
A Multilevel Parallelization Framework for High-Order
Stencil Computations

Hikmet Dursun, Ken-ichi Nomura, Liu Peng, Richard Seymour,
Weiqiang Wang, Rajiv K. Kalia, Aiichiro Nakano, and Priya Vashishta

Collaboratory for Advanced Computing and Simulations,

Department of Computer Science,
Department of Physics & Astronomy,

Department of Chemical Engineering & Materials Science,
University of Southern California, Los Angeles, CA 90089-0242, USA

{hdursun, knomura, liupeng, rseymour, wangweiq, rkalia, anakano, priyav}@usc.edu

Abstract. Stencil based computation on structured grids is a common kernel to
broad scientific applications. The order of stencils increases with the required
precision, and it is a challenge to optimize such high-order stencils on multicore
architectures. Here, we propose a multilevel parallelization framework that
combines: (1) inter-node parallelism by spatial decomposition; (2) intra-chip
parallelism through multithreading; and (3) data-level parallelism via single-
instruction multiple-data (SIMD) techniques. The framework is applied to a 6th
order stencil based seismic wave propagation code on a suite of multicore
architectures. Strong-scaling scalability tests exhibit superlinear speedup due to
increasing cache capacity on Intel Harpertown and AMD Barcelona based
clusters, whereas weak-scaling parallel efficiency is 0.92 on 65,536 BlueGene/P
processors. Multithreading+SIMD optimizations achieve 7.85-fold speedup on
a dual quad-core Intel Clovertown, and the data-level parallel efficiency is
found to depend on the stencil order.

Keywords: Stencil computation, multithreading, single instruction multiple
data parallelism, message passing, spatial decomposition.

1 Introduction

Design complexity and cooling difficulties in high-speed single-core chips have
forced chip makers to adopt a multicore strategy in designing heterogeneous hardware
architectures [1-3]. The shift in architectural design has provided incentives for the
high-performance computing (HPC) community to develop a variety of programming
paradigms that maximally utilize underlying hardware for broad computational
applications [4].

A common core computational kernel used in a variety of scientific and
engineering applications is stencil computation (SC). Extensive efforts have been
made to optimize SC on multicore platforms with the main focus on low-order SC.
For example, Williams et al. [5] have optimized a lattice Boltzmann application on

 2

leading multicore platforms, including Intel Itanium2, Sun Niagara2 and STI Cell.
Datta et al. have recently performed comprehensive SC optimization and auto-tuning
with both cache-aware and cache-oblivious approaches on a variety of state-of-the-art
architectures, including NVIDIA GTX280, etc [6]. Other approaches to SC
optimization include methods such as tiling [7] and iteration skewing (if the iteration
structure allows it) [8-10]. Due to the importance of high-order SC in the broad
applications and the wide landscape of multicore architectures as mentioned above, it
is desirable to develop a unified parallelization framework and perform systematic
performance optimization for the high-order SC on various multicore architectures.

In this paper, we propose a multilevel parallelization framework addressing high-
order stencil computations. Our framework combines: (1) inter-node parallelism by
spatial decomposition; (2) intra-chip parallelism through multithreading; and (3) data-
level parallelism via single-instruction multiple-data (SIMD) techniques. We test our
generic approach with a 6th order stencil based seismic wave propagation code on a
suite of multicore architectures. Strong-scaling scalability tests exhibit superlinear
speedup due to increasing cache capacity on Intel Harpertown and AMD Barcelona
based clusters, whereas weak-scaling parallel efficiency is 0.92 on 65,536
BlueGene/P processors. Our intra-core optimizations combine
Multithreading+SIMDization approaches to achieve 7.85-fold speedup on a dual
quad-core Intel Clovertown. We also explore extended precision high order stencil
computations at 7th and 8th orders to show dependency of data-level parallel efficiency
on the stencil order.

This paper is organized as follows: An overview of the stencil problem is given
in Section 2 together with the description of experimental application. Section 3
presents the parallelization framework and details its levels. Section 4 describes the
suite of experimental platforms, with details on the input decks used and the
methodology used to undertake inter-node and intra-node scalability analysis.
Conclusions from this work are discussed in Section 5.

2 High-Order Stencil Application

This section introduces the general concept of high-order stencil based computation as
well as details of our experimental application, i.e., seismic wave propagation code.

2.1 Stencil Computation

Stencil computation (SC) is at the heart of a wide range of scientific and engineering
applications. A number of benchmark suites, such as PARKBENCH [11], NAS
Parallel Benchmarks [12], SPEC [13] and HPFBench [14] include stencil
computations to evaluate performance characteristics of HPC clusters.
Implementation of special purpose stencil compilers highlights the common use of
stencil computation based methods [15]. Other examples to applications employing
SC include thermodynamically and mechanically driven flow simulations, e.g.
oceanic circulation modeling [16], neighbor pixel based computations, e.g.

 3

multimedia/image-processing [17], quantum dynamics [18] and computational
electromagnetics [19] software using the finite-difference time-domain method,
Jacobi and multigrid solvers [10].

SC involves a field that assigns values vt(r) to a set of discrete grid points Ω =
{r}, for the set of simulation time steps T = {t}. SC routine sweeps over Ω iteratively
to update vt(r) using a numerical approximation technique as a function of the values
of the neighboring nodal set including the node of interest, Ω′ = {r′ r′ ∈
neighbor(r)} which is determined by the stencil geometry. The pseudocode below
shows a naïve stencil computation:

for ∀t ∈ T
 for ∀r ∈ Ω
 vt+1(r) ← f({vt(r′) r′ ∈ neighbor(r)})

where f is the mapping function and vt is the scalar field at time step t. SC may be
classified according to the geometric arrangement of the nodal group neighbor(r) as
follows: First, the order of a stencil is defined as the distance between the grid point
of interest, r, and the farthest grid point in neighbor(r) along a certain axis. (In a
finite-difference application, the order increases with required level of precision.)
Second, we define the size of a stencil as the cardinality {r′ r′ ∈ neighbor(r)} ,
i.e., the number of grid points involved in each stencil iteration. Third, we define the
footprint of a stencil by the cardinality of minimum bounding orthorhombic volume,
which includes all involved grid points per stencil. For example, Fig. 1 shows a 6th
order, 25-point SC whose footprint is 132 = 169 on a 2-dimensional lattice. Such
stencil is widely used in high-order finite-difference calculations [20, 21].

Fig. 1. 6-th order, 25-point SC whose footprint is 132 on a 2-dimensional lattice. The grid point
of interest, r, is shown as the central grey circle while the set of neighbor points, excluding r,
i.e., {r′ r′ ∈ neighbor(r)} – {r}, is illustrated as solid circles. White circles show the other
lattice sites within the stencil footprint, which are not used for calculation of v(r).

2.2 A High-Order Stencil Application for Seismic Wave Propagation

This subsection introduces our experimental application that simulates seismic wave
propagation by employing a 3D equivalent of the stencil in Fig. 1 to compute spatial
derivatives on uniform grids using a finite difference method. The 3D stencil kernel is
highly off-diagonal (6-th order) and involves 37 points (footprint is 133 = 2,197), i.e.,
each grid point interacts with 12 other grid points in each of the x, y and z Cartesian
directions.

 4

A typical problem space of the program includes several hundreds of grid nodes
in each dimension amounting to an aggregate amount of millions of grid points. Our
largest experiment has 4003 = 64 million points. For each grid point, the code
allocates 5 floats to hold temporary arrays and intermediate physical quantities and
the result, therefore its memory footprint is 5×4bytes×4003 = 1.28GB. Thus, the
application not only involves heavy computational requirements but also needs three
orders of magnitude more memory in comparison with the cache size offered by
multicore architectures in the current HPC literature.

3 Multilevel Parallelization Framework

This section discusses inter-node and intra-node optimizations we use and outlines
our parallelization framework that combines: (1) inter-node parallelism by spatial
decomposition; (2) intra-chip parallelism through multithreading; and (3) data-level
parallelism via SIMD techniques.

3.1 Spatial Decomposition Based on Message Passing

Our parallel implementation essentially retains the computational methodology of the
original sequential code. All of the existing subroutines and the data structures are
retained. However, instead of partitioning the computational domain, we divide the
3D data space to a mutually exclusive and collectively exhaustive set of subdomains
and distribute the data over the cluster assigning a smaller version of the same
problem to each processor in the network, then employ an owner-computes rule.

Subdomains should have the same number of grid points to balance the
computational load evenly. However, a typical stencil computation not only uses the
grid points owned by the owner processor, but also requires boundary grid points to
be exchanged among processors through a message passing framework. Therefore
each subdomain is augmented with a surrounding buffer layer used for data transfer.

In a parallel processing environment, it is vital to understand the time complexity
of communication and computation dictated by the underlying algorithm, to model
performance of parallelism. For a d-dimensional finite difference stencil problem of
order m and global grid size n run on p processors, the communication complexity is
O(m(n/p)(d-1)/d), whereas computation associated by the subdomain is proportional to
the number of owned grid points, therefore its complexity is O(mn/p) (which is linear
in m, assuming a stencil geometrically similar to that shown in Fig.1). For a 3D
problem, they reduce to O(m(n/p)2/3) and O(mn/p), which are proportional to the
surface area and volume of the underlying subdomain, respectively. Accordingly,
subdomains are selected to be the optimal orthorhombic box in the 3D domain
minimizing the surface-to-volume ratio, O((p/n)1/3), for a given number of processors.
This corresponds to a cubic subvolume if processor count is cube of an integer
number; otherwise a rectangular prism shaped subset is constructed by given logical
network topology. Fig. 2(a) shows the decomposition of problem domain into cubical
subvolumes, which are assigned to different processors.

 5

Fig. 2. Schematic of multilevel parallelization. In the uppermost level of multilevel
parallelization, the total simulation space Ω is decomposed into several spatial sub-domains Ω i
of size Nx×Ny×Nz points in corresponding directions where Ω=∪Ω i and each domain is mapped
onto a node in the cluster (a). Intra-node parallelization includes POSIX threading to exploit all
available cores in the underlying multicore processor (b). It shows 8 threads and numerals as
their IDs, which is intended for dual quad-core architecture nodes. Data-level parallelism
constitutes the last level in the hierarchical parallelization methodology which we achieve
through vectorization and implement by Streaming SIMD Extensions (SSE3) at Intel based
architectures (c).

3.2 Intra-node Parallelism Based on Multithreading

On a cluster of Intel Clovertown, the code is implemented based on hierarchical
spatial decomposition: (1) inter-node parallelization with the upper-level spatial
decomposition into domains based on message passing; and (2) intra-node
parallelization with the lower-level spatial decomposition within each domain through
multithreading.

Fig. 3 shows the pseudocode for the threaded code section. There are 3
subroutines implementing this pseudocode in the actual application to perform
computations in each of 3D Cartesian directions (represented by toCompute in the
pseudocode) at each simulation step. 1D data array (current in Fig. 3) for grid
points allocates x data to be unit stride direction, and y data to be Nx stride, finally z
data with Nx×Ny stride. Threads spawned in toCompute direction evenly partition the
domain in lowStride dimension and apply stencil formula for the partial spatial
derivation with respect to the corresponding Cartesian coordinate, i.e., toCompute.
Therefore, for a thread spawned to perform calculations in the z direction,
toCompute is the z direction whereas lowStride corresponds to the x direction
since y stride is larger than the unit stride for x. Before the actual computation is
performed, consecutive points in toCompute direction, which are stride away in the
current array, are packed into a temporary array, named tempCurrent in Fig. 3,
to reduce effective access time to the same data throughout the computation. (This
only applies to the implementations in non-unit access directions, y and z, as x data
are already consecutive in current.) Finally, tempCurrent is traversed to compute
new field values to update next array. Threads of the same direction can
independently execute and perform updates on their assigned subdomain without

 6

introducing any locks until finally they are joined before the stencil for the other
directions are calculated.

FOR each gridPoint in

!

"i in highStride direction
 FOR each gridPoint in

!

"i in lowStride direction
 SET packedGrid to 0
 FOR each gridPoint in

!

"i in toCompute direction
 STORE current[gridPoint] in
 tempCurrent[packedGrid]
 INCREMENT packedGrid
 END FOR
 FOR each packedGridPoint in tempCurrent
 COMPUTE next[gridPoint] as the accumulation of
 packedGridPoint contributions
 END FOR
 END FOR

END FOR

Fig. 3. Pseudocode for the threaded code section. Since threads store their data in the next
array, they avoid possible race condition and the program can exploit thread-level parallelism
(TLP) in Intel Clovertown architecture.

3.3 Single Instruction Multiple Data Parallelism

Most modern computing platforms have incorporated single-instruction multiple-data
(SIMD) extensions into their processors to exploit the natural parallelism of
applications if the data can be SIMDized (i.e., if a vector instruction can
simultaneously operate on a sequence of data items.). On Intel quadcore architectures,
128-bit wide registers can hold four single precision (SP) floating point (FP) numbers
that are operated concurrently, and thus throughput is 4 SP FP operations per cycle
and the ideal speedup is 4. However, determining how instructions depend on each
other is critical to determine how much parallelism exists in a program and how that
parallelism can be exploited. In particular, for finite-difference computations,
instructions operating on different grid points are independent and can be executed
simultaneously in a pipeline without causing any stalls. Because of this property, we
can expose a finer grained parallelism through vectorization on top of our shared-
memory Pthreads programming and manually implement using Streaming SIMD
Extensions (SSE3) intrinsics on Intel based architectures, whose prototypes are given
in Intel’s xmmintrin.h and pmmintrin.h. In our SIMDization scheme, we first load
successive neighbor grid points and corresponding stencil coefficients to registers
using _mm_load_ps. Secondly, we perform computations using arithmetic SSE3
intrinsics (e.g. _mm_add_ps, _mm_mul_ps) and reduce the results by horizontally
adding the adjacent vector elements (_mm_hadd_ps). Finally, we store the result back
to the data array (_mm_store_ss). Our results have exhibited sub-optimal performance
gain for the stencil orders not divisible by 4, as unused words in 4 word registers were
padded with zeros, albeit SIMDization indeed contributed in intra-node speedup
combined with multithreading for such stencil orders as well. More detailed
performance-measurement results are outlined in Sections 4.3 and 4.4.

 7

4 Performance Tests

The scalability and parallel efficiency of the seismic stencil code have been tested on
various high-end computing platforms including dual-socket Intel Harpertown and
Clovertown, AMD Barcelona based clusters at the high performance computing
communications facility of University of Southern California (HPCC-USC). We also
present weak-scaling benchmark results at 65,536 IBM BlueGene/P processors at the
Argonne National Laboratory. The following subsections provide the details of our
benchmarks and present the results.

4.1 Weak-Scaling

We have implemented the spatial decomposition using the message passing interface
(MPI) [22] standard and have tested the inter-node scalability on IBM BlueGene/P
and an HPCC-USC cluster. Fig. 4(a) shows the running and communication times of
the seismic code at HPCC-USC, where each node has Intel dual quad-core Xeon
E5345 (Clovertown) processors clocked at 2.33 GHz, featuring 4 MB L2 cache per
die, together with 12 GB memory and are connected via 10-gigabit Myrinet. Here, we
scale the number of grid points linearly with the number of processors: 106p grid
points on p processors. The wall-clock time per time step approximately stays
constant as p increases. The weak-scaling parallel efficiency, the running time on 1
processor divided by that on p processors, is observed to be 0.992 on the Clovertown
based cluster for our largest run on 256 processors. Fig. 4(b) also shows good weak-
scaling parallel efficiency with increased grain size (8×106) on 65,536 BlueGene/P
processors, where each node has 2 GB DDR2 DRAM and four 450 POWER PC
processors clocked at 850 MHz, featuring a 32 KB instruction and data cache, a 2 KB
L2 cache and a shared 8 MB L3 cache. Spatial decomposition is thus highly effective
in terms of inter-node scalability of stencil computations up to 65,536 processors.

Fig. 4. Weak-scaling performance of spatial decomposition methodology, where the problem
size scales: (a) smaller granularity (20 MB/process) on a dual quadcore Intel Xeon E5345
cluster; (b) larger granularity (160 MB/process) on BlueGene/P.

 8

4.2 Strong-Scaling

Strong-scalability (i.e., achieving large speedup for a fixed problem size on a large
number of processors) is desirable for many finite-difference applications, especially
for simulating long-time behaviors. Here, strong-scaling speedup is defined as the
ratio of the time to solve a problem on one processor to that on p processors. Fig. 5
shows strong-scaling speedups for a fixed global problem size of 4003 on several
AMD and Intel quadcore based clusters. We observe superlinear speedups for
increasing processor count on both AMD and Intel architectures, which may be
interpreted as a consequence of the increasing aggregate cache size as explained
below.

Fig. 5. Strong-scaling benchmark on various multicore CPUs. The speedup over single-
processor run time is plotted as a function of the number of processors p. Intel Xeon E5420
shows superlinear speedup for smaller p as the aggregate cache size increases faster because of
its 12 MB L2 cache. The solid line shows ideal speedup.

The original seismic stencil code suffers from high effective memory access time
when the entire problem space is put into memory of one processor. We have
analyzed cache and TLB misses for the original code by using Intel’s Vtune
Performance Analyzer and found that, for high-stride access computation that
implements the partial spatial derivative in the z direction, the duration of page-walks
amounts to more than 25% of core cycles throughout the thread execution, implying a
high TLB miss rate resulting in greater effective memory access time. As we divide
the problem space, the effective access time reduces since the hit ratio is higher for
smaller problem size, even though the latency to the cache remains the same. It
should be noted that, in our strong-scaling experiment, not only the processor count is
increasing but also the size of aggregate caches from processors. With larger
aggregate cache size, more (or even entire, depending on processor count) data can fit
into the caches. The cache effect is most pronounced on Intel’s Xeon E5420
(Harpertown) in Fig. 5. Intel’s second-generation quadcore processor Harpertown
features a shared 6 MB L2 cache per chip that accommodates two cores. This
amounts to 12 MB of cache per multi-chip module (MCM), 6 times more than 2 MB
(4×512KB) L2 cache offered by AMD Opteron 2356 (Barcelona). As a result,

 9

Harpertown crosses over to the superlinear-scaling regime on a smaller number of
processors compared with that for Barcelona (see Fig. 5).

4.3 Intra-node Optimization Results

In addition to the massive inter-node scalability demonstrated above, our framework
involves the lower levels of optimization: First, we use multithreading explained in
Section 3.2, implemented with Pthreads. Next, we vectorize both STORE and
COMPUTE statements inside the triply nested for loops in Fig. 3 by using SSE3
intrinsics on the dual Intel Clovertown platform. We use Intel C compiler (icc)
version 9.1 for our benchmarks.

Fig. 6(a) shows the reduction in clock time spent per simulation step due to
multithreading and SIMDization optimizations. Corresponding speedups are shown in
Fig. 6(b). To delineate the performances of multithreading and SIMDization
approaches, we define a performance metric as follows. We use the clock time for one
simulation step of single threaded, non-vectorized code to be the sequential run time
Ts. We denote the parallel run time, Tp(NUM_THREADS), to be the clock time
required for execution of one time step of the algorithm as a function of spawned
thread number, in presence of both multithreading and SIMD optimizations. Then
combined speedup, Sc, shown in Fig. 6(b) is equal to the ratio Ts/Tp as a function of
thread number. We remove SIMD optimizations to quantify the effect of
multithreading only, and measure the parallel running times for a variety of thread
numbers, and state the multithreading speedup, St, with respect to Ts. Finally, we
attribute the excess speedup, Sc/St, to SIMD optimizations.

Fig. 6. The wall-clock time per iteration for non SIMD and SIMDized codes (a) and breakdown
of speedups (due to multithreading and data-level parallelism along with the combined intra-
node speedup) (b) as a function of the number of threads on dual quad-core Intel Clovertown.
The best observed intra-node speedup is 7.85 with 8 threads spawned on 8 cores.

 10

Fig. 6(b) shows the best speedup of 7.85 for 8 threads on a dual quadcore Intel
Clovertown node. This amounts to 7.85/8 = 0.98 intra-node parallel efficiency, even
though separate contributions of SIMDization and multithreading are less than ideal.
Multithreading speedup increases until thread number is equal to the available cores,
after which we see performance degradation in the SIMD speedup due to more
frequent exchanges of data between vector registers and main memory in case of
greater number of threads.

4.4 Effects of Stencil Order

We have also studied the effect of stencil order on intra-node parallel efficiency. As
mentioned in Section 3.3, our SIMDization scheme is suboptimal for our seismic
stencil code, for which the stencil order is not a multiple of 4. In fact, it is 6 and uses
two quad-word registers by padding one of them with 2 zeros. To reduce this
overhead, we have increased the precision of our simulation and performed a similar
computation with 7th order stencil (1 zero padding at one of the registers) and 8th order
stencil (utilizing all 4 words of both of the 128-bit registers).

Fig. 7(a) shows the dependency of the combined multithreading+SIMD speedup,
as defined in previous subsection, on stencil sizes. When all SIMD vectors are
saturated, i.e., fully used, the best combined speedup is observed. In our
implementation, SIMD vectors are saturated for 8th order stencil, and best speedup is
observed with 8 threads on dual quadcore Intel Clovertown. In fact, we have achieved
superlinear intra-node speedup of 8.7 with 8 threads on 8 cores. (Since we use in-core
optimizations as well, it is not surprising to see more than 8-fold speedup.)

Fig. 7. Speedups for higher order stencils, which are required for higher precision in finite-
differences calculation. Combined multithreading+SIMD (a) and SIMD (b) speedups are shown
as a function of the number of threads for 6th, 7th and 8th order stencils.

Fig. 7(b) shows the data parallelism contribution in the combined speedup. It
normalizes the combined speedup in Fig. 7(a) with multithreaded, but non-vectorized

 11

speedup in order to quantify the speedup due to data level parallelism only. Saturating
vectors with actual data is observed to yield the highest performance gain, which
corresponds to 8th order stencil in our implementation. We have observed 3.42-fold
speedup due to data-level parallelism in 1 thread run for 8th order stencil, pointing out
the highest SIMD efficiency of 3.42/4 = 0.85 in Fig. 7(b). The figure also confirms
the decreasing performance of SIMD as a function of thread count, as shown in Fig.
6(b).

5 Conclusions

In summary, we have developed a multilevel parallelization framework for high order
stencil computations. We have applied our approach to a 6th-order stencil based
seismic wave propagation code on a suite of multicore architectures. We have
achieved superlinear strong-scaling speedup on Intel Harpertown and AMD
Barcelona based clusters through the uppermost level of our hierarchical approach,
i.e., spatial decomposition based on message passing. Our implementation has also
attained 0.92 weak-scaling parallel efficiency at 65,536 BlueGene/P processors. Our
intra-node optimizations included multithreading and data-level parallelism via SIMD
techniques. Multithreading+SIMD optimizations achieved 7.85-fold speedup and 0.98
intra-node parallel efficiency on dual quadcore Intel Clovertown platform. We have
quantified the dependency of data-level parallel efficiency on the stencil order, and
have achieved 8.7-fold speedup for an extended problem employing 8th order stencil.
Future work will address the analysis and improvement of flops performance, and
perform lower-level optimizations at a broader set of emerging architectures.

Acknowledgments. This work was partially supported by Chevron—CiSoft, NSF,
DOE, ARO, and DTRA. Scalability and performance tests were carried out using
High Performance Computing and Communications cluster of the University of
Southern California and the BlueGene/P at the Argonne National Laboratory. We
thank the staff of the Argonne Leadership Computing Facility for their help on the
BlueGene/P benchmark.

References

1. Dongarra, J., Gannon, D., Fox, G., Kennedy, K.: The impact of multicore on computational
science software. CTWatch Quarterly 3 (2007) 11-17

2. Barker, K.J., Davis, K., Hoisie, A., Kerbyson, D.J., Lang, M., Pakin, S., Sancho, J.C.:
Entering the petaflop era: the architecture and performance of Roadrunner. Proceedings of
the 2008 ACM/IEEE conference on Supercomputing. IEEE Press, Austin, Texas (2008)

3. Asanovic, K., Bodik, R., Catanzaro, B.C., Gebis, J.J., Husbands, P., Keutzer, K., Patterson,
D.A., Pishker, W.L., Shalf, J., Williams, S.W., Yelick, K.A.: The landscape of parallel
computing research: a view from Berkeley. University of California, Berkeley (2006)

4. Pakin, S.: Receiver-initiated message passing over RDMA networks. Proceedings of the
22nd IEEE International Parallel and Distributed Processing Symposium, Miami, Florida
(2008)

 12

5. Williams, S., Carter, J., Oliker, L., Shalf, J., Yelick, K.: Lattice Boltzmann simulation
optimization on leading multicore platforms. Proceedings of the 22nd International Parallel
and Distributed Processing Symposium, Miami, Florida (2008)

6. Datta, K., Murphy, M., Volkov, V., Williams, S., Carter, J., Oliker, L., Patterson, D., Shalf,
J., Yelick, K.: Stencil computation optimization and auto-tuning on state-of-the-art
multicore architectures. Proceedings of the 2008 ACM/IEEE conference on
Supercomputing. IEEE Press, Austin, Texas (2008)

7. Rivera, G., Tseng, C.-W.: Tiling optimizations for 3D scientific computations. Proceedings
of the 2000 ACM/IEEE conference on Supercomputing. IEEE Computer Society, Dallas,
Texas (2000)

8. Frigo, M., Strumpen, V.: Cache oblivious stencil computations. Proceedings of the 2005
ACM/IEEE conference on Supercomputing. ACM, Cambridge, Massachusetts (2005)

9. Wonnacott, D.: Using time skewing to eliminate idle time due to memory bandwidth and
network limitations. Proceedings of the 14th IEEE International Parallel and Distributed
Processing Symposium, Cancun, Mexico (2000)

10. Renganarayanan, L., Harthikote-Matha, M., Dewri, R., Rajopadhye, S.V.: Towards optimal
multi-level tiling for stencil computations. Proceedings of the 21st IEEE International
Parallel and Distributed Processing Symposium, Long Beach, California (2007)

11. PARKBENCH: PARallel Kernels and BENCHmarks. Available from
http://www.netlib.org/parkbench

12. Kamil, S., Datta, K., Williams, S., Oliker, L., Shalf, J., Yelick, K.: Implicit and explicit
optimizations for stencil computations. Proceedings of the 2006 Workshop on Memory
System Performance and Correctness. ACM, San Jose, California (2006)

13. Schreiber, R., Dongarra, J.: Automatic blocking of nested loops. Technical Report,
University of Tennessee (1990)

14. Desprez, F., Dongarra, J., Rastello, F., Robert, Y.: Determining the idle time of a tiling:
new results. Journal of Information Science and Engineering 14 (1998) 167-190

15. Bromley, M., Heller, S., McNerney, T., Steele, J.G.L.: Fortran at ten gigaflops: the
connection machine convolution compiler. Proceedings of the ACM SIGPLAN 1991
conference on Programming language design and implementation. ACM, Toronto, Ontario,
Canada (1991)

16. Bleck, R., Rooth, C., Hu, D., Smith, L.T.: Salinity-driven Thermocline Transients in a
Wind- and Thermohaline-forced Isopycnic Coordinate Model of the North Atlantic. Journal
of Physical Oceanography 22(12) (1992) 1486–1505

17. Harlick, R., Shapiro, L.: Computer and Robot Vision. Addision Wesley (1993)
18. Nakano, A., Vashishta, P., Kalia, R.K.: Multiresolution molecular dynamics algorithm for

realistic materials modeling on parallel computers. Computer Physics Communications 83
(1994)

19. Taflove, A., Hagness, S.C.: Computational Electrodynamics: The Finite-Difference Time-
Domain Method. 3rd edn. Artech House, Norwood, Massachusetts (2005)

20. Shimojo, F., Kalia, R.K., Nakano, A., Vashishta, P.: Divide-and-conquer density functional
theory on hierarchical real-space grids: Parallel implementation and applications. Physical
Review B 77 (2008)

21. Stathopoulos, A., Öğüt, S., Saad, Y., Chelikowsky, J.R., Kim, H.: Parallel methods and
tools for predicting material properties. Computing in Science and Engineering 2 (2000) 19-
32

22. Snir, M., Otto, S.: MPI-The Complete Reference: The MPI Core. MIT Press (1998)

