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Abstract. Stencil based computation on structured grids is a common kernel to 
broad scientific applications. The order of stencils increases with the required 
precision, and it is a challenge to optimize such high-order stencils on multicore 
architectures. Here, we propose a multilevel parallelization framework that 
combines: (1) inter-node parallelism by spatial decomposition; (2) intra-chip 
parallelism through multithreading; and (3) data-level parallelism via single-
instruction multiple-data (SIMD) techniques. The framework is applied to a 6th 
order stencil based seismic wave propagation code on a suite of multicore 
architectures. Strong-scaling scalability tests exhibit superlinear speedup due to 
increasing cache capacity on Intel Harpertown and AMD Barcelona based 
clusters, whereas weak-scaling parallel efficiency is 0.92 on 65,536 BlueGene/P 
processors. Multithreading+SIMD optimizations achieve 7.85-fold speedup on 
a dual quad-core Intel Clovertown, and the data-level parallel efficiency is 
found to depend on the stencil order. 

Keywords: Stencil computation, multithreading, single instruction multiple 
data parallelism, message passing, spatial decomposition. 

1 Introduction 

Design complexity and cooling difficulties in high-speed single-core chips have 
forced chip makers to adopt a multicore strategy in designing heterogeneous hardware 
architectures [1-3]. The shift in architectural design has provided incentives for the 
high-performance computing (HPC) community to develop a variety of programming 
paradigms that maximally utilize underlying hardware for broad computational 
applications [4]. 

A common core computational kernel used in a variety of scientific and 
engineering applications is stencil computation (SC). Extensive efforts have been 
made to optimize SC on multicore platforms with the main focus on low-order SC. 
For example, Williams et al. [5] have optimized a lattice Boltzmann application on 



 2 

leading multicore platforms, including Intel Itanium2, Sun Niagara2 and STI Cell. 
Datta et al. have recently performed comprehensive SC optimization and auto-tuning 
with both cache-aware and cache-oblivious approaches on a variety of state-of-the-art 
architectures, including NVIDIA GTX280, etc [6]. Other approaches to SC 
optimization include methods such as tiling [7] and iteration skewing (if the iteration 
structure allows it) [8-10]. Due to the importance of high-order SC in the broad 
applications and the wide landscape of multicore architectures as mentioned above, it 
is desirable to develop a unified parallelization framework and perform systematic 
performance optimization for the high-order SC on various multicore architectures. 

In this paper, we propose a multilevel parallelization framework addressing high-
order stencil computations. Our framework combines: (1) inter-node parallelism by 
spatial decomposition; (2) intra-chip parallelism through multithreading; and (3) data-
level parallelism via single-instruction multiple-data (SIMD) techniques. We test our 
generic approach with a 6th order stencil based seismic wave propagation code on a 
suite of multicore architectures. Strong-scaling scalability tests exhibit superlinear 
speedup due to increasing cache capacity on Intel Harpertown and AMD Barcelona 
based clusters, whereas weak-scaling parallel efficiency is 0.92 on 65,536 
BlueGene/P processors. Our intra-core optimizations combine 
Multithreading+SIMDization approaches to achieve 7.85-fold speedup on a dual 
quad-core Intel Clovertown. We also explore extended precision high order stencil 
computations at 7th and 8th orders to show dependency of data-level parallel efficiency 
on the stencil order. 

This paper is organized as follows: An overview of the stencil problem is given 
in Section 2 together with the description of experimental application. Section 3 
presents the parallelization framework and details its levels. Section 4 describes the 
suite of experimental platforms, with details on the input decks used and the 
methodology used to undertake inter-node and intra-node scalability analysis. 
Conclusions from this work are discussed in Section 5. 

2 High-Order Stencil Application 

This section introduces the general concept of high-order stencil based computation as 
well as details of our experimental application, i.e., seismic wave propagation code. 

2.1 Stencil Computation 

Stencil computation (SC) is at the heart of a wide range of scientific and engineering 
applications. A number of benchmark suites, such as PARKBENCH [11], NAS 
Parallel Benchmarks [12], SPEC [13] and HPFBench [14] include stencil 
computations to evaluate performance characteristics of HPC clusters. 
Implementation of special purpose stencil compilers highlights the common use of 
stencil computation based methods [15]. Other examples to applications employing 
SC include thermodynamically and mechanically driven flow simulations, e.g. 
oceanic circulation modeling [16], neighbor pixel based computations, e.g. 
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multimedia/image-processing [17], quantum dynamics [18] and computational 
electromagnetics [19] software using the finite-difference time-domain method, 
Jacobi and multigrid solvers [10]. 

SC involves a field that assigns values vt(r) to a set of discrete grid points Ω  = 
{r}, for the set of simulation time steps T = {t}. SC routine sweeps over Ω  iteratively 
to update vt(r) using a numerical approximation technique as a function of the values 
of the neighboring nodal set including the node of interest, Ω′  = {r′    r′  ∈  
neighbor(r)} which is determined by the stencil geometry. The pseudocode below 
shows a naïve stencil computation: 

for ∀t ∈  T 
   for ∀r ∈  Ω  
      vt+1(r) ← f({vt(r′)   r′  ∈  neighbor(r)}) 

where f is the mapping function and vt is the scalar field at time step t. SC may be 
classified according to the geometric arrangement of the nodal group neighbor(r) as 
follows: First, the order of a stencil is defined as the distance between the grid point 
of interest, r, and the farthest grid point in neighbor(r) along a certain axis. (In a 
finite-difference application, the order increases with required level of precision.) 
Second, we define the size of a stencil as the cardinality {r′    r′  ∈  neighbor(r)}  , 
i.e., the number of grid points involved in each stencil iteration. Third, we define the 
footprint of a stencil by the cardinality of minimum bounding orthorhombic volume, 
which includes all involved grid points per stencil. For example, Fig. 1 shows a 6th 
order, 25-point SC whose footprint is 132 = 169 on a 2-dimensional lattice. Such 
stencil is widely used in high-order finite-difference calculations [20, 21]. 

 
Fig. 1. 6-th order, 25-point SC whose footprint is 132 on a 2-dimensional lattice. The grid point 
of interest, r, is shown as the central grey circle while the set of neighbor points, excluding r, 
i.e., {r′    r′  ∈ neighbor(r)} – {r}, is illustrated as solid circles. White circles show the other 
lattice sites within the stencil footprint, which are not used for calculation of v(r). 

2.2 A High-Order Stencil Application for Seismic Wave Propagation 

This subsection introduces our experimental application that simulates seismic wave 
propagation by employing a 3D equivalent of the stencil in Fig. 1 to compute spatial 
derivatives on uniform grids using a finite difference method. The 3D stencil kernel is 
highly off-diagonal (6-th order) and involves 37 points (footprint is 133 = 2,197), i.e., 
each grid point interacts with 12 other grid points in each of the x, y and z Cartesian 
directions.  
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A typical problem space of the program includes several hundreds of grid nodes 
in each dimension amounting to an aggregate amount of millions of grid points. Our 
largest experiment has 4003 = 64 million points. For each grid point, the code 
allocates 5 floats to hold temporary arrays and intermediate physical quantities and 
the result, therefore its memory footprint is 5×4bytes×4003 = 1.28GB. Thus, the 
application not only involves heavy computational requirements but also needs three 
orders of magnitude more memory in comparison with the cache size offered by 
multicore architectures in the current HPC literature. 

3 Multilevel Parallelization Framework 

This section discusses inter-node and intra-node optimizations we use and outlines 
our parallelization framework that combines: (1) inter-node parallelism by spatial 
decomposition; (2) intra-chip parallelism through multithreading; and (3) data-level 
parallelism via SIMD techniques. 

3.1 Spatial Decomposition Based on Message Passing 

Our parallel implementation essentially retains the computational methodology of the 
original sequential code. All of the existing subroutines and the data structures are 
retained. However, instead of partitioning the computational domain, we divide the 
3D data space to a mutually exclusive and collectively exhaustive set of subdomains 
and distribute the data over the cluster assigning a smaller version of the same 
problem to each processor in the network, then employ an owner-computes rule. 

Subdomains should have the same number of grid points to balance the 
computational load evenly. However, a typical stencil computation not only uses the 
grid points owned by the owner processor, but also requires boundary grid points to 
be exchanged among processors through a message passing framework. Therefore 
each subdomain is augmented with a surrounding buffer layer used for data transfer. 

In a parallel processing environment, it is vital to understand the time complexity 
of communication and computation dictated by the underlying algorithm, to model 
performance of parallelism. For a d-dimensional finite difference stencil problem of 
order m and global grid size n run on p processors, the communication complexity is 
O(m(n/p)(d-1)/d), whereas computation associated by the subdomain is proportional to 
the number of owned grid points, therefore its complexity is O(mn/p) (which is linear 
in m, assuming a stencil geometrically similar to that shown in Fig.1). For a 3D 
problem, they reduce to O(m(n/p)2/3) and O(mn/p), which are proportional to the 
surface area and volume of the underlying subdomain, respectively. Accordingly, 
subdomains are selected to be the optimal orthorhombic box in the 3D domain 
minimizing the surface-to-volume ratio, O((p/n)1/3), for a given number of processors. 
This corresponds to a cubic subvolume if processor count is cube of an integer 
number; otherwise a rectangular prism shaped subset is constructed by given logical 
network topology. Fig. 2(a) shows the decomposition of problem domain into cubical 
subvolumes, which are assigned to different processors. 
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Fig. 2. Schematic of multilevel parallelization. In the uppermost level of multilevel 
parallelization, the total simulation space Ω  is decomposed into several spatial sub-domains Ω i 
of size Nx×Ny×Nz points in corresponding directions where Ω=∪Ω i and each domain is mapped 
onto a node in the cluster (a). Intra-node parallelization includes POSIX threading to exploit all 
available cores in the underlying multicore processor (b). It shows 8 threads and numerals as 
their IDs, which is intended for dual quad-core architecture nodes. Data-level parallelism 
constitutes the last level in the hierarchical parallelization methodology which we achieve 
through vectorization and implement by Streaming SIMD Extensions (SSE3) at Intel based 
architectures (c). 

3.2 Intra-node Parallelism Based on Multithreading 

On a cluster of Intel Clovertown, the code is implemented based on hierarchical 
spatial decomposition: (1) inter-node parallelization with the upper-level spatial 
decomposition into domains based on message passing; and (2) intra-node 
parallelization with the lower-level spatial decomposition within each domain through 
multithreading.  

Fig. 3 shows the pseudocode for the threaded code section. There are 3 
subroutines implementing this pseudocode in the actual application to perform 
computations in each of 3D Cartesian directions (represented by toCompute in the 
pseudocode) at each simulation step. 1D data array (current in Fig. 3) for grid 
points allocates x data to be unit stride direction, and y data to be Nx stride, finally z 
data with Nx×Ny stride. Threads spawned in toCompute direction evenly partition the 
domain in lowStride dimension and apply stencil formula for the partial spatial 
derivation with respect to the corresponding Cartesian coordinate, i.e., toCompute. 
Therefore, for a thread spawned to perform calculations in the z direction, 
toCompute is the z direction whereas lowStride corresponds to the x direction 
since y stride is larger than the unit stride for x. Before the actual computation is 
performed, consecutive points in toCompute direction, which are stride away in the 
current array, are packed into a temporary array, named tempCurrent in Fig. 3, 
to reduce effective access time to the same data throughout the computation. (This 
only applies to the implementations in non-unit access directions, y and z, as x data 
are already consecutive in current.) Finally, tempCurrent is traversed to compute 
new field values to update next array. Threads of the same direction can 
independently execute and perform updates on their assigned subdomain without 
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introducing any locks until finally they are joined before the stencil for the other 
directions are calculated. 
 
FOR each gridPoint in 

! 

"i in highStride direction 
 FOR each gridPoint in 

! 

"i in lowStride direction 
    SET packedGrid to 0 
    FOR each gridPoint in 

! 

"i in toCompute direction 
        STORE current[gridPoint] in 
        tempCurrent[packedGrid] 
        INCREMENT packedGrid 
    END FOR 
    FOR each packedGridPoint in tempCurrent 
        COMPUTE next[gridPoint] as the accumulation of     
                packedGridPoint contributions 
    END FOR 
 END FOR 

END FOR  
 
Fig. 3. Pseudocode for the threaded code section. Since threads store their data in the next 
array, they avoid possible race condition and the program can exploit thread-level parallelism 
(TLP) in Intel Clovertown architecture. 

3.3 Single Instruction Multiple Data Parallelism 

Most modern computing platforms have incorporated single-instruction multiple-data 
(SIMD) extensions into their processors to exploit the natural parallelism of 
applications if the data can be SIMDized (i.e., if a vector instruction can 
simultaneously operate on a sequence of data items.). On Intel quadcore architectures, 
128-bit wide registers can hold four single precision (SP) floating point (FP) numbers 
that are operated concurrently, and thus throughput is 4 SP FP operations per cycle 
and the ideal speedup is 4. However, determining how instructions depend on each 
other is critical to determine how much parallelism exists in a program and how that 
parallelism can be exploited. In particular, for finite-difference computations, 
instructions operating on different grid points are independent and can be executed 
simultaneously in a pipeline without causing any stalls. Because of this property, we 
can expose a finer grained parallelism through vectorization on top of our shared-
memory Pthreads programming and manually implement using Streaming SIMD 
Extensions (SSE3) intrinsics on Intel based architectures, whose prototypes are given 
in Intel’s xmmintrin.h and pmmintrin.h. In our SIMDization scheme, we first load 
successive neighbor grid points and corresponding stencil coefficients to registers 
using _mm_load_ps. Secondly, we perform computations using arithmetic SSE3 
intrinsics (e.g. _mm_add_ps, _mm_mul_ps) and reduce the results by horizontally 
adding the adjacent vector elements (_mm_hadd_ps). Finally, we store the result back 
to the data array (_mm_store_ss). Our results have exhibited sub-optimal performance 
gain for the stencil orders not divisible by 4, as unused words in 4 word registers were 
padded with zeros, albeit SIMDization indeed contributed in intra-node speedup 
combined with multithreading for such stencil orders as well. More detailed 
performance-measurement results are outlined in Sections 4.3 and 4.4. 
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4 Performance Tests 

The scalability and parallel efficiency of the seismic stencil code have been tested on 
various high-end computing platforms including dual-socket Intel Harpertown and 
Clovertown, AMD Barcelona based clusters at the high performance computing 
communications facility of University of Southern California (HPCC-USC). We also 
present weak-scaling benchmark results at 65,536 IBM BlueGene/P processors at the 
Argonne National Laboratory. The following subsections provide the details of our 
benchmarks and present the results. 

4.1 Weak-Scaling 

We have implemented the spatial decomposition using the message passing interface 
(MPI) [22] standard and have tested the inter-node scalability on IBM BlueGene/P 
and an HPCC-USC cluster. Fig. 4(a) shows the running and communication times of 
the seismic code at HPCC-USC, where each node has Intel dual quad-core Xeon 
E5345 (Clovertown) processors clocked at 2.33 GHz, featuring 4 MB L2 cache per 
die, together with 12 GB memory and are connected via 10-gigabit Myrinet. Here, we 
scale the number of grid points linearly with the number of processors: 106p grid 
points on p processors. The wall-clock time per time step approximately stays 
constant as p increases. The weak-scaling parallel efficiency, the running time on 1 
processor divided by that on p processors, is observed to be 0.992 on the Clovertown 
based cluster for our largest run on 256 processors. Fig. 4(b) also shows good weak-
scaling parallel efficiency with increased grain size (8×106) on 65,536 BlueGene/P 
processors, where each node has 2 GB DDR2 DRAM and four 450 POWER PC 
processors clocked at 850 MHz, featuring a 32 KB instruction and data cache, a 2 KB 
L2 cache and a shared 8 MB L3 cache. Spatial decomposition is thus highly effective 
in terms of inter-node scalability of stencil computations up to 65,536 processors. 

    
Fig. 4. Weak-scaling performance of spatial decomposition methodology, where the problem 
size scales: (a) smaller granularity (20 MB/process) on a dual quadcore Intel Xeon E5345 
cluster; (b) larger granularity (160 MB/process) on BlueGene/P. 
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4.2 Strong-Scaling 

Strong-scalability (i.e., achieving large speedup for a fixed problem size on a large 
number of processors) is desirable for many finite-difference applications, especially 
for simulating long-time behaviors. Here, strong-scaling speedup is defined as the 
ratio of the time to solve a problem on one processor to that on p processors. Fig. 5 
shows strong-scaling speedups for a fixed global problem size of 4003 on several 
AMD and Intel quadcore based clusters. We observe superlinear speedups for 
increasing processor count on both AMD and Intel architectures, which may be 
interpreted as a consequence of the increasing aggregate cache size as explained 
below. 

 
Fig. 5. Strong-scaling benchmark on various multicore CPUs. The speedup over single-
processor run time is plotted as a function of the number of processors p. Intel Xeon E5420 
shows superlinear speedup for smaller p as the aggregate cache size increases faster because of 
its 12 MB L2 cache. The solid line shows ideal speedup. 
 

The original seismic stencil code suffers from high effective memory access time 
when the entire problem space is put into memory of one processor. We have 
analyzed cache and TLB misses for the original code by using Intel’s Vtune 
Performance Analyzer and found that, for high-stride access computation that 
implements the partial spatial derivative in the z direction, the duration of page-walks 
amounts to more than 25% of core cycles throughout the thread execution, implying a 
high TLB miss rate resulting in greater effective memory access time. As we divide 
the problem space, the effective access time reduces since the hit ratio is higher for 
smaller problem size, even though the latency to the cache remains the same. It 
should be noted that, in our strong-scaling experiment, not only the processor count is 
increasing but also the size of aggregate caches from processors. With larger 
aggregate cache size, more (or even entire, depending on processor count) data can fit 
into the caches. The cache effect is most pronounced on Intel’s Xeon E5420 
(Harpertown) in Fig. 5. Intel’s second-generation quadcore processor Harpertown 
features a shared 6 MB L2 cache per chip that accommodates two cores. This 
amounts to 12 MB of cache per multi-chip module (MCM), 6 times more than 2 MB 
(4×512KB) L2 cache offered by AMD Opteron 2356 (Barcelona). As a result, 
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Harpertown crosses over to the superlinear-scaling regime on a smaller number of 
processors compared with that for Barcelona (see Fig. 5). 

4.3 Intra-node Optimization Results 

In addition to the massive inter-node scalability demonstrated above, our framework 
involves the lower levels of optimization: First, we use multithreading explained in 
Section 3.2, implemented with Pthreads. Next, we vectorize both STORE and 
COMPUTE statements inside the triply nested for loops in Fig. 3 by using SSE3 
intrinsics on the dual Intel Clovertown platform. We use Intel C compiler (icc) 
version 9.1 for our benchmarks.  

Fig. 6(a) shows the reduction in clock time spent per simulation step due to 
multithreading and SIMDization optimizations. Corresponding speedups are shown in 
Fig. 6(b). To delineate the performances of multithreading and SIMDization 
approaches, we define a performance metric as follows. We use the clock time for one 
simulation step of single threaded, non-vectorized code to be the sequential run time 
Ts. We denote the parallel run time, Tp(NUM_THREADS), to be the clock time 
required for execution of one time step of the algorithm as a function of spawned 
thread number, in presence of both multithreading and SIMD optimizations. Then 
combined speedup, Sc, shown in Fig. 6(b) is equal to the ratio Ts/Tp as a function of 
thread number. We remove SIMD optimizations to quantify the effect of 
multithreading only, and measure the parallel running times for a variety of thread 
numbers, and state the multithreading speedup, St, with respect to Ts. Finally, we 
attribute the excess speedup, Sc/St, to SIMD optimizations.  
 

      
Fig. 6. The wall-clock time per iteration for non SIMD and SIMDized codes (a) and breakdown 
of speedups (due to multithreading and data-level parallelism along with the combined intra-
node speedup) (b) as a function of the number of threads on dual quad-core Intel Clovertown. 
The best observed intra-node speedup is 7.85 with 8 threads spawned on 8 cores. 
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Fig. 6(b) shows the best speedup of 7.85 for 8 threads on a dual quadcore Intel 
Clovertown node. This amounts to 7.85/8 = 0.98 intra-node parallel efficiency, even 
though separate contributions of SIMDization and multithreading are less than ideal. 
Multithreading speedup increases until thread number is equal to the available cores, 
after which we see performance degradation in the SIMD speedup due to more 
frequent exchanges of data between vector registers and main memory in case of 
greater number of threads. 

4.4 Effects of Stencil Order 

We have also studied the effect of stencil order on intra-node parallel efficiency. As 
mentioned in Section 3.3, our SIMDization scheme is suboptimal for our seismic 
stencil code, for which the stencil order is not a multiple of 4. In fact, it is 6 and uses 
two quad-word registers by padding one of them with 2 zeros. To reduce this 
overhead, we have increased the precision of our simulation and performed a similar 
computation with 7th order stencil (1 zero padding at one of the registers) and 8th order 
stencil (utilizing all 4 words of both of the 128-bit registers). 

Fig. 7(a) shows the dependency of the combined multithreading+SIMD speedup, 
as defined in previous subsection, on stencil sizes. When all SIMD vectors are 
saturated, i.e., fully used, the best combined speedup is observed. In our 
implementation, SIMD vectors are saturated for 8th order stencil, and best speedup is 
observed with 8 threads on dual quadcore Intel Clovertown. In fact, we have achieved 
superlinear intra-node speedup of 8.7 with 8 threads on 8 cores. (Since we use in-core 
optimizations as well, it is not surprising to see more than 8-fold speedup.) 
 

       
Fig. 7. Speedups for higher order stencils, which are required for higher precision in finite-
differences calculation. Combined multithreading+SIMD (a) and SIMD (b) speedups are shown 
as a function of the number of threads for 6th, 7th and 8th order stencils. 
 

Fig. 7(b) shows the data parallelism contribution in the combined speedup. It 
normalizes the combined speedup in Fig. 7(a) with multithreaded, but non-vectorized 
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speedup in order to quantify the speedup due to data level parallelism only. Saturating 
vectors with actual data is observed to yield the highest performance gain, which 
corresponds to 8th order stencil in our implementation. We have observed 3.42-fold 
speedup due to data-level parallelism in 1 thread run for 8th order stencil, pointing out 
the highest SIMD efficiency of 3.42/4 = 0.85 in Fig. 7(b). The figure also confirms 
the decreasing performance of SIMD as a function of thread count, as shown in Fig. 
6(b).   

5 Conclusions 

In summary, we have developed a multilevel parallelization framework for high order 
stencil computations. We have applied our approach to a 6th-order stencil based 
seismic wave propagation code on a suite of multicore architectures. We have 
achieved superlinear strong-scaling speedup on Intel Harpertown and AMD 
Barcelona based clusters through the uppermost level of our hierarchical approach, 
i.e., spatial decomposition based on message passing. Our implementation has also 
attained 0.92 weak-scaling parallel efficiency at 65,536 BlueGene/P processors. Our 
intra-node optimizations included multithreading and data-level parallelism via SIMD 
techniques. Multithreading+SIMD optimizations achieved 7.85-fold speedup and 0.98 
intra-node parallel efficiency on dual quadcore Intel Clovertown platform. We have 
quantified the dependency of data-level parallel efficiency on the stencil order, and 
have achieved 8.7-fold speedup for an extended problem employing 8th order stencil. 
Future work will address the analysis and improvement of flops performance, and 
perform lower-level optimizations at a broader set of emerging architectures. 
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