
Computer Physics Communications 175 (2006) 339–347

www.elsevier.com/locate/cpc

Collision-free spatial hash functions for structural analysis of billion-vertex
chemical bond networks

Cheng Zhang a, Bhupesh Bansal a, Paulo S. Branicio a,c, Rajiv K. Kalia a, Aiichiro Nakano a,∗,
Ashish Sharma a,b, Priya Vashishta a

a Collaboratory for Advanced Computing and Simulations, Department of Computer Science, Department of Physics & Astronomy,
Department of Chemical Engineering & Materials Science, University of Southern California, Los Angeles, CA 90089-0242, USA

b Department of Biomedical Informatics, Ohio State University, Columbus, OH 43210, USA
c Departmento de Física, Universidade Federal de São Carlos, São Carlos, SP 13565, Brazil

Received 1 May 2006; received in revised form 7 June 2006; accepted 13 June 2006

Available online 20 July 2006

Abstract

State-of-the-art molecular dynamics (MD) simulations generate massive datasets involving billion-vertex chemical bond networks, which makes
data mining based on graph algorithms such as K-ring analysis a challenge. This paper proposes an algorithm to improve the efficiency of ring
analysis of large graphs, exploiting properties of K-rings and spatial correlations of vertices in the graph. The algorithm uses dual-tree expansion
(DTE) and spatial hash-function tagging (SHAFT) to optimize computation and memory access. Numerical tests show nearly perfect linear scaling
of the algorithm. Also a parallel implementation of the DTE + SHAFT algorithm achieves high scalability. The algorithm has been successfully
employed to analyze large MD simulations involving up to 500 million atoms.
© 2006 Elsevier B.V. All rights reserved.

PACS: 07.05.Kf; 07.05.Tp; 61.43.Bn; 61.72.Ff; 82.20.Wt; 89.20.Ff

Keywords: Ring analysis; Topological network; Molecular dynamics simulation; Spatial hash function
1. Introduction

Chemical bond networks are widely used to characterize the
structure of materials in solid and liquid phases. Topological
analysis of a chemical bond network, e.g., its connectivity and
planarity, is essential to understand its physical, chemical and
biological properties [1–3]. In such analysis, the structure of a
material is abstracted as a topological network or a graph, in
which the vertices are atoms and the edges are chemical bonds.
Bonds are typically defined between a pair of atoms, for which
Pauling’s bond order has a value larger than a threshold value
or the pair distance is less than a cutoff radius. Most graph-
based data mining tools such as SUBDUE [4] and MolFea [5]
use such abstractions to study materials and biological systems
[6,7]. The popularity of graph mining has soared in recent years

* Corresponding author.
E-mail address: anakano@usc.edu (A. Nakano).
0010-4655/$ – see front matter © 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.cpc.2006.06.001
[8] in part due to the ever-increasing size and complexity of the
chemical networks that are simulated. For such large graphs,
structural-analysis algorithms with computational complexity
higher than O(n) (n is the number of vertices) are impractical.

Large graph datasets are commonly found in molecular dy-
namics (MD) simulations, which model materials as a set of
atoms, with state-of-the-art MD simulations involving multibil-
lion atoms. Various graph algorithms have been used to analyze
MD datasets in the past. An example is ring analysis [9], which
has been used to characterize topological order of amorphous
materials [10] and to identify and track topological defects such
as dislocations [11,12]. Efficient algorithms with near linear
scaling are vital for such analysis, especially if the analysis is
to be performed in real time during simulation.

In this paper, we present a ring-analysis algorithm that
employs dual-tree expansion (DTE) [13] and a spatial hash-
function tagging (SHAFT) technique. SHAFT utilizes spatial
information on the vertices to design a compact collision-free

http://www.elsevier.com/locate/cpc
mailto:anakano@usc.edu
http://dx.doi.org/10.1016/j.cpc.2006.06.001

340 C. Zhang et al. / Computer Physics Communications 175 (2006) 339–347
hash function [14]. The DTE + SHAFT algorithm is paral-
lelized based on spatial decomposition. Numerical tests show
nearly linear scaling of the algorithm as a function of the prob-
lem size as well as high parallel efficiency. In the next section,
we present the DTE + SHAFT algorithm for ring analysis of a
graph and its parallelization. Section 3 discusses the results of
numerical experiments. Finally discussions and a summary are
given in Sections 4 and 5, respectively.

2. Algorithm

To explain our approach, we first define several terminolo-
gies and discuss underlying assumptions.

Definition 1 (Topological network). A topological network (or
graph) G = (V ,E) consists of a set of vertices V and a set
of edges E, which connect various vertices. A vertex y is a
neighbor of x only if they share an edge. In the scope of a
chemical bond network, we assume all networks to be undi-
rected without loops [15]. The vertex degree of vertex v in G

is the number of edges shared by v with other vertices. A path
p = (v0, v1, v2, . . . , vk) from v0 to vk is a sequence of vertices
such that (vi, vi+1) is an edge in the network, where 0 � i < k.
The topological distance between two vertices is defined as the
length of the shortest path that connects them. A ring in a net-
work is defined as a closed path, in which vk is equal to v0
with no other recurrence in the sequence. A ring R is called
P -irreducible, if R is the shortest ring containing the path P .
There are several criteria for irreducibility, but our algorithm is
based on the K-ring criterion proposed by King [9].

Definition 2 (K-ring). Given a vertex x and two of its neigh-
bors w and y, a K-ring generated by triplet (w,x, y) is any ring
that contains edges (w,x) and (x, y) and has a shortest path
(w,y) in G − x. Here, if x is a vertex in G,G − x is the net-
work obtained by deleting x from V and all edges containing x

from E [15].

A K-ring for a vertex x is the shortest path between two
neighboring vertices of x. For example, the paths highlighted
by solid lines in Figs. 1(a), 1(b) and 1(c) are K-rings for node x,
but the path in Fig. 1(d) is not. This is because the path shown
in Fig. 1(d) is not the shortest path between the two neighbors
of x, i.e., vertices P and R. Therefore, vertex X in Fig. 1 has
only 3 four-member K-rings.
It is important to note that a given vertex may have K-rings
of different sizes depending on the choice of the two neighbor
vertices. For example, vertex X in Fig. 2 has three K-rings of
varying lengths (ring a of length 6, ring b of length 4, and ring
c of length 5). The purpose of K-ring analysis is thus to analyze
K-ring statistics, i.e., the histogram of the lengths of all K-rings
of all vertices in a network.

A K-ring containing L vertices is often called an L-fold
ring [9]. However, for binary ionic compounds such as sili-
con carbide, where bonds between the same elements are dis-
carded, one fold (member) is typically defined as one (A, B)
segment, where A and B are atomic species (e.g., A = silicon
and B = carbon in silicon carbide) [10,16]. In this case, a
L-fold (L-member) ring actually contains 2L vertices. To avoid
ambiguity, we will only refer to a K-ring with L vertices
as an L-member ring throughout the paper. The number of
L-member rings in the network is unique to a particular crys-
talline structure and it is possible to state the nature of the con-
nectivity of the elementary units, beyond the nearest neighbor,
in terms of these L-member rings. Non-crystalline and disor-
dered networks may also be characterized in terms of their ring
structure profile, by analyzing the K-ring length distribution.
Compared to the simple case of perfect crystalline systems,
more extensive study has been conducted on disordered net-

Fig. 2. K-ring statistics for vertex x in an network. Only the paths labeled as a,
b and c are K-rings. Paths b′ and c′, though closed and without any cycles, are
not K-rings, because they are not the shortest paths between the corresponding
neighboring vertices of x. Vertex x has 3 K-rings a, b, c of lengths 6, 4, and 5,
respectively.
(a) (b) (c) (d)

Fig. 1. K-rings emanating from vertex x in a simple cubic structure, in which the edges are denoted by solid or dashed lines. Only the paths shown with solid lines
in (a), (b) and (c) are considered as K-rings. The path in (d), though closed and without any cycles, is not a K-ring, because it is not the shortest path between the
neighboring vertices P and R.

C. Zhang et al. / Computer Physics Communications 175 (2006) 339–347 341
works such as silica glass [9,10,16–18]. Ring analysis is also
an effective tool to study the structure change in dynamically
loaded systems [11,12]. Since material processes such as dis-
location motions and fracture result in changes to a material’s
structure, the composition of these statistics may change for all
constituent vertices. The rate of change and its location thus
provide information about the transformations that are taking
place in the system and can also be used as an indicator of topo-
logical anomaly when used in conjunction with other physical
attributes such as stress or temperature.

Definition 3 (Hash function). A hash function is a mapping
from each element of an input set X to an element in a hash
key value set K , where |K| � |X| (|K| and |X| are the num-
bers of elements in sets K and X, respectively). Hash functions
are widely used in encryption of digital signature systems and
address indexing of a table’s elements.

A hash collision occurs when two distinct inputs are mapped
to the same hash key value. Collision is a common problem
for hash functions as the mapped configuration space is usually
smaller than the initial configuration space. Techniques such as
hierarchical hash tables and linked lists as hash keys are used to
minimize hash collisions.

Although our Definition 1, of topological network, conforms
to previous publications on ring analysis, the actual model we
use has a different level of abstraction. In addition to topolog-
ical data, our spatial hash function also requires the Euclidean
positions of vertices as an input. In MD simulations, this in-
formation is readily available at no extra computational cost or
storage space, since the coordinates of all vertices (i.e., atomic
positions) are maintained and updated per MD iteration step.
On the other hand, determination of a chemical bond, i.e., an
edge in the network, typically requires extra computation. For
example, a bond is often defined as a vertex pair whose Euclid-
ean distance is less than a given cutoff radius. Instead of requir-
ing bond data as an input, our program takes only the vertex
coordinates as an input, so that it is more storage-efficient. It
performs O(n) computation to recover the bond data.

In order to search for K-rings, we need the adjacencies, i.e.,
the bonding information, of all the vertices in the network. We
use an adjacency list to store each vertex’s degree and neigh-
bor indices instead of an adjacency matrix for better memory
efficiency. For simulations of chemical bond networks, the data
saved are usually coordinates of the vertices, where the only
criterion for bonding is the inter-vertex Euclidean distance.
For networks with million-to-billion vertices, building the adja-
cency list incurs non-trivial computational cost. The naïve ap-
proach would calculate O(n2) Euclidean distances between all
vertex pairs. Instead, we partition the Euclidean space into spa-
tial grids, where the dimension Ci (i = x, y, z) of the grid satis-
fies Ci � rcutoff (rcutoff is the cutoff length of chemical bonds).
This spatial subdivision scheme limits the range of Euclidean
distance calculations to a vertex’s neighboring grids, where the
vertices within a grid cell are traversed using a neighbor cell
list. This approach reduces the computational complexity from
O(n2) of the pair-wise Euclidean distance comparison to O(n).
With the adjacency information thus available, K-ring analy-
sis is accomplished through a Breadth-First Search (BFS) al-
gorithm such as the one used by Rino et al. [10]. We refer
to this procedure as Single-Tree Expansion (STE) algorithm,
since it expands only one connectivity tree at a time. For a
given node x, two of its neighbors w and y are selected to
construct a K-ring. The STE algorithm starts from w and recur-
sively expands its neighbors in a BFS fashion until it finds the
shortest path to reach y without visiting x. This shortest path
plus segment (w,x, y) form a K-ring chosen for the (w,x, y)
combination. To identify rings of up to L members, a depth
cut-off of L − 2 expanding from w suffices and limits the com-
putational cost of BFS to O(kL−2), where k roughly equals to
the average vertex degree minus 1. The total time complexity
for all combinations of x,w and y in an n-vertex network is
O(kL−2) · O(k2n) = O(kLn). However, for large systems with
millions of vertices per processor, this algorithm often fails to
return results in a reasonable time. There are other algorithms
that calculate the shortest paths for vertex pairs using Dijkstra’s
algorithm [19]. But their computational and memory efficiency
are also limited for large chemical bond networks with millions
of vertices.

To address this difficulty, we have designed a Spatial Hash-
Function Tagging (SHAFT) algorithm built upon a Dual-Tree
Expansion (DTE) algorithm to improve the efficiency of ring
analysis for large systems.

2.1. Dual-tree expansion (DTE) algorithm

If vertex p is in the same L-member ring with x, the short-
est path from x to p has to be no longer than L/2. When the
BFS algorithm searches from vertex w for L − 2 steps, some
trial paths visit vertices that are too far from x to be possible
candidates. In order to avoid these wasteful searches, for triplet
(w,y, x), we expand the connectivity trees from w (the left tree)
and y (the right tree) at the same time, instead of searching for
paths from w to y. The vertices are expanded in the BFS fash-
ion until a desired depth is reached or a closed path is identified.
A vertex’s neighbors unvisited in previous depths are inserted as
its children in the tree. If leaf vertex p in the w-rooted tree and
leaf vertex p′ in the y-rooted tree are identical, while sharing no
intermediate vertices in their paths, a ring has been identified.
The ring can be dissected into three segments: (w,x, y), (w,p),
and (y,p), where p′ = p. When compared to the original al-
gorithm, this method reduces the number of vertices searched
from approximately dL to dL/2, where d is a constant no larger
than the average number of vertex degrees minus 1, and L is
the length of the ring. This scheme can be further optimized
for rings with only even number of vertices, which is a valid
assumption for binary ionic bond networks described previ-
ously. In the even-vertex case, we only need to compare the
leaf vertices on the same depth from the left and right trees,
which reduces the computational complexity of O(dLmax) to
O(dLmax/2) for searching up to Lmax-member rings from a sin-
gle vertex (see Fig. 3). The resulting dual-tree expansion (DTE)
algorithm is shown in Table 1.

342 C. Zhang et al. / Computer Physics Communications 175 (2006) 339–347
Fig. 3. Comparison of the proposed dual-tree expansion (DTE) algorithm with the original algorithm using a 6-member ring as an example. The depth of search in
the proposed algorithm is reduced by half.

Table 1
Dual-tree expansion algorithm

Algorithm dual_tree_expansion()

Input:
V = Set of all vertices (i.e., atoms)
Rc = Ring cutoff range (Euclidean)
Rbc = Bond cutoff distance (Euclidean)
LMAX = Maximum length of ring (integer)

Output:
The K-ring statistics for all vertices in the network

Variables:
Neighbors(V) = Set of vertices that share an edge with vertex V

Kv(L) = Number of L-member rings that go through vertex V

Lij = Length of the ring formed with path (Vi,V ,Vj)
Steps:

0 create adjacency list G for all node in Vp using Rbc as cutoff distance
1 for every vertex V ∈ Vp

for each vertex pair Vi and Vj in Neighbors(V) do
A1 = {Vi }
A2 = {Vj }
Lij = 0
while (A1 ∩ A2 = ∅ AND Lij < LMAX) do

Lij = Lij + 2
if (A1 ∩ Neighbors(A2) �= ∅ OR A2 ∩ Neighbors(A1) �= ∅)

Lij = Lij + 1
break

else if (Neighbors(A1) ∩ Neighbors(A2) �= ∅)
Lij = Lij + 2

A1 = Neighbors(A1)

A2 = Neighbors(A2)

if (Lij < LMAX) + +KV (Lij)
2.2. Spatial hash-function tagging (SHAFT) algorithm

The above algorithm is optimal in terms of the number of
vertices expanded. However, still a great amount of time is
spent to match the leaf vertices from the left and right trees
to identify a closed path. For example, in a system with av-
erage vertex degree of 6, there could easily be more than 103

vertices on the eighth level of a connectivity tree (after ex-
cluding previously visited vertices, a reduced vertex degree of
3 would give an estimated 37 = 2187), which requires more
than 10002 = 106 comparisons and conditional operations. The
number of comparisons can be reduced to O(k logk) by sort-
ing the vertices, where k is the average number of leaf vertices.
But it still makes up a large portion of the computation when
the trees grow up to as many as 10 levels (which is common
in disordered system), as k increases exponentially with the
tree height. An alternative approach avoids pair comparison
by employing a vertex table, where vertices visited on the leaf
level are flagged and any double-flagged vertex implies a closed
path. This method saves computation but costs more memory
to store all the vertices in the table. Cache misses when ref-
erencing and updating the table can pose a serious problem in

C. Zhang et al. / Computer Physics Communications 175 (2006) 339–347 343
the light of multilevel memory hierarchies. Absence of locality
of edges in the adjacency matrix is common in MD simula-
tions, where atoms diffuse over time and its vicinity can be
randomly rearranged. When dealing with systems with million-
to-billion vertices, cache misses can become the major bottle-
neck in achieving real-time speed. The tradeoff thus is either
heavy computation (conditional operations) or frequent cache
misses. Cache-oblivious models and other techniques have been
developed to gain better cache performance when dealing with
massive scientific data [20–22].

We propose an alternative solution using a spatial hash-
function tagging (SHAFT) algorithm, which has the following
features:

• It uses a hash table to avoid pair comparison of leaf ver-
tices. Each vertex is mapped to an element in the table
according to its spatial information.

• The table size is small and independent of |V | in the net-
work.

• It is guaranteed that there is no collision in the range of the
hash table when calculating ring structures from any vertex.

Normally, a hash function is prone to collision when its
configuration space is compressed, and thus the second and
third features contradict in general. In the SHAFT algorithm,
on the other hand, the hash function is collision-free only lo-
cally within the scope of interest instead of globally, i.e., no two
vertices shall have the same integer hash value within the ring
cutoff range from any vertex. This is achieved by exploiting the
correlation between the vertex coordinates, in the form of upper
and lower bounds for all inter-vertex distances. One feature of a
chemical bond network is that the distance-dependent repulsive
force between any two adjacent atoms (vertices) prevents them
from approaching too close. On the other hand, the chemical
bond (connectivity or edge) between them breaks when they
are apart by more than a certain length. We denote the upper
bound for inter-vertex distance as rupper and the lower bound as
rlower. Within any cube of edge b = rlower/

√
3 there cannot be

more than one vertex, because the diagonal length of the cube
is the maximum distance allowed. Therefore, the integer cube
index can be used as a unique hash value without collision. On
the other hand, the upper bound determines how far to search
for a vertex’s neighbor. Along with Lmax, the maximum length
of a ring defined by user, it gives the maximum Euclidean dis-
tance rupper(Lmax/2) between any two atoms in a ring. It also
implies that all vertices in the same ring with vertex x must lie
within a cube of side length c = rupperLmax centered at x.

The actual hash value is constructed as follows. First note
that no two integers out of m consecutive integers have the same
remainder when divided by m (i.e., they are not congruent mod-
ulo m). Similarly, for any m × m × m sub-region in a large 3D
grid, no two grid points have the same set of indices modulo m

(see Fig. 4).
Now let the cell size b equal to rlower/

√
3 in the grid and

m =
c/b� =
rupperLmax/(rlower/
√

3)�. Then, there can be no
more than one vertex in each cell, i.e., all vertices have unique
cell indices. Since all cells have unique indices modulo m in
Fig. 4. An example of the collision-free spatial hash function in 2D. Within
any window no larger than the hash function’s modulus, there will be no two
identical numbers.

any m3 sub-domain, all vertices in the sub-domain have unique
cell indices modulo m.

After each vertex is assigned a hash value, this new index is
saved along with its global index in the adjacency list, which
enables fast fetching of this tag. When a vertex is inserted into
the tree in the DTE algorithm, the corresponding element in
the hash table of size m3 is flagged. The same operation on
the global array in the original DTE algorithm can be applied
to this hash table to detect closed paths. Due to the small and
constant size of the hash table and therefore less cache misses in
large systems, this scheme provides better scalability compared
to the original DTE algorithm. The SHAFT algorithm is shown
in Table 2, where the ceiling function
x� is the smallest integer
that is greater than x, the floor function �x is the largest integer
that is less than x, and % denotes modulo operator.

The following example illustrates the typical size of the hash
table: rlower in most materials is larger than 1.4 Å, and thus
the unit grid length b = Rlower/

√
3 = 1.4/

√
3 = 0.808. For

a 10-member ring, we can take the ring computation cutoff
c = RbcLMAX = 15 Å, so that m =
c/b� = 20. In three dimen-
sions, the corresponding mapped configuration space is 8,000,
which is greatly reduced from the original configuration space
of millions and fits in an L2 cache. The mapped configuration
space is even smaller for rings of (A, B, A, B) type in binary
compounds. Given the current vertex species, we always know
which species the next vertex on the ring should be. There-
fore two vertices are allowed per cell, one for each species, as
they can be distinguished by the hash value plus the species
index. In this case we can replace rlower by the minimum dis-
tance between vertices of same species, which is usually much
larger than rlower. In most ionic compound materials, distances
between vertices of same species are usually larger than 2 Å,
which produces b = 1.154. For c = 15 Å, m = 13 and the con-
figuration space size of the hash function is only 133 = 2,197.

344 C. Zhang et al. / Computer Physics Communications 175 (2006) 339–347
Table 2
Spatial hash-function tagging algorithm

Algorithm spatial hash function tagging (SHAFT) + DTE

Input:
V = Set of all vertices (i.e., atoms)
C(V) = 3D coordinates of all vertices
Rbc = Bond cutoff distance (Euclidean)
Rlower = Minimum distance between vertices
LMAX = Maximum length of ring (integer)

Output:
The K-ring statistics for all vertices in the network
List of atoms with abnormal ring profile

Variables:
Neighbors(V) = Set of vertices that share an edge with vertex V

Kv(p) = Number of p-member rings that go through vertex V

Ldepth = Current depth of the expanded tree (both left and right)
Lmin(V ,Vn) = Minimum number of steps to reach vertex V from root vertex through Vn

Lij = Length of the ring formed with path (Vi ,V ,Vj)
Steps:

0 build the spatial hash function table and integrate into the adjacency list G (as secondary reference)
for each vertex V ∈ Vp

for each spatial dimension i ∈ {x, y, z}
qi = �Ci(V)/b where b = Rlower/

√
3

qi = qi modulo m where c = RbcLMAX and m =
c/b�
q(V) = q3 × m2 + q2 × m + q1

1 for every vertex V ∈ Vp
for each vertex pair Vi and Vj in Neighbors(V) do

A1 = {Vi }
A2 = {Vj }
Ldepth = 1
Lmin(q(A1),Vi) = Ldepth
Lmin(q(A2),Vj) = Ldepth
while ({A|Lmin(q(A),Vi) < ∞ & Lmin(q(A),Vj) < ∞} = ∅ AND Ldepth < LMAX/2) do

Ldepth + +
A1 = Neighbors(A1)

A2 = Neighbors(A2)

Lmin(q(A1),Vi) = Ldepth
Lmin(q(A2),Vj) = Ldepth

if (Ldepth < LMAX/2) Lij = Lmin(q(A),Vi) + Lmin(q(A),Vj)
Note that the ring cutoff range c = rupperLmax is a conser-
vative estimate, assuming the ring consists of two parallel and
straight chains. In real cases, however, the ring cutoff range is
much smaller because the bond angles (i.e., the angles between
two consecutive edges) are usually less than 180o. One can con-
struct a tighter bound for the ring cutoff range using specific
information on the bond angle distribution, which will further
reduce the mapped configuration space.

2.3. Parallelization

The ring analysis algorithm has been implemented on par-
allel computers based on spatial decomposition [23], in which
the physical Euclidean space is divided into subspaces of equal
volume Ω that are assigned onto compute nodes in a paral-
lel computer. The compute nodes are logically arranged as a
3D mesh of size P = Px × Py × Pz. Each node is respon-
sible for calculating the ring structure of local vertices (i.e.,
atoms). However, those vertices near the subspace boundary
need information from neighboring subspaces to complete the
calculation. So a skin of thickness c and volume ∼ cΩ2/3 on
each compute node is copied to the neighboring nodes before
the ring analysis takes place. The thickness c is equal to the
ring cutoff range and depends on the user-defined ring length
Lmax. Each node calculates the local ring structure indepen-
dently after the skin copy. The parallelization efficiency η can
be estimated to be 1 − tcomm/tcomp, where tcomp is the comput-
ing time and tcomm is the communication time. Assuming even
vertex density, tcomp scales linearly with Ω and tcomm scales
with skin volume cΩ2/3, leading to an O(Ω−1/3) scalability
for tcomm/tcomp. When Ω is large, the efficiency η is approach-
ing 100% due to large volume-surface ratio of the subsystems.

3. Numerical results

We have performed numerical tests to compare three algo-
rithms: STE, DTE, and DTE combined with SHAFT. The test
used a PC with dual Intel Xeon 2.8 GHz CPUs with 2 GB of
memory. We evaluate the efficiency of the three algorithms in
three categories—clock time, number of instructions and num-

C. Zhang et al. / Computer Physics Communications 175 (2006) 339–347 345
Fig. 5. (a) Log–log plot of clock time vs. problem size, where the DTE com-
bined with SHAFT is compared against DTE alone and STE. DTE with SHAFT
gives the best performance for large problem size and scales roughly lin-
ear. Lines are linear fits with slopes 1.14, 1.21, and 1.03 for STE, DTE, and
DTE + SHAFT algorithms, respectively. (b) Number of instructions vs. prob-
lem size for the three algorithms in a log–log plot. Lines are least-square fits
with slopes 1.03, 1.01, and 1.01 for STE, DTE, and DTE + SHAFT algorithms,
respectively. (c) Log–log plot of cache misses vs. problem size for STE, DTE
and DTE + SHAFT. Lines are least-square fits with slopes 1.33, 1.26, and 1.06
for STE, DTE, and DTE + SHAFT algorithms, respectively.

ber of cache misses—for chemical networks of sizes ranging
from 104 to 3 × 105 (number of vertices). The maximum ring
cutoff is chosen to be 6 for simplicity and quick results.

Fig. 5 compares the execution time (Fig. 5(a)), the num-
ber of instructions (Fig. 5(b)), and the number of cache misses
(Fig. 5(c)) of the three algorithms as a function of the number
of vertices. For systems of about 3×105 vertices, the DTE algo-
rithm outperforms the STE algorithm by a factor of 15 or more.
For systems of about 300 thousand vertices, the DTE algorithm
outperforms the STE algorithm by a factor of 15 or more. This
speedup is mainly attributed to the reduction of instructions, as
indicated by similar gain ratios in clock time (Fig. 5(a)) and
number of instructions (Fig. 5(b)). However, this speedup ratio
dwindles for larger problem size as the computing time of DTE
Fig. 6. Execution time of the DTE + SHAFT algorithm as a function of the
number of computing nodes with a fixed problem size (5 × 105 vertices). The
line is the least square fit with slope −1.09.

scales roughly as O(N1.21) while STE as O(N1.14). This is be-
cause DTE algorithm employs an array of size N to discover
common leaf nodes for each vertex, and reading/writing this
array with poor data locality cause cache misses of O(N1.26).
The lower proportion of total clock time retired on instructions
in DTE than in STE implies that the cache misses play a big-
ger role for DTE performance. However, SHAFT algorithm is
able to reduce the computing time scalability to almost per-
fectly linear by using a constant-sized leaf node hash table. The
overhead eliminated by SHAFT is basically cache misses in-
stead of instructions. This can be verified by the correlation
between the clock time (Fig. 5(a)) and number of cache misses
(Fig. 5(c)), whereas the number of instructions is roughly un-
changed by introducing SHAFT. Another notable phenomenon
is the crossover of the two DTE algorithms in clock time and
cache misses. This implies that the spatial hash table we in-
troduce in SHAFT becomes an overhead in small networks,
where the hash table size is comparable to the total problem
size. Consequently DTE with SHAFT shows advantage only in
large-scale problems (N > 105). For larger ring cutoff, we ex-
pect greater efficiency boost of DTE + SHAFT from both DTE
and STE.

We have also performed benchmark tests of the parallel
DTE + SHAFT algorithm on a Linux cluster of dual Intel Xeon
2.8 GHz CPUs and 2 GB of memory per node. The total prob-
lem size is held fixed at 5 × 105 vertices. The strong scalability
test gives a roughly unit slope in the log–log graph (Fig. 6).
Superlinear scalability is observed in this plot, which implies
greater overall dependence on the cache size. In addition, the
communication time alone has also exhibited super scalability,
which indicates that communication efficiency is also influ-
enced by the cache size.

4. Discussion

The new algorithm has enabled ring analysis of massive
datasets from 200–500 million-atom MD simulations of hy-
pervelocity impact damage of advanced ceramics (aluminum
nitride [12], silicon carbide, and alumina), 19-million-atom
simulation of indentation damage of superhard nanocrystalline

346 C. Zhang et al. / Computer Physics Communications 175 (2006) 339–347
Fig. 7. (a) A thin slice of a 500 million-atom alumina target 40 nm in front of the projectile during hypervelocity impact simulation. Deviation in the number of
6-member rings from perfect crystalline atoms (blue) is color-coded using the gradient bar above. (b) The same plane colored by deviation in coordination number
from perfect crystalline atoms (blue). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
silicon carbide (n-SiC) [11], and 15-million-atom simulation
of fracture in amorphous silica [24]. On these datasets, the
DTE algorithm gains a speedup of 10 or more against STE,
while the SHAFT implementation gives an additional edge of
1.5–2.

For hypervelocity impact simulation of alumina (Al2O3)
consisting of 500 million atoms on 960 AMD Opteron proces-
sors, it takes less than a second to identify all the disor-
dered atoms due to different deformation mechanisms using the
DTE + SHAFT algorithm. In a perfect alumina crystal, each
aluminum atoms has 12 unique 6-member rings, any devia-
tion in the ring profile from this indicates topological disorder.
Combined with coordination number analysis, the ring algo-
rithm can distinguish between deformation mechanisms such
as twinning, slip, amorphization, and structural transformation.
In a snapshot of a thin slice of material 40 nm in front of the
projectile in Fig. 7(a), ring analysis reveals rhombohedral twin-
nings (colored as white) forming in three possible orientations
within a circle of pyramidal slips (colored as red or green), as
both types of deformation give different ring numbers from nor-
mal crystalline atoms (colored as blue). While pyramidal slips
cause deviation in coordination number as well (see Fig. 7(b)),
rhombohedral twinnings can effectively be identified only by
ring analysis. The DTE + SHAFT algorithm has enabled us to
globally locate damages, especially rhombohedral twinnings, in
the 500-million atom simulation on 960 Opteron processors in
less than 0.5 second. This was not possible in a realistic time
frame using the naïve algorithm due to insufficient physical
memory.
5. Summary

As the size of chemical bond network studied grows propor-
tionally with the fast-increasing computing power, the original
structure analysis algorithms that scale as O(nk) (with k > 1)
is out-paced. We propose a new real-time algorithm that im-
proves both computing complexity and data locality, and as a
result the combined speedup in the overall efficiency. The lower
computing complexity is achieved by using dual-tree expansion
(DTE) algorithm and the better data locality through a spatial
hash-function tagging (SHAFT) algorithm. The first approach
gives a speedup factor of 15 or more for the problem size of
our interest, while the second scheme provides an additional
improvement of 40%–50%. The SHAFT algorithm can also be
applied to other general structural analysis of chemical bond
networks.

Acknowledgements

This work was partially supported by AFOSR-DURINT,
ARO-MURI, DOE, and NSF. Numerical tests were performed
at the University of Southern California using the 3600-
processor Linux cluster at the Research Computing Facility and
the 1600-processor Linux clusters at the Collaboratory for Ad-
vanced Computing and Simulations.

References

[1] E. McCafferty, Corrosion Science 44 (2002) 1393.

C. Zhang et al. / Computer Physics Communications 175 (2006) 339–347 347
[2] S.J. Haggarty, P.A. Clemons, S.L. Schreiber, Journal of the American
Chemical Society 125 (2003) 10543.

[3] J.C. Nacher, N. Ueda, T. Yamada, M. Kanehisa, T. Akutsu, BMC Bioin-
formatics 5 (2004) 207.

[4] D.J. Cook, L.B. Holder, IEEE Intelligent Systems & their Applications 15
(2000) 32.

[5] R. Luc De, S. Kramer, The levelwise version space algorithm and its
application to molecular fragment finding, in: Proceedings of the 17th In-
ternational Joint Conference on Artificial Intelligence, Seattle, WA, USA,
2001.

[6] D.J. Cook, L.B. Holder, S.B. Su, R. Maglothin, I. Jonyer, IEEE Engineer-
ing in Medicine and Biology Magazine 20 (2001) 67.

[7] K. Stefan, R. Luc De, H. Christoph, Molecular feature mining in HIV data,
in: Proceedings of the Seventh ACM SIGKDD International Conference
on Knowledge discovery and Data Mining, ACM Press, San Francisco,
CA, USA, 2001.

[8] T. Matsuda, H. Motoda, T. Washio, Advanced Engineering Informatics 16
(2002) 135.

[9] S. King, Nature 213 (1967) 1112.
[10] J.P. Rino, I. Ebbsjo, R.K. Kalia, A. Nakano, P. Vashishta, Physical Re-

view B 47 (1993) 3053.
[11] I. Szlufarska, A. Nakano, P. Vashishta, Science 309 (2005) 911.
[12] P.S. Branicio, R.K. Kalia, A. Nakano, P. Vashishta, Physical Review Let-

ters 96 (2006) 065502.
[13] Similar techniques have been used previously, see, e.g. X.L. Yuan, A.N.
Cormack, Computational Materials Science 24 (2002) 343.

[14] T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein, Introduction to Algo-
rithms, second ed., MIT Press, Cambridge, MA, 2001.

[15] D.S. Franzblau, Physical Review B 44 (1991) 4925.
[16] L. Guttman, Journal of Non-Crystalline Solids 116 (1990) 145.
[17] C.S. Marians, L.W. Hobbs, Journal of Non-Crystalline Solids 124 (1990)

242.
[18] L.W. Hobbs, C.E. Jesurum, V. Pulim, B. Berger, Philosophical Maga-

zine A 78 (1998) 679.
[19] X.L. Yuan, A.N. Cormack, Computational Materials Science 24 (2002)

343.
[20] M. Frigo, C.E. Leiserson, H. Prokop, S. Ramachandran, Cache-oblivious

algorithms, in: Proceedings of the 40th Annual Symposium on Founda-
tions of Computer Science, New York, NY, USA, 1999, p. 285.

[21] E.D. Demaine, Cache-oblivious algorithms and data structures, in: Lecture
Notes of the EEF Summer School on Massive Data Sets, University of
Aarhus, Denmark, 2002.

[22] J.S. Vitter, ACM Computing Surveys 33 (2001) 209.
[23] R.K. Kalia, W. Jin, S.W. Deleeuw, A. Nakano, P. Vashishta, International

Journal of Quantum Chemistry (1993) 781.
[24] Z. Lu, K. Nomura, A. Sharma, W. Wang, C. Zhang, R.K. Kalia, N. Ai-

ichiro, P. Vashishta, Physical Review Letters 95 (2005) 135501.

	Collision-free spatial hash functions for structural analysis of billion-vertex chemical bond networks
	Introduction
	Algorithm
	Dual-tree expansion (DTE) algorithm
	Spatial hash-function tagging (SHAFT) algorithm
	Parallelization

	Numerical results
	Discussion
	Summary
	Acknowledgements
	References

