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Abstract We present a scalable parallelization scheme for high-order stencil com-
putations that also optimizes memory behavior on multicore clusters. Our multi-
level approach combines: (i) inter-node parallelization via spatial decomposition;
(ii) inter-core parallelization via multithreading and explicit non-uniform memory ac-
cess (NUMA) control; (iii) data locality optimizations through auto-tuned tiling for
efficient use of hierarchical memory; and (iv) register blocking and data parallelism
via single-instruction multiple-data techniques to utilize registers and exploit data
locality. The scheme is applied to a sixth-order stencil based finite-difference time-
domain code. Weak-scaling parallel efficiency is over 98 % on 32,768 BlueGene/P
processors. Multithreading with explicit NUMA control attains 9.9-fold speedup on a
dual 12-core AMD Opteron system. Data locality optimizations achieve 7.7-fold re-
duction of the last level cache miss rate of Intel Nehalem, whereas register blocking
increases data parallelism and thereby achieves 5.9 Gflops performance on a single
core. Register blocking + multithreading optimizations achieve 5.8-fold speedup on
a single quadcore Nehalem.

Keywords Stencil computation · PDE solvers · Finite differences · Structured grid ·
NUMA · Blocking · Multithreading · Single instruction multiple data parallelism ·
Message passing · Spatial decomposition

1 Introduction

As hierarchical multicore processors with complex computational and memory orga-
nizations emerge as a result of the quest for simultaneous performance and power-
efficiency improvement, a challenge faced by software developers and application
scientists is the adaptation of algorithms to effectively utilize this underlying hard-
ware for broad computational applications. The emerging multicore paradigm has
given us unprecedented supercomputing power [1], such as IBM BlueGene L and P,
Road Runner, and Cray Jaguar, through scaling at multiple levels, and in particu-
lar, multiple cores per node, interconnected into hierarchical systems of up to more
than 100,000 cores. All have complex memory hierarchies, where some memory is
shared across cores, some is dedicated, and some requires explicit management in
software. While at different scales, the features of these architectures are mirrored in
commercial microprocessors, which represent their constituent nodes, and are often
combined into clusters of nodes as targets of high-end applications. From an ap-
plication programmer’s perspective, we hypothesize that such architectures can be
viewed as hierarchical computational units with corresponding hierarchical storage
that is explicitly or implicitly managed by software. The computation hierarchy in-
cludes support for fine-grain data-parallelism, through single instruction multiple data
(SIMD) multimedia extensions such as Streaming SIMD Extensions (SSE) for Intel
and AMD platforms and Altivec for PowerPC, through the synergistic processing el-
ements of the IBM Cell, or through the streaming processors of an NVIDIA graphics
processing unit (GPU). Across cores, thread-level parallelism permits potentially in-
dependent computation on related data, while across nodes, coarse-grain parallelism
on independent data can be exploited. Data locality is critical to achieving high per-
formance on such architectures, so memory structures including registers, multilevel
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caches, and storage buffers should be carefully managed to match the hierarchical
parallel constructs.

As a common computational kernel in a variety of scientific and engineering ap-
plications [2–4], stencil computation (SC) has extensively been studied. For exam-
ple, Nguyen et al. [5] have implemented a hybrid blocking algorithm which com-
bines spatial and temporal blocks [6] to optimize a 7-point nearest neighbor kernel
on Intel Nehalem and NVIDIA GPU. Williams et al. [7] have optimized a lattice
Boltzmann application on leading multicore platforms, including Intel Clovertown,
AMD Opteron, and STI Cell. Datta et al. [8] have devised cache-oblivious algorithms
and Peng et al. [9] have used data layout reordering approach to optimize first-order
stencil computations on a variety of state-of-the-art architectures, including NVIDIA
GPU and IBM Cell BE processor. Other approaches to SC optimization include tiling
[10] and iteration skewing [11–13]. However, there has been little research on opti-
mizing high-order stencil computations (HOSC). HOSC pattern is characterized by
large memory footprint stencils, which usually span multiple levels of parallelization
ranging from data to inter-core to inter-node levels and involve frequent high-memory
stride accesses. The pivotal role of HOSC in broad applications and the emergence
of a wide landscape of heterogeneous multicore architectures have motivated us to
develop a unified parallelization strategy that scales on massively parallel multicore
supercomputers and perform systematic performance optimization on each of its hi-
erarchical levels.

In our earlier work [14], we have focused on system-level optimizations for
HOSC. In this paper, we instead emphasize processor-level optimization techniques
and propose a hierarchical scalable parallelization scheme that exploits the floating-
point performance of the computational units through efficient use of the hierarchi-
cal memory levels in modern multicore processors. Our scheme combines: (i) inter-
node parallelization via spatial decomposition; (ii) inter-core parallelization via mul-
tithreading using explicit non-uniform memory access (NUMA) control; (iii) data
locality optimizations through auto-tuned tiling for efficient use of hierarchical mem-
ory; and (iv) register blocking (RB) and data parallelism via SIMD techniques to
utilize registers and exploit data locality. We illustrate the hierarchical scalable paral-
lelization scheme by applying it to a sixth-order stencil based finite-difference time-
domain (FDTD) application, which is used in various areas such as photonics [15]
and quantum dynamics [16]. We obtain good overall strong scalability on our test
platforms, with even superlinear speedups on the Intel architecture. Excellent weak-
scalability is also achieved on the 256 processor Intel Clovertown-based cluster and
32,768 processors of BlueGene/P. Intra-node optimization using multithreading and
SIMD parallelization achieves a speedup of 5.83 for 8 threads on a single quadcore
Intel Nehalem node. We attain 9.93-fold speedup with NUMA control on a dual 12-
core AMD 6172 Opteron Magny-Cours system. We achieve 7.7-fold reduction of the
last level cache miss rate, and 55 % of the theoretical peak performance on a single
core of Intel Nehalem by incorporating loop tiling for Translation Lookaside Buffer
(TLB), caches and registers, and explicit use of SSE instructions.

This paper is organized as follows. An overview of the SC is given in Sect. 2
together with the description of the kernel and its application in FDTD method. Sec-
tion 3 describes our hierarchical parallelization strategy and the optimization tech-
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niques. Section 4 presents the scaling and optimization performance of our scheme
and their corresponding analysis. Finally, we summarize our study in Sect. 5.

2 High-order stencil computation

This section first introduces HOSC, and then provides a detail of our application and
experimental kernel used in the subsequent sections.

2.1 Stencil computation

Accuracy of SC generally depends on the order of its stencil. Applications employ-
ing SC mostly involve partial differential equation solvers, which are based on finite-
difference and multigrid methods, to study a vast array of computer simulations such
as photonics [15] and acoustic wave propagation [17], quantum dynamics [16], and
financial analytics [18]. Due to its pivotal role in computational sciences, SC is in-
cluded in a number of benchmark suites such as PARKBENCH [19] and NAS Parallel
Benchmarks [20]. Implementation of special purpose stencil compilers [21–23] and
development of compiler optimizations [24] highlight the common use of SC based
methods.

In SC, values u(t)(r) are assigned to a set of discrete grid points Ω = {r} for a
number of simulation time steps t ∈ [1,Nstep]. SC routine sweeps over Ω iteratively
to compute values of the grid points at the next iteration, u(t+1)(r), as a function of the
values of the neighboring nodal set at time t , Ω ′ = {r′ | r′ ∈ neighbor(r)}, determined
by the stencil geometry. According to the geometric arrangement of the nodal group
neighbor(r), SC may be classified as follows: First, the order of a stencil, n, is de-
fined as the distance between the grid point of interest, r, and the farthest grid point in
neighbor(r) along a certain axis (In a finite-difference application, the order increases
with required level of precision). Second, we define the size of a stencil as the cardi-
nality |{r′ | r′ ∈ neighbor(r)}|, i.e., the number of grid points involved in each stencil
iteration. Third, the footprint of a stencil is defined by the cardinality of minimum
bounding orthorhombic volume, which includes all involved grid points per stencil.
For example, Fig. 1 shows a third order, 13-point SC whose footprint is 72 = 49 on
a 2-dimensional lattice. Such a stencil is widely used in high-order finite-difference
calculations [25, 26]. In Fig. 1, the grid point of interest, r, is shown as a large solid
circle while the set of neighbor points, excluding r, {r′ | r′ ∈ neighbor(r)} − {r}, is
illustrated as small solid circles. Open circles show the other lattice sites within the
stencil footprint, which are not used for calculation of u(t+1)(r).

A typical computation for updating the value of the central grid point shown in
Fig. 1 is

u
(t+1)
i,j = c−3 × u

(t)
i−3,j + c−2 × u

(t)
i−2,j + c−1 × u

(t)
i−1,j + c3 × u

(t)
i+3,j

+ c2 × u
(t)
i+2,j + c1 × u

(t)
i+1,j + c−3 × u

(t)
i,j−3 + c−2 × u

(t)
i,j−2

+ c−1 × u
(t)
i,j−1 + c3 × u

(t)
i,j+3 + c2 × u

(t)
i,j+2 + c1 × u

(t)
i,j+1 + c0 × u

(t)
i,j
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Fig. 1 Third order, 13-point SC
whose footprint is 72 on a
2-dimensional lattice

where the subscripts i, j of u(t) represent the coordinates of grid points, and the
coefficients are denoted as c. The coefficients c are time independent and only depend
on the finite differencing method.

2.2 A high-order stencil application for FDTD method

Our experimental SC application simulates the time evolution of a field such as elec-
tromagnetic field or electronic wave function. The simulation methodology is based
on a 3D equivalent of the stencil in Fig. 1 and computes spatial derivatives on uniform
grids using a finite-difference method. The 3D stencil kernel is highly off-diagonal,
i.e., each grid point interacts with other grid points in each of the x, y, and z Cartesian
directions only. In addition, the stencil is sixth order and involves 37 points (footprint
is 133 = 2,197).

A typical problem space may involve several hundreds of grid nodes in each di-
mension amounting to millions of grid points in total. The FDTD application re-
ported here uses 3843 = 56.62 million points. For each grid point, the code allocates
5 floats to hold temporary arrays and intermediate physical quantities and the result,
therefore its memory footprint is 5 × 4 bytes × 3843 = 1.13 GB. Thus, the applica-
tion not only involves heavy computations, but also uses three orders of magnitude
larger memory than the cache size of multicore processors in the current HPC litera-
ture.

Figure 2 shows the pseudocode of a computational kernel of the FDTD applica-
tion. In the kernel, the triply-nested loop in 3D Cartesian coordinates updates the
value of each target grid points, u(t+1), based on values of neighboring grid points at
time t , i.e., u(t). The size of the problem domain is (nx −2n)× (ny −2n)× (nz −2n),
where n is the stencil order and nx , ny , and nz are the numbers of grid points in the
three Cartesian coordinates. Stride in memory space is a critical factor to optimize SC
application. In our kernel, the allocation for both u(t) and u(t+1) are 3-dimensional,
16-bytes aligned dynamic arrays, where x is the unit stride direction, y is nx stride,
and z is the highest stride nx × ny . The scopes of each loop are reduced by 2n

(n = 6 in our case) to avoid complex boundary conditions from the experimental
kernel.
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Fig. 2 Pseudocode of the
high-order stencil kernel

3 Hierarchical parallelization

This section outlines our top-down approach to application tuning at system-, node-,
and microarchitecture-levels. We discuss our parallelization framework that com-
bines: (i) inter-node parallelization via spatial decomposition; (ii) intra-node paral-
lelization via multithreading; (iii) data locality optimizations through tiling; and (iv)
register blocking (RB) and data parallelism via SIMD techniques to utilize registers.

3.1 Inter-node parallelism by spatial decomposition

Our parallel implementation essentially retains the computational methodology of
the original sequential code. All of the existing subroutines and the data structures
are retained. Our parallelization is based on spatial decomposition, where the 3D
data space is decomposed into a mutually exclusive and collectively exhaustive set of
subdomains. We distribute the data by assigning each subdomain to a compute node
in the network, and employ an owner-computes rule.

In a parallel processing environment, it is vital to consider the time complex-
ity of the communication and the computation dictated by the underlying algo-
rithm, to achieve efficient parallelism. For a d-dimensional stencil problem of or-
der n and global grid size ng to run on p processors, the communication com-
plexity is O(n(ng/p)(d−1)/d), whereas computation associated by the subdomain is
proportional to the number of owned grid points, therefore its time complexity is
O(n × ng/p) (which is linear in n, assuming a stencil geometrically similar to that
shown in Fig. 1). For a 3D problem, they reduce to O(n((nx × ny × nz)/p)2/3) and
O(n(nx × ny × nz)/p), which are proportional to the surface area and volume of the
underlying subdomain, respectively. Accordingly, subdomains are chosen to be the
optimal orthorhombic box in the 3D domain minimizing the surface-to-volume ratio,
O((p/(nx ×ny ×nz))

1/3), for a given number of processors (e.g., a cubic subvolume,
if the processor count is cube of an integer).
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Fig. 3 Pseudocode for spatial
decomposition

The pseudocode in Fig. 3 represents our spatial-decomposition approach. We im-
plement the message passing using Message Passing Interface (MPI) [27]. A typical
SC requires boundary grid points to be exchanged among processors. Therefore, each
subdomain is augmented with surrounding layers of buffer grids used for data trans-
fer. The parity of a process determines if it first sends, i.e., a sendfirst, its own grid
points at the boundary, sendBuffer, or receives the neighboring grid points from its
neighbor process to update its receive buffer, recvBuffer. Once the buffer layers are
exchanged, each process computes the stencil for their own grid points, i.e., r ∈ Ωp .
Line 10 of Fig. 3 encapsulates the SC in lines 5–13 of Fig. 2.

3.2 Intra-node parallelism by multithreading

We base our implementation on hierarchical spatial decomposition: (i) inter-node par-
allelization with the higher-level spatial decomposition into domains based on mes-
sage passing; and (ii) intra-node parallelization with the lower-level spatial decom-
position within each domain through multithreading. We implement 3 subroutines to
handle x, y, and z directional sweeps inside the main loop shown in Fig. 2. The pro-
cedure zSweepTh in Fig. 4 shows a thread spawned to perform z directional sweep.
The zSweepTh thread receives ntx as a parameter, which has lower and upper bounds
of its assigned block, ntx,l and ntx,u, respectively. This divides the global grid do-
main in the x direction. Recall that x is the unit-stride direction, y has nx stride, and
z has the highest stride of nx × ny . Other threads reuse the method in zSweepTh, i.e.,
their innermost loop of the triply nested loop body is the direction of computation,
second loop is the direction that has the lower stride among the other two Cartesian
coordinates, and the outermost loop being the higher stride dimension.

Notice that in line 5 of Fig. 4, we pack the grid points u(t) into packed_u(t). This is
in order to pay the non-contiguous memory access penalty only once for higher-stride
dimensions, i.e., y and z. Therefore, x thread does not implement this packing loop.
In line 8, we represent the stencil to be a function f of coefficients c and the neighbor
points of the grid point packed_u

(t)
k . Here, the accessed neighbors are naturally the z

neighbors since zSweepTh only implements the z-directional computation. Threads of
the same direction can independently execute and perform updates on their assigned
subdomain without introducing any locks until finally they are joined.

We utilize the native Linux kernel NUMA policy support through numactl util-
ity. Numerical values of the NUMA control parameters are shown in the Table 1.
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Fig. 4 Pseudocode for the
threaded code section. Since
threads store their data in the
u(t+1) array, they avoid possible
race conditions and the program
can exploit thread-level
parallelism (TLP)

Table 1 Parameter uses to
enforce NUMA control Number of threads Value of N

1–6 0

7–12 0,1

13–18 0,1,2

≥ 19 0,1,2,3

The numactl enforces the threads to run only on a specified number of NUMA
processors while a round-robin memory allocation is being performed only on
the same NUMA processors that threads are allowed to run. Specifically, we use
numactl --interleave=N --cpunodebind=N command, where the pa-
rameter N specifies the set of processors on which the round-robin memory inter-
leaving policy is to be enforced.

Note that on our Magny-Cours machine, there are 2 multi-chip module (MCM)
packages. Each MCM packs 2 NUMA processors with 6 physical cores each. There-
fore, the parameter N specified in Table 1 ensures that the memory and threads are
only allocated/spawned on the corresponding NUMA processors among the avail-
able four. In addition, since each thread is not pinned to a specific core, round-robin
allocation will average out the access time of all threads even if they are switching
between cores.

3.3 Loop unrolling and tiling optimizations

The stencil code in Fig. 2 has data reuse in all loops but traverses a very large mem-
ory footprint, which prevents the reuse to be fully exploited in the core’s memory
hierarchy. In this subsection, we discuss locality optimizations for exploiting data
reuse.

To compute a single value, u
(t+1)
i,j,k , the stencil code reads 2n elements from each

dimension of the 3-dimensional array u(t). The computation of u
(t+1)
i,j,k in one of the

dimensions reuses 2n − 1 elements in that dimension and reads 2n new values in
each of the other two dimensions. For example, the computation of u

(t+1)
i+1,j,k reuses

2n− 1 elements in x, and reads 2n new elements in y and z (plus a new element in x,
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Fig. 5 Pseudocode for unrolled
code. Function f represents
stencil computation

u
(t)
i+1+n,j,k). Therefore, each of the loops z, y, and x reuses data across iterations.

However, the data reused by different iterations of the outer loops may not be in the
cache(s) because of the large amount of data accessed in between.

The size of the memory footprint traversed by a stencil code is another factor
preventing data locality. The memory footprint of u(t) in one iteration of loop x spans
a memory region of (2n − 1) × 576 kB, or 6.336 MB for n = 6, which is on the
order of the shared data cache of most quadcore architectures. Assuming that each
3-dimensional array is allocated in a contiguous region of memory, two elements
u

(t)
i,j,k and u

(t)
i,j,k+1 are 576 kB apart. A few iterations of loop z touch more than a

memory page, even for the large page size of the Intel Nehalem.
To take advantage of the reuse available in the SC, we use code transformations

that improve locality. Loop tiling is a code transformation that reorders loop iterations
to bring accesses to the same data, cache line and memory pages closer in time. We
apply loop tiling to SC targeting different levels of memory hierarchy: TLB, last
level cache (LLC), and SIMD register file. Before tiling, we apply loop unrolling to
the three loops at the innermost level (in, jn, and kn) of Fig. 2 with a factor of 2n,
i.e., we fully unroll the loops. Line 5 in Fig. 5 represents the computation in the loop
body after unrolling.

Fully unrolling loop body eliminates loop overhead and exposes more data reuse
in the loop body that we will exploit using SIMD registers. The resulting code is a
3-deep loop nest, as shown in Fig. 5.

TLB: To reuse more data in each memory page and decrease the number of TLB
misses, we apply tiling to loop k. Tile size zTile should be chosen such that the num-
ber of pages touched by loop iterations within the tile is smaller than the number of
TLB entries.

LLC: The 8 MB L3 cache of our experimental platform (Intel Nehalem) can keep
13 “planes” of grid points, where a plane is a region of 384 × 384 elements (576
kB) along dimensions y and x (each value of z corresponds to a plane in (y, x)).
However, to exploit reuse in all three dimensions, we tile loop j so that the data
accessed within a tile of size zTile × yTile fits in the L3 cache (the data includes
elements of u(t), u(t+1) and other temporary data required by the computation). Note
that, although in this section we discuss locality optimizations in the context of a
single thread on a single core, when combining these optimizations with parallelism,
the tile sizes should be chosen carefully to prevent conflicts in the shared cache, i.e.,
L3 in 3-level cache Intel Nehalem (L2 in earlier quadcore architectures).

Figure 6 shows the SC after loop tiling is applied to loops k and j . In Fig. 6, macro
MIN returns the smaller of its parameters, so that the two higher-stride directional
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Fig. 6 Pseudocode for tiling
implementation

loops, i.e., y and z, are subdivided into smaller loops of size zTile and yTile. The
tiling parameters, zTile and yTile, should be large enough to amortize the cost of the
added loops but the size of the tiles should not exceed physically available cache
size. In fact, for a 3-dimensional SC with m physical quantities (e.g., pressure and/or
temperature) of type datatype per grid point, the tiling parameters should be chosen
such that yTile × zTile × m × n × sizeof (datatype) ≤ effective cache size, where we
refer to effective cache size instead of physical size to account for unoccupied cache
slots due to memory mapping rules.

In contrast to some existing tiling approaches that tile all three loops [28], the
pseudocode in Fig. 6 does not apply tiling to the unit-stride dimension. Our tests
have shown that tiling the two high-stride dimension loops is enough to have the
most reuse across tiles. In fact, tiling all three loops expands the tile boundaries and
cannot amortize the increased number of tile execution. This comes from the fact that
in stencil codes, it is only required to preserve the group reuse at 2n + 1 distance.

Code generation and tuning: We use a code transformation tool, CHiLL [29], to
generate optimized code variants of the SC. CHiLL is a transformation framework
that allows the user to specify code transformations using a high-level script interface.
CHiLL supports code transformations such as loop tiling, interchanging, unrolling,
fusion and distribution, data copying, and data prefetching. CHiLL takes as input the
original code and a script specifying code transformations, and automatically gener-
ates a transformed code. Optimization parameters such as tile sizes can be specified
as integer values or as unbound parameters to be determined later. In our optimized
code variant (stencil_2dTiling), loops z and y are tiled with unbound parameters zTile
and yTile. We use empirical search to determine the optimum tile sizes zTile and yTile,
RB, and SIMD parallelization.

3.4 Register blocking

In SC, it is not possible to have small strides for all directions of computation at the
same time. For example, the stride in the z direction is 576 kB in our kernel, whereas
the x direction has a unit stride, i.e., 4 bytes.

To exploit SIMD parallelism and spatial reuse in the x direction, we rearrange
the computation to perform updates to the grid points that are contiguous in the
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Fig. 7 Memory access pattern
of register blocking compared to
the original access pattern

SIMDized code. Figure 7 schematically represents our approach to RB for HOSC.
In the original kernel in Fig. 7(a), the red square indicates target grid points to be
updated at certain time. Blue, yellow, and green squares respectively show mem-
ory locations of the nearest neighbor points in x, y, and z Cartesian coordinates.
During each iteration of the loop ii (in Fig. 6), the red square is updated by ac-
cessing all neighbors (not necessarily the nearest neighbors, and the stencil order
determines the distance of the furthest accessed neighbor.) Memory stride for each
direction is 1, nx , and nx × ny , respectively, using the same notation as in Fig. 6. In
contrast to the original access pattern shown in Fig. 7(a), RB deals with a chunk of
target grid points contiguous in the x direction. The same size of neighboring cells
is fetched to update the block of target grids, which maximally utilize registers (see
Fig. 7(b)).

In a more abstract level, with the RB technique, we load blocks of memory to
machine register files. In RB implementation, instead of computing u

(t+1)
i,j,k one by

one, we accumulate the contributions of u
(t)
i,j,k+n, u

(t)
i+1,j,k+n, u

(t)
i+2,j,k+n, u

(t)
i+3,j,k+n

on u
(t+1)
i,j,k , u

(t+1)
i+1,j,k , u

(t+1)
i+2,j,k , u

(t+1)
i+3,j,k , where both of 4 float blocks are contiguous

and 16 bytes aligned in memory, and can be packed into 16 bytes SIMD registers.
We manually implement RB using Intel SSE3 intrinsics. RB eliminates 3 memory
accesses to the neighboring grid points per 16-byte block and accordingly increases
performance. It should also be noted that the compiler fails to generate code using
Intel SSE instructions for floating point operations in the tiling mode due to the com-
plex loop body of the high-order stencil. Therefore, RB enhances the opportunity for
better instruction scheduling with increased instruction level parallelism.

4 Performance test results

Inter-node scalability tests have been carried out on (i) Intel Xeon and AMD Opteron
platforms at the High Performance Computing and Communications (HPCC) Center
of the University of Southern California (USC) and (ii) the IBM BlueGene/P at Ar-
gonne National Laboratory. The Intel dual quadcore Xeon E5420 (Harpertown) pro-
cessors are clocked at 2.5 GHz, featuring a 4 × 32 kB 8-way set associative L1 data
and instruction cache and 2 × 6144 kB 24-way set associative L2 cache. The AMD
dual dualcore Opteron 270 is clocked at 2 GHz with 128 kB of L1 and 1 MB L2
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cache per core. The Xeon platform deploys 12 GB memory and 10-gigabit Myrinet
interconnects, and the Opteron platform 4 GB memory with 2-gigabit Myrinet. The
BlueGene/P has four nodes on a chip, where each node has 2 GB DDR2 DRAM and
four 450 POWER PC processors clocked at 850 MHz, featuring a 32 kB instruction
and data L1 cache, a 2 kB L2 cache and a shared 8 MB L3 cache. BlueGene/P also
allows users to specify arrangement of MPI processes to make use of its 3D torus
network topology. We have examined T XYZ and XYZT mapping orders, where
XYZ represents 3D indices in the torus network while T (= 0,1,2,3) corresponds
the number of cores on one node. For a spatial decomposition scheme, though the
best performance is expected by mapping process arrangement exactly on the torus
structure [30], T XYZ mapping often performs better, retaining more communica-
tions locally.

We perform our single-processor and single-core benchmarks on Intel Nehalem
(core i7 920), which is clocked at 2.67 GHz. On a single-die quadcore Nehalem,
there is 8 MB of shared L3 cache, 256 kB of L2 cache per core and 64 kB of L1
cache (divided into a 32 kB instruction cache and a 32 kB data cache). Intel Nehalem
drops the front side bus (FSB) in favor of Intel QuickPath Interconnect (QPI) and,
in doing so, brings the memory controller on-die. Cores on the Intel Nehalem die
communicate through QPI that offers 25.6 GB/s of bandwidth, which is more than
twice the theoretical bandwidth of Harpertown’s FSB. Intel Nehalem’s cores are ca-
pable of Simultaneous Multi-Threading (SMT), i.e., each core can execute 2 threads
simultaneously, opposed to single thread per core on Harpertown.

In addition, we investigate the effect of NUMA on multithreading performance.
We perform multithreading benchmarks with and without NUMA control on a dual
12-core Magny-Cours AMD Opteron 6172 machine. A single Magny-Cours Opteron
combines two 6-core dies (or processors) on an MCM package. The cores are clocked
at 2.1 GHz with 128 kB/core for L1 cache (64 kB for instruction and 64 kB for data),
512 kB/core L2 cache, and share a 6 MB/die L3 cache.

4.1 Strong scaling

Algorithms harnessing sound strong-scalability may accelerate overall application
performance by increasing the number of processors, and are desirable to fully uti-
lize many-core architectures. Here, we define the strong-scaling speedup as the ratio
of the time to solve a problem on one processor to that on p processors for the same
problem size. Figure 8(a) shows the total execution and communication times on
BlueGene/P with T XYZ and XYZT network mappings as a function of the number
of processors. Figures 8(b) and 8(c) plot strong-scaling speedup on the three plat-
forms described above. Measurements are done with a fixed global problem size of
4003 grid points. We obtain good overall strong-scalability by increasing processor
count on all platforms. Furthermore, we observe superlinear speedups on the Intel
architecture. This may be explained as an effect of aggregate cache size as discussed
below.

Sequential or shared-memory implementations suffer from a large memory foot-
print per process. For example, our FDTD application uses 3843 grid points (1.13 GB
data in total), which is well beyond the current cache sizes. The spatial decomposition
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Fig. 8 Strong-scaling benchmark on BlueGene/P, Intel Xeon E5420 and AMD Opteron 270 based clus-
ters. (a) The wall-clock time as a function of the number of processors (up to 32,768) of BlueGene/P.
(b) Speedup compared to 512 core performance. (c) Speedup compared to single core performance on the
Intel Xeon E5420 and AMD Opteron 270 platforms. The Intel Xeon E5420 exhibits superlinear speedup
for relatively small number of processors

scheme avoids this problem by increasing the processor count, and thus decreasing
the volume of each subdomain. Substantial performance gain is expected, when the
sub-domain size becomes small enough to fit into the cache. We use the Intel Vtune
Performance Analyzer to monitor cache and TLB misses in the original FDTD code.
We find that high-stride computation accounts for more than 25 % of core cycles
throughout the thread execution during page-walks, indicating that a high TLB miss
rate results in greater effective memory access time. The cache effect is most pro-
nounced in the benchmark on Intel Xeon E5420 (Harpertown) architecture that fea-
tures a shared 6 MB L2 cache per chip that accommodates two cores. This amounts
to 12 MB of cache per MCM, 6 times more than 2 MB (2 × 1 MB) L2 cache on
AMD Opteron. Therefore, Harpertown outperforms AMD Opteron and shows the
superlinear-scaling with the processor counts over 32 (see Fig. 8(c)).
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Fig. 9 Weak-scaling performance on (a) BlueGene/P with 2003 grid points per process and (b) a dual
quadcore Intel Xeon E5345 cluster with 1003 grid points per process

4.2 Weak scaling

Next, we test weak-scaling parallel efficiency of our parallel SC. We define the weak-
scaling parallel efficiency as the running time on 1 processor divided by that on p

processors for a fixed problem size per processor. Figures 9(a) and 9(b) plot the total
execution time and communication time per SC step on the BlueGene/P and Intel
Xeon E5345 (Intel Clovertown) platforms. The quadcore Intel Clovertown architec-
ture is clocked at 2.33 GHz and features 256 kB/8 MB of L1/L2 cache.

In Fig. 9, the number of grid points per process (i.e., grain size) is 2003

(160 MB/process) for BlueGene/P and 1003 (20 MB/process) for the Intel Clover-
town cluster. We observe excellent weak-scalability, nearly constant performance up
to 256 processors on the Intel Clovertown-based cluster and 32,768 processors on
BlueGene/P with TXYZ network mapping. The XYZT network mapping shows fluc-
tuations in the total and communication times which is due to higher network re-
source sharing with other processes. The sharing is more effective for the XYZT
mapping since the TXYZ topology closely matches our algorithmic spatial decom-
position scheme.

4.3 Multithreading

In addition to the massive inter-node scalability demonstrated above, our paral-
lelization strategy involves the lower levels of optimization: First, we use multi-
threading explained in Sect. 3.2, implemented with POSIX thread. Next, we vec-
torize the loop for construction of packed_u

(t)
k and computation of the stencil

f (c,neighbor(packed_u
(t)
k )) inside the triply nested for loops in Fig. 4 by using

SSE3 intrinsics on the Intel Nehalem platform. We use Intel C compiler (icc) ver-
sion 11 with O3 optimization level for our benchmarks.

Figure 10(a) shows the reduction in clock time spent per simulation step due
to multithreading and SIMD optimizations. Corresponding speedups are shown in
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Fig. 10 (a) The wall-clock time per iteration for non-SIMD and SIMDized codes as a function of the
number of threads on quadcore Intel Nehalem. (b) Breakdown of the speedups due to multithreading and
data-level parallelism along with the combined intra-node speedup. The best observed intra-node speedup
is 5.83 with 8 threads on 4 cores

Fig. 10(b). To delineate the performances of multithreading and SIMDization, we
define a performance metric as follows. We use the clock time for one simulation
step of the single threaded, non-vectorized code to be the sequential run time Ts . We
denote the parallel run time, Tp(NUM_THREADS), to be the clock time required for
execution of one time step of the algorithm as a function of spawned thread number, in
presence of both multithreading and SIMD optimizations. Then combined speedup,
Sc, shown in Fig. 10(b) is the ratio Ts/Tp as a function of the number of threads.
We remove SIMD optimizations to quantify the effect of multithreading only, and
measure the parallel running times for a variety of thread numbers, and state the mul-
tithreading speedup, St , with respect to Ts . Finally, we attribute the excess speedup,
Sc/St , to SIMD optimizations.

Figure 10(b) shows the best speedup of 5.83 for 8 threads on a single quadcore
Intel Nehalem node. It should be noted that multithreading speedup continues to in-
crease until 8 threads on 4 cores. This is because Intel Nehalem cores feature simul-
taneous multi-threading technology (SMT) that enables each core to run two threads
at the same time. Increased L3 cache sharing and thread management cost dominates
at 16 threads to yield moderate performance degradation.

Figure 11 shows the multithreading speedup with and without NUMA control
as the number of threads varies from 1 to 48. When NUMA control is used (red
line), the speedup steadily increases with the number of threads and reaches the
peak speedup at 9.9-fold when 24 threads are used. When 25 threads are spawned,
the speedup sharply drops to 8.3-fold before gradually increasing to 9.3-fold at 48
threads. This sharp drop signifies that the thread management cost affects the perfor-
mance adversely if more than 24 threads are spawned when only 24 physical cores
are available. Unlike Intel Nehalem processor, in Magny-Cours architecture the per-
formance gain from memory latency hiding via redundant threading is dominated by
the context-switching penalty when more than 1 thread per core is spawned.
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Fig. 11 Multithreading
speedup with and without
NUMA control on dual 12-core
AMD Opteron system

On the other hand, multithreading without NUMA control (blue line) on AMD
Magny-Cours shows inferior speedup compared to the one with NUMA control.
When the number of threads is less than 18, the speedup without NUMA control is
2.3 % less on average. However, when 19 to 24 threads are used, the speedup without
NUMA saturates and is clearly below speedup with NUMA control (12.3 % slower
on average). A dramatic drop is observed when 25 threads are used, which is similar
to the speedup with NUMA control. Performance without NUMA control is signif-
icantly less than the performance with NUMA control (18.1 % slower on average)
when 25 or more threads are used. Also, the error margins, which show the standard
deviation of speedup over 10 runs, for the case without NUMA is larger reflecting the
stochastic nature of memory access.

The best speedup achieved without using NUMA control is 8.3-fold at 19 threads,
which is 16.1 % slower compared to the best speedup with NUMA control. On aver-
age, NUMA control improves speedup by 11.5 %. This result indicates the benefit of
NUMA control on NUMA architectures.

4.4 Single-core performance

We use a script to empirically search for the optimal values of yTile and zTile param-
eters to maximize the floating point performance of stencil_2dTiling and its variant
featuring RB. In this empirical method, the parameter space is defined by tile sizes
〈yTile, zTile〉, bounded by cache and TLB capacity constraints. Our tiling approach
essentially keeps cache lines closer to the core (in cache). All measurements are per-
formed using one core of Intel Core i7 920 CPU. Table 2 details the cache perfor-
mance improvement because of our tiling implementation. As a reference, Table 2
lists the performance of the experimental kernel that incorporates loop-unrolling
transformations labeled as original.Each row shows the number of CPU events per
1,000 retired instructions, i.e., the executed non-speculative instructions that are ac-
tually needed by the program flow. The data in the rows are normalized with respect
to 1,000 retired instructions during the code execution. The first row shows the num-
ber of retired loads that miss the LLC per 1,000 retired instructions at Intel Nehalem
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Table 2 Performance
comparison of original and tiled
codes

Per 1000 instructions Original 2dTiling Improvement

LLC_MISS 0.42 0.054 7.77

Local DRAM 0.54 0.115 4.69

DTLB 0.41 0.084 4.88

Fig. 12 Floating-point
operations per second
performance at Intel Nehalem.
(a) Comparison of the original
and tiled codes. (b) The
performance of tiling for TLB,
cache and registers with SIMD
implementation. The best single
core performance is 5.9 GFlops

core. We observe a 7.7-fold improvement in the LLC miss rate for the tiling imple-
mentation with the best tile sizes used. The second row shows number of memory
load instructions retired where the memory reference missed the L1, L2, and LLC
caches and required a local socket memory reference per 1,000 retired loads during
the execution. We see that the tiling version of the code shows improvement by de-
creasing local memory access rate by a factor of 4.6. The third row shows the number
of retired loads that missed the DTLB per 1,000 retired instructions. We also observe
that tiling improves DTLB miss per 1,000 instructions by 4.8-fold. We collect perfor-



Hierarchical parallelization and optimization of high-order stencil 963

Table 3 Comparison of
original and optimized code at
the assembly level

Assembly for 1 float multiply from original code

1: movss 0160 (%rsp), %xmm14

2: mulss %xmm14, %xmm13

3: addss %xmm13, %xmm10

4: unpcklps %xmm8, %xmm8

5: movlhps %xmm8, %xmm8

6: movups 010 (%rax, %r13, 4), %xmm11

7: mulps %xmm8, %xmm11

8: addps %xmm11, %xmm14

9: movss 0210 (%rsp), %xmm6

10: mulss %xmm6, %xmm8

Assembly for 4 float vector multiply in SIMD code variant

1: movaps (%rdx), %xmm10

2: movaps 010 (%rbp, %rax, 4), %xmm0

3: mulps %xmm0, %xmm10

mance numbers via Intel VTune Performance Analyzer. The Linux kernel version in
our system is 2.6.28-19 (LLC patch for Intel Nehalem is applied).

Figure 12(a) shows the variation of the performance (in terms of the floating-
point operations per second) of stencil_2dTiling with tile sizes compared with that
of the original loop-unrolling transformation code. We observe the dominant effect
of y tile size, with the smaller y tile size achieving the better performance. The best
observed performance is 2.72 Gflops, whereas the theoretical peak performance is
2.67 × 109 cycles/second × 4 flops/cycle = 10.68 Gflops. This corresponds to 25 %
of the peak performance. Auto-tuning through CHiLL generates similar flops perfor-
mance.

Figure 12(b) shows the tile-size dependency of the performance of the code variant
incorporating both tiling and RB optimizations with the explicit use of SSE instruc-
tions. The best performance we have achieved is 5.9 Gflops, which corresponds to
over 55 % of the theoretical peak performance.

The above results show more than 2-fold improvement by the SSE featuring code
variant with respect to the tiling version. This performance enhancement may be at-
tributed to the effective use of Intel SSE instructions for floating-point operations. In
fact, we use Intel C compiler (icc) version 11 for all codes with the best optimization
level (-O3), but the compiler fails to vectorize the nested loop body for the HOSC.
Our analysis with VTune Performance Analyzer reveals that the SIMD variant re-
duces the number of instructions that retire the execution by more than 2-fold with
respect to both original and tiling versions of the same code. To better understand this,
we have examined the assembly codes for floating-point operations inside the loop
body. Table 3 shows a typical assembly code for a single floating-point multiply gen-
erated from the original code and vector multiply of a four packed single-precision
floating-point values in the SIMD code variant. Both codes load coefficient c and grid
value u

(t)
i,j,k and perform a multiply operation. Original code executes extra instruc-

tions to calculate array indices whereas SIMD variant uses 1 array index calculation
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per 4 floats multiply. Note the use of unpcklps and movlhps in the original code to
unpack and move single-precision floating-point values, and use of movups for mov-
ing unaligned data. Also one single-precision floating-point multiply is performed by
mulss instruction. In the SIMD code variant, movaps is used to load a 128-bit memory
location to an XMM register at once, i.e., aligned load operation loads 4 float values
at a time, then performs a packed multiply, mulps, to concurrently multiply 4 packed
floats.

5 Summary

We have developed a multilevel optimization scheme for high-order stencil computa-
tions that combines: (i) inter-node parallelization via spatial decomposition; (ii) inter-
core parallelization via multithreading; (iii) data locality optimizations through auto-
tuned tiling for efficient use of hierarchical memory; and (iv) RB and data parallelism
via SIMD techniques to utilize registers and exploit data locality. We have applied our
optimization scheme to a sixth-order stencil based FDTD code. Our benchmarks on
32,768 BlueGene/P processors achieved over 98 % weak-scaling parallel efficiency.
We have also observed superlinear strong scaling due to increasing aggregate caches
on an Intel Xeon cluster. RB+multithreading optimizations have achieved 5.8-fold
speedup on a single quadcore Intel Nehalem Core i7 920. A speedup of 9.9-fold is
obtained on a dual Magny-Cours Opteron with explicit NUMA control. Data locality
optimizations achieve 7.7-fold reduction of LLC miss rate on Intel Nehalem, whereas
RB increases data parallelism and thereby achieving 5.9 Gflops performance on a sin-
gle core, which is over 55 % of its peak performance.
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