 atoms using 8 to 1,024 processors (see Fig. 4). As the number of processors

Fig. 4. Strong-scaling results for the rendering (circles) and integration (squares) times of ParaViz for an MD
simulation data consisting of N = 16,777,216 atoms on P = 8–1,024 processors. Rendering time is
roughly proportional to N/P, and the integration time increases moderately with P

International Journal of Computational Science

GLOBAL INFORMATION PUBLISHER416

increases, the rendering time decreases in proportion to the number of atoms being rendered per
processor (∝ N/P). Integration time, in contrast, slowly increases proportionally to logP due to
increased communication. Figure 4 thus demonstrates the tradeoff between decreasing rendering
time and increasing integration time as a function of the number of processors. Since the rendering
time is dominant, the overall effect of parallelism is a monotonically decreasing computing time
up to at least 1,024 processors.

To quantify the algorithm’s efficiency, the speed is defined as the inverse of visualization wall
clock time. The speedup is the speed on P processors divided by the speed on one processor, and
normalized such that the speedup on eight processors is 8. We also define the parallel efficiency as
the speedup divided by the number of processors. Figure 5 shows the strong-scaling speedup of
ParaViz for the same dataset as in Fig. 4 (i.e., 16,777,216 atoms on 8 to 1,024 processors). The
strong-scaling parallel efficiency obtained from Fig. 5 is 0.98 on 1,024 processors, which is close
to the ideal value of 1.0, signifying the excellent scalability of our algorithm.

Fig. 5. The strong-scaling speedup of the ParaViz algorithm (circles) compared to the ideal speedup (dashed

line) for an MD dataset consisting of 16,777,216 atoms on 8–1,024 processors

ParaViz has been used extensively to visualize large MD simulations of material processes such
as hypervelocity impact [27], fracture [28], and indentation [29]. A nanocrystalline alumina (n-
Al2O3) system containing 40 million atoms is visualized using ParaViz on 1,024 processors (Figs.
6a and 6b). An α-alumina single crystal of 540 million atoms under hypervelocity impact is visu-
alized on as many processors (Fig. 6c).

A Spatially Decomposed Parallel Visualization Algorithm

417GLOBAL INFORMATION PUBLISHER

Fig. 6. (a) Nanophase ceramic material consisting of 512 crystalline alumina (Al2O3) nano-particles (totaling

40 million atoms) visualized with ParaViz, where each nano-particle is distinguished by color. The
system is viewed along a diagonal of the y-z plane (the x axis lies in the horizontal direction)
(b) A close-up image of the boxed region in (a)
(c) An alumina substrate consisting of 540 million atoms under hypervelocity impact at 18km/s. The
atoms are color-coded based on pressure values

International Journal of Computational Science

GLOBAL INFORMATION PUBLISHER418

4 Conclusion

For massive datasets generated by scientific computing, visualization has become highly challeng-
ing. To utilize high performance computing clusters for real-time rendering of spatially decom-
posed computational data, we have designed and implemented ParaViz, a hybrid sort-first/sort-last
visualization algorithm with a scalable hierarchical depth buffer. Using viewpoint-dependent visi-
bility ordering of processors to sort sub-images during integrated rasterization, we gain a speedup
of 40−50% over the traditional global Z-buffer implementation. ParaViz also scales well with
large numbers of processors and supports real-time visualization. Although our work has been
focused on visualizing molecular-dynamics simulation data, the proposed scheme can be applied
in other fields of research with intensive visualization requirements.

In our current implementation using Mesa, the majority of execution time is spent in the indi-
vidual rendering pipeline. By applying advanced rendering techniques such as occlusion culling,
we expect to substantially reduce the execution time. As the number of processors grows, the load
imbalance increases since the processors closer to the viewer span a larger view angle than those
farther away. Thus a load-balancing scheme will reduce the idle time of processors with less in-
tensive rendering demands. We are also extending ParaViz to handle parallel volume rendering.

Acknowledgements

This work was partially supported by ARO—MURI, DOE—SciDAC, DTRA, and NSF. Numeri-
cal tests were performed using the 5,384-processor Linux cluster at the Research Computing Fa-
cility and the 2,048-processor Linux cluster at the Collaboratory for Advanced Computing and
Simulations of the University of Southern California.

References

1. Crockett, T.W.: An introduction to parallel rendering. Parallel Computing 23 (1997) 819-843
2. Ahrens, J., Brislawn, K., Martin, K., Geveci, B., Law, C.C., Papka, M.: Large-scale data visualization

using parallel data streaming. Ieee Computer Graphics and Applications 21 (2001) 34-41
3. Molnar, S., Cox, M., Ellsworth, D., Fuchs, H.: A Sorting Classification of Parallel Rendering. Ieee Com-

puter Graphics and Applications 14 (1994) 23-32
4. Ahrens, J., Law, C., Schroeder, W., Martin, K., Papka, M.: A parallel approach for efficiently visualizing

extremely large, time-varying datasets. Technical Report. Los Alamos National Laboratory (2000)
5. Schroeder, W.J., Martin, K., Lorensen, W.: The Visualization Toolkit. Kitware, Inc., (2003)
6. Law, C.C., Henderson, A., Ahrens, J.: An application architecture for large data visualization: a case

study. IEEE 2001 symposium on parallel and large-data visualization and graphics. San Diego, Califor-
nia, United States (2001) 125-159

A Spatially Decomposed Parallel Visualization Algorithm

419GLOBAL INFORMATION PUBLISHER

7. Slottow, J., Shahriari, A., Stein, M., Chen, X., Thomas, C., Ender, P.B.: Instrumenting and tuning data-
View - a networked application for navigating through large scientific datasets. Software-Practice & Ex-
perience 32 (2002) 165-190

8. Samanta, R., Funkhouser, T., Li, K., Singh, J.P.: Hybrid sort-first and sort-last parallel rendering with a
cluster of PCs. ACM SIGGRAPH/EUROGRAPHICS workshop on graphics hardware. Interlaken, Swit-
zerland (2000) 97-108

9. Liang, K., Monger, P., Couchman, H.: Interactive parallel visualization of large particle datasets. Parallel
Computing 31 (2005) 243-260

10. Magallón, M., Hopf, M., Ertl, T.: Parallel Volume Rendering Using PC Graphics Hardware. Ninth Pa-
cific Conference on Computer Graphics and Applications (2001) 384-389

11. Strengert, M., Magallón, M., Weiskopf, D., Guthe, S., Ertl, T.: Large volume visualization of compressed
time-dependent datasets on GPU clusters. Parallel Computing 31 (2005) 205-219

12. Mitra, T., Chiueh, T.: Implementation and Evaluation of the Parallel Mesa Library. International Confer-
ence on Parallel and Distributed Systems. Taiwan (1998) 84-91

13. Chen, L., Fujishiro, I., Nakajima, K.: Optimizing parallel performance of unstructured volume rendering
for the Earth Simulator. Parallel Computing 29 (2003) 355-371

14. Stompel, A., Ma, K., Lum, E., Ahrens, J., Patchett, J.: SLIC: Scheduled Linear Image Compositing for
Parallel Volume Rendering. IEEE Symposium on Parallel and Large-Data Visualization and Graphics
(2003) 6-13

15. Li, P.P., Duquette, W.H., Curkendall, D.W.: RIVA: A versatile parallel rendering system for interactive
scientific visualization. Ieee Transactions on Visualization and Computer Graphics 2 (1996) 186-201

16. Bethel, E.W., Greg, H., Brian, P., Brederson, J.D.: Sort-First, Distributed Memory Parallel Visualization
and Rendering. Proceedings of the 2003 IEEE Symposium on Parallel and Large-Data Visualization and
Graphics (2003) Pages

17. Nakano, A., Kalia, R., Nomura, K., Sharma, A., Vashishta, P., Shimojo, F., van Duin, A.C.T., Goddard,
W.A., III, Biswas, R., Srivastava, D.: De Novo Ultrascale Atomistic Simulations on High-end Parallel
Supercomputers. International Journal of High Performance Computing Applications (2006)

18. Sutherland, I.E., Sproull, R.F., Schumacker, R.A.: A Characterization of Ten Hidden-Surface Algorithms.
ACM Comput. Surv. 6 (1974) 1-55

19. Newell, M.E., Newell, R.G., Sancha, T.L.: A solution to the hidden surface problem. Proceedings of the
ACM annual conference 1. Boston, Massachusetts, United States (1972) 443-450

20. Frieder, G., Gordon, D., Reynolds, R.A.: Back-to-Front Display of Voxel-Based Objects. Ieee Computer
Graphics and Applications 5 (1985) 52-60

21. Williams, P.L.: Visibility Ordering Meshed Polyhedra. Acm Transactions on Graphics 11 (1992) 103-
126

22. Callahan, S.P., Ikits, M., Comba, J.L.D., Silva, C.T.: Hardware-assisted visibility sorting for unstructured
volume rendering. Ieee Transactions on Visualization and Computer Graphics 11 (2005) 285-295

23. Cook, R., Max, N., Silva, C.T., Williams, P.L.: Image-space visibility ordering for cell projection volume
rendering of unstructured data. Ieee Transactions on Visualization and Computer Graphics 10 (2004)
695-707

International Journal of Computational Science

GLOBAL INFORMATION PUBLISHER420

24. MPI homepage: http://www.mpi.org
25. Mesa homepage: http://mesa3d.sourceforge.net/
26. Sharma, A., Nakano, A., Kalia, R.K., Vashishta, P., Kodiyalam, S., Miller, P., Zhao, W., Liu, X.L.,

Campbell, T.J., Haas, A.: Immersive and interactive exploration of billion-atom systems. Presence-
Teleoperators and Virtual Environments 12 (2003) 85-95

27. Branicio, P.S., Kalia, R.K., Nakano, A., Vashishta, P.: Shock-induced structural phase transition, plastic-
ity, and brittle cracks in aluminum nitride ceramic. Physical Review Letters 96 (2006) 065502

28. Lu, Z., Nomura, K., Sharma, A., Wang, W.Q., Zhang, C., Nakano, A., Kalia, R., Vashishta, P., Bouchaud,
E., Rountree, C.: Dynamics of wing cracks and nanoscale damage in glass. Physical Review Letters 95
(2005) 135501

29. Szlufarska, I., Nakano, A., Vashishta, P.: A crossover in the mechanical response of nanocrystalline
ceramics. Science 309 (2005) 911-914

A Spatially Decomposed Parallel Visualization Algorithm

421GLOBAL INFORMATION PUBLISHER

