
Memory-Access Optimization

of Parallel Molecular Dynamics Simulation
via Dynamic Data Reordering

Manaschai Kunaseth, Ken-ichi Nomura, Hikmet Dursun, Rajiv K. Kalia,
Aiichiro Nakano, and Priya Vashishta

University of Southern California, Los Angeles, CA 90089, USA
{kunaseth,knomura,hdursun,rkalia,anakano,priyav}@usc.edu

Abstract. Dynamic irregular applications such as molecular dynam-
ics (MD) simulation often suffer considerable performance deterioration
during execution. To address this problem, an optimal data-reordering
schedule has been developed for runtime memory-access optimization of
MD simulations on parallel computers. Analysis of the memory-access
penalty during MD simulations shows that the performance improve-
ment from computation and data reordering degrades gradually as data
translation lookaside buffer misses increase. We have also found correla-
tions between the performance degradation with physical properties such
as the simulated temperature, as well as with computational parameters
such as the spatial-decomposition granularity. Based on a performance
model and pre-profiling of data fragmentation behaviors, we have de-
veloped an optimal runtime data-reordering schedule, thereby archiving
speedup of 1.35, 1.36 and 1.28, respectively, for MD simulations of silica
at temperatures 300 K, 3,000 K and 6,000 K.

Keywords: Data reordering, memory-access optimization, data frag-
mentation, performance degradation, molecular dynamics.

1 Introduction

Molecular dynamics (MD) simulation is widely used to study material properties
at the atomistic level [2,7,9,10]. One of the major problems on improving perfor-
mance of MD simulations is to maintain data locality. Since the memory-access
pattern in MD simulation is highly non-uniform and unpredictable, the locality
optimization problem is challenging.

To address the locality issue, a commonly used method is data reordering,
which organizes data of irregular memory-access patterns in memory accord-
ing to a certain locality metric [3,4,11,13]. However, a further challenge arises
from the dynamic, irregular nature of MD computations. Mellor-Crummey et
al. showed that data reordering and computation restructuring enhance data
locality, resulting in the reduction of cache and TLB misses and accordingly
considerable performance improvement of MD simulations [6]. The study also
suggested the necessity of repeated runtime reorderings, for which the remaining

C. Kaklamanis et al. (Eds.): Euro-Par 2012, LNCS 7484, pp. 781–792, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



782 M. Kunaseth et al.

problem is how often the reordering should be performed in order to achieve the
optimal overall performance. In addition, as the data reordering and computa-
tion restructuring incur computational overhead, such reordering cost should be
considered to find the optimal reordering frequency.

Runtime data behaviors of MD simulations are closely related to both physical
properties of the system being simulated (e.g. temperature, diffusion rate, and
atomic configuration) and computational parameters (e.g. spatial decomposition
granularity in parallel MD). Therefore, understanding how these quantities af-
fect the deterioration of data locality is a prerequisite for designing the optimal
runtime data-reordering schedule.

To address these challenges, we first introduce a data fragmentation ratio
metric that quantifies the locality of atom data arrays during MD simulation.
Then, we perform an analysis on how MD simulations with different physi-
cal/computational characteristics (e.g. temperature, diffusion rate, and granu-
larity) impact the data fragmentation ratio and performance deterioration of the
system. Based on the data fragmentation analysis, we finally design and eval-
uate an memory optimization scheme that features an optimal runtime data-
reordering schedule during MD simulation.

2 Parallel Molecular Dynamics

Molecular dynamics simulation follows the phase-space trajectories of anN -atom
system, where force fields describing the atomic force laws between atoms are
spatial derivatives of a potential energy function E(rN )(rN = {r1, r2, ..., rN} is
the positions of all atoms). Positions and velocities of all atoms are updated at
each MD step by numerically integrating coupled ordinary differential equations.
The dominant computation of MD simulation is the evaluation of E(rN ), which,
in the program considered in this paper, consists of two-body E2(ri, rj) and
three-body E3(ri, rj , rk) terms [7].

Figure 1(a) shows a schematic of the computational kernel of MD, which
employs a linked-list cell method to compute interatomic interactions in O(N)
time. Periodic boundary condition is applied to the system in three Cartesian
dimensions. Here, a simulation domain is divided into small cubical cells, and
the linked-list data structure is used to organize atomic data (e.g. coordinates,
velocities and atom type) in each cell. Traversing through the linked list, one
retrieves the information of all atoms belonging to a cell, and thereby computes
interatomic interactions. Thus, the dimensions of the cells are usually determined
by the cutoff radius rc of the interatomic interaction.

The MD program considered in this paper employs spatial decomposition at
an outermost level of hierarchical parallelization [8]. Here, the physical system is
partitioned into subsystems, and atoms residing in different subsystems are as-
signed to different compute nodes. When the atomic coordinates are updated ac-
cording to the time-integration algorithm, some resident atoms may have moved
out of the subsystem boundary, and such atoms are migrated to proper nodes.



Memory-Access Optimization of Parallel Molecular Dynamics Simulation 783

MD is an archetype of irregular memory-access pattern applications, and
this paper addresses two distinct sources of irregularity: (1) physically induced
disorder such as atom diffusion or flow; and (2) algorithmically induced disorder
such as atom migration between spatial decomposition domains in parallel MD.

3 Data Fragmentation in Parallel Molecular Dynamics

High memory-access penalty is a major obstacle of irregular memory accessing
applications, which needs to be mitigated. Our MD application performs data
and computation orderings by organizing atom data contiguously in memory
in the same order as the linked lists of the cells access them. The reordering
algorithm performed in O(N) is shown in Fig. 1(b). Though the spatial locality
after data reordering is retained for a while, data get disordered as simula-
tion progresses due to atom movement among cells. How the benefit from data
reordering deteriorates as simulation evolves at runtime essentially affects the
performance of MD simulations. To quantify the level of fragmentation, we first
define a fragmentation measurement ratio metric.

Let C(i, j, k) be a linked-list cell with cell indices i, j, and k in the x, y, and
z directions, respectively. Each linked-list cell contains indices of atoms whose
coordinates are within their cell dimensions. Before data reordering, atom data
are likely scattered in memory as illustrated in Fig. 1(c), and data reordering
improves the data locality as shown in Fig. 1(d), where the atom data of the same
physical cell volume reside continuously. Fragmentation in the atom data array
could occur as follows. Suppose that the a-th atom in linked-list cell C moves
to another cell C ′. Consequently, the memory block of C′ becomes partially
fragmented because the a-th atom is not contiguous in memory space with other
atoms in C′ such that their distances in the memory space exceed the page
size. Therefore, any atom moving out of its original linked-list cell introduces
fragmentation in memory, which likely causes data translation lookaside buffer
(DTLB) misses. To quantify the degree of fragmentation, we thus define a data
fragmentation ratio as f = Nfragment/N , where Nfragment is the number of
atoms whose positions have moved out of the originally ordered cells and N is
the total number of atoms. The data fragmentation ratio is between 0 (i.e., all
atoms in all cells reside continuously in memory—fully ordered state, see Fig.
1(d)) and 1 (i.e., no atom resides in the original cell—fully disordered state, see
Fig. 1(c)). The data fragmentation ratio will be used to quantify fragmentation
extensively throughout this paper. Note that the page size used in all experiments
is 4 KB.

Data fragmentation in memory is dictated by the dynamics of atoms, and
thus understanding the factors that control the atom dynamics would provide
an insight on how to prevent the fragmentation. One of the physical factors that
are directly related to the dynamics is the temperature, since high temperature
drives atoms to move faster and more freely. Among the computational factors,
migration of atom data from one node to another across a subsystem boundary in
parallel MD also causes fragmentation. The granularity of spatial decomposition



784 M. Kunaseth et al.

Fig. 1. (a) 2D schematic of the linked-list cell method. The center cell C(0, 0) is sur-
rounded by eight neighbor cells. The cell dimensions are often chosen to be the cutoff
radius (represented by the two-heads arrow) of interatomic interaction. Only force ex-
erted from atoms within the cutoff radius are computed. (b) Pseudocode of the data
reordering algorithm. (c) Schematic of memory layout for atom data in a disordered
state and (d) a fully ordered state, where C(i, j, k) is the linked list for the cell with
indices i, j, and k in the x, y, and z directions, respectively, r[a] is the data associated
with the a-th atom.

(i.e. the number of atoms per compute node) is related to the subsystem surface-
to-volume ratio, and hence is likely to control the degree of fragmentation via
the amount of atom migrations. In the following subsections, we measure and
analyze the effects of temperature and granularity on the data fragmentation.

3.1 Temperature Induced Fragmentation

In this subsection, we study the effect of temperature on the data fragmentation
during MD simulations on two systems: Silica material [1] and combustion of
aluminum nanoparticles [12]. The silica simulations involving 98,304 atoms and
8,000 linked-list cells (20 × 20 × 20 in x, y, and z directions, respectively) are
performed for 3,000 MD time steps using a time discretization unit of 2 fem-
toseconds. The simulations are performed on a dual quadcore Intel Xeon E5410
2.33 GHz (Harpertown) at the High Performance Computing and Communica-
tion (USC-HPCC) facility of the University of Southern California. Temperature
is a major physical factor that enhances the diffusion of atoms and hence the
disordering of data arrays. To examine the effect of atomic diffusions on the
data fragmentation ratio, we thus perform a set of simulations with three dif-
ferent initial temperatures, 300, 3,000, and 6,000 Kelvin (K), starting from the
same initial atomic configuration—an amorphous structure with a uniform den-
sity across the system. Each dataset represents a distinct phase of silica—solid



Memory-Access Optimization of Parallel Molecular Dynamics Simulation 785

(300 K), highly viscous liquid (3,000 K) [5], and low-viscosity liquid (6,000 K)
(note that the melting temperature of silica is 1,800 K). Here, data ordering is
performed only once at the beginning of the simulation, so that the atom data
are fully ordered (Fig. 1(d)) initially, and subsequently we measure the data
fragmentation ratio as a function of MD steps without further data reordering.

In order to study the influence of temperature on data fragmentation, Fig.
2(a) plots the data fragmentation ratio as a function of MD steps. Simulations at
higher temperatures exhibit larger fragmentation ratios. The fragmentation of
300 K dataset fluctuates in the first 500 steps, then rises to 0.15 after 1,000 steps,
and remains nearly constant throughout the simulation thereafter. At 3,000 K,
the fragmentation ratio quickly increases to 0.24 in the first 200 steps, and then
increases linearly with time (0.033 per 1,000 steps), reaching 0.36 after 3,000
MD steps. In contrast, the fragmentation ratio at 6,000 K rapidly rises to 0.73
in the first 500 steps, then continues to increase with a slightly slower rate until
the data gets almost fully disordered at 0.93 after 3,000 MD steps.

In order to understand the physical origin of the correlation between the
fragmentation ratio and temperature in Fig. 2(a), we measure the mean squared
displacement (MSD) of atoms in each dataset as a function of time. MSD is
used to identify the phase (e.g. solid vs. liquid) of the material and to calculate
the diffusion rate of atoms in the system, which may be used to quantify the
dynamics of atoms during the simulation. Figure 2(b) shows the MSD of 300 K,
3,000 K, and 6,000 K datasets over 6 picoseconds (3,000 MD steps). The result
shows that at 300 K, silica remains in solid phase (MSD remains constant). In
contrast, 3,000 K silica is melted and becomes a highly viscous liquid with a small
diffusion coefficient of 2.31×10−5 cm2/s (the diffusion coefficient is obtained from
the linear slope of the MSD curve). Similarly, MSD of 6,000 K dataset shows
that the system is completely melted with a much larger diffusion coefficient of
4.17×10−4 cm2/s. Because atoms are not diffusing in 300 K dataset, 83% of the
atoms (f = 0.17) remain in the same linked-list cell throughout the simulation.

Only atoms close to the cell boundaries move back and forth between the
original and the neighbor cells due to thermal vibration. However, atoms in
3,000 K dataset are melted, and their slow diffusion from their original cells
causes the gradually increasing fragmentation ratio. For 6,000 K system, atoms
diffuse approximately 18 times faster than 3,000 K system, resulting in the rapid
rise of fragmentation ratio. Only 3.2% of the atoms remain in the same cell after
3,000 steps. These results clearly show that diffusion is a major physical factor
that contributes to data fragmentation in MD simulations.

Although the silica experiment shows that the temperature significantly af-
fects data fragmentation, we also found that its effect on the fragmentation
ratio is sensitive to the material and phenomenon being simulated. To demon-
strate this point, the second experiment simulates flash heating of an aluminum
nanoparticle surrounded by oxygen environment using a reactive interatomic
potential [12], which involves 15,101,533 atoms on 1,024 processors of dual core
AMD Opteron 270 2.0 GHz (Italy) at the USC-HPCC facility. Similar to the
first simulation, the atom data arrays are ordered only once at the beginning



786 M. Kunaseth et al.

Fig. 2. (a) Time variation of data fragmentation ratio over 3,000 MD steps. Three
datasets of different initial temperatures (300 K, 3,000 K, and 6,000 K) are plotted.
(b) Mean squared displacement (MSD) of 300 K, 3,000 K, and 6,000 K datasets. The

MSD of 300 K dataset remains constant at 0.23 Å
−2

(too small to be seen in the
figure). The inset shows the diffusion coefficients at the three temperatures. (c) Data
fragmentation ratio during aluminum combustion simulation over 2,000 MD steps. The
dataset involves 15 million atoms on 1,024 processors.

of the simulation. Then, the fragmentation ratio of 3,000 K, 6,000 K and 9,000
K datasets are measured at each step. Figure 2(c) shows the data fragmenta-
tion ratio as a function of MD steps. We see that the fragmentation ratios of
all datasets rapidly rise to above 90% after 1,000 MD steps, and continue to
increase to over 98% after 2,000 MD steps. Since the aluminum nanoparticles
are at considerably high temperatures (far above the melting temperature of
aluminum ∼ 930 K) and are surrounded by oxygen atoms in the gas phase, the
atoms are highly reactive and move very rapidly. This accelerates the fragmenta-
tion to proceed very quickly regardless of the temperature. In such applications,
data reordering is indispensable and is required to be performed more often in
order to maintain good spatial locality. These results indicate that fragmenta-
tion is highly system dependent, so that data reordering needs to be performed
dynamically at runtime, adapting to the systems behaviors.

3.2 Granularity Induced Fragmentation

Parallel MD using spatial decomposition introduces computational artifacts such
as spatial subsystem (or domain) boundaries, which also contribute to the frag-
mentation of atom data arrays. In this subsection, we study the influence of
granularity (i.e. the number of atoms per compute node) on data fragmenta-
tion. Atoms near a domain-boundary surface tend to migrate among domains
regardless of physical simulation conditions. This inter-domain atomic migration
triggers rearrangements of data arrays, including the deletion of the migrated
atom data from the original array, compression of data array after the removal of
the migrated atoms, and their appending to the array in the destination domain.
These newly migrated atoms in the destination domain cause data fragmenta-
tion, since they do not reside continuously in memory.



Memory-Access Optimization of Parallel Molecular Dynamics Simulation 787

Fig. 3. (a) Time variation of the data fragmentation ratio of 12,288-atom silica at
3,000 K over 3,000 MD steps, for surface cells, core cells, and both combined. (b) Time
variation of the data fragmentation ratio of 3,000 K silica varying granularities over
3,000 MD steps. Inset table shows computational parameters of silica datasets.

To confirm the expected high fragmentation ratio at the domain boundaries as
explained above, the data fragmentation ratios of the surface cells (i.e. the outer-
most layer cells that share at least one facets with the inter-domain surfaces)
and core cells (i.e. non-surface cells deep inside each domain) are measured
separately. Here, we consider a 12,288-atom silica dataset initially at 3,000 K
temperature similar to the dataset used in the first experiment of section 3.1
but with a reduced domain size (their dimensions are reduced by half in all
three directions, so that the domain volume is one-eighth of that in section 3.1).
This dataset consists of 1,000 cells in total (10 × 10 × 10), of which 488 cells
(48.8%) are surface cells. Figure 3(a) clearly shows that the data fragmentation
ratio of the surface cells is larger than that of the core cells. In the first 100 MD
steps, the fragmentation ratios of the two groups are almost identical. Then, the
fragmentation ratio of the surface cells begins to increase at higher rate reaching
0.53 after 3,000 MD steps, whereas the fragmentation ratio of the core cells is
only 0.39. Thus, the atom data of the surface cells is 14% more fragmented
that that in the core cells, yielding a total fragmentation ratio of 0.42 for the
entire system. This result confirms that computational artifacts such as domain
boundary indeed induce additional fragmentation.

The domain-boundary induced fragmentation also implies that systems with
smaller granularities will have more fragmentation due to their larger surface-to-
volume ratios (i.e., larger portions of linked-list cells are domain-boundary cells).
To test this hypothesis, we perform MD simulations for 3,000 K silica system
with three different granularities—98,304, 12,288, and 1,536 atoms, over 3,000
MD steps. Figure 3(b) shows that datasets with smaller granularities indeed
have larger fragmentation ratios. After 3,000 MD steps, the data array of the
smallest granularity (1,536 atoms) dataset is 9.7% more fragmented than that in
the largest granularity (98,304 atoms) dataset. Also, the 12,288 atoms dataset
is 5.2% more fragmented compare to the largest dataset. The figure also shows
large fluctuation for the fragmentation ratio for N = 1, 536 dataset, due to less
statistics inherent for the small system size.



788 M. Kunaseth et al.

4 Performance Measurements

In this section, we first establish a correlation between the data fragmentation
ratio and the performance of the program. In a fragmented dataset, atom data
are likely to reside in different memory pages, which causes a large number of
DTLB misses, when they are fetched. The reordering algorithm explained in
section 3 clusters atom data that need to be fetched and computed in relatively
proximate times (e.g. atoms in the same cells) in the same page, thereby reducing
DTLB misses tremendously. However, as the simulation progresses, atoms that
are once ordered possibly move out of their original cells. It is thus expected that
the increase of DTLB misses caused by data fragmentation is a major source of
performance degradation in MD.

To confirm the correlation between the number of DTLB misses and the data
fragmentation ratio, we perform a test using the same datasets from the first
experiment of section 3.1. In addition to the fragmentation ratio measured in
section 3.1, we here measure the DTLB miss rate as a function of MD steps. We
use the Intel VTune Performance Analyzer to monitor DTLB miss events during
MD simulation on Intel Core i7 920 2.67 GHz (Nehalem) processor. We measure
the number of DTLB misses after data ordering is performed, then normalize
it by the original number of DTLB misses without data ordering. We find that
the initial DTLB miss rates at all temperatures are approximately 0.07 (� 1)
right after the reordering is performed (namely, the reordering reduces DTLB
misses by 93%). The great improvement highlights a significant role of data
reordering in reducing DTLB misses for irregular memory-access applications.
We also monitor the number of DTLB misses as a function of MD time steps
and observe distinct profiles at different temperatures (Fig. 4(a)). The DTLB
misses ratio at 300 K and 3,000 K saturates at 0.08 and 0.13, respectively. In
contrast, the 6,000 K simulation exhibits a continuous increase of the number
of DTLB misses. The DTLB miss rate reaches 0.62 at 3,000 MD steps after the
initial data reordering.

Figure 4(b) shows the relation between the data fragmentation ratio and the
DTLB misses rate at the three temperatures. The DTLB misses rate remains
relatively small when the fragmentation ratio is small, while it rapidly increases
when the fragmentation ratio increases above 0.8. This result clearly demon-
strates a strong correlation between the DTLB miss rate and the data fragmen-
tation ration. Namely, in MD simulations where atoms are moving extensively,
the DTLB miss rate increases rapidly as its fragmentation ratio does.

To show that DTLB misses are the source of performance deterioration during
simulation, we measure the running time of the same datasets as in the DTLB
miss measurement. Figure 4(c) shows the running time of each MD step for
3,000 MD steps after ordering data at the first step. At 6,000 K, the running
time gradually increases over time, and after 3,000 MD steps, the average running
time per step increases by 8%. To study howmuch more performance degradation
occurs after the initial data ordering, we extend the execution of 6,000 K dataset
to 20,000 MD steps. The result shows an increase of the running time per step
by 21%. This result indicates that without data reordering, the performance



Memory-Access Optimization of Parallel Molecular Dynamics Simulation 789

Fig. 4. (a) Time variation of the DTLB miss rate in 300, 3,000 and 6,000 K dataset over
3,000 MD steps. (b) Relation between the DTLB miss rate and the data fragmentation
ratio in 300, 3,000 and 6,000 K datasets. (c) Running time per MD step as a function
of MD steps at temperatures 300, 3,000, and 6,000 K for 98,304 silica atoms.

continues to degrade, and the running time per step continues to increase. On
the other hand, the running time rapidly increases at the first 100 MD steps
but then remains almost constant at 300 K and 3,000 K. These performance
behaviors are akin to the fragmentation ratio and DTLB misses profiles in Figs.
2(a) and 4(a), respectively. These results thus confirm that data fragmentation
in memory is indeed the source of performance deterioration during runtime
through the increase of DTLB misses.

In Fig. 4(c), we also observe that 6,000 K simulation initially executes fastest
compare to the other simulations (3.1% faster than 300 K and 2.5% faster than
3,000 K), which cannot be explained by the difference in the DTLB miss rate.
One possible reason for this discrepancy is that higher temperature systems have
sparser atomic distributions (i.e. lower atomic number densities), such that there
are less number of atom interactions within the interaction range rc, and hence
less number of floating-point operations. To test this hypothesis, we measure the
atom-distance distribution for all datasets. The results show that the number of
atom pairs within distance rc of 6,000 K system is approximately 3.0% and 1.4%
less than those of 300 K and 3,000 K systems, respectively. As a result, 6,000
K simulation has the least computational load resulting in the fastest running
time at the beginning of the simulation, which however is rapidly offset by the
increase in DTLB misses.

In addition to the atom ordering discussed above, the cell ordering in the
memory space also affects the locality. To address this issue, we measure the
performance of three different cell ordering methods: 1) sequential ordering; 2)
Hilbert-curve ordering; and 3) Morton-curve ordering [6]. The performance mea-
surements are performed with 300 K temperature silica systems with grain size
ranging from 12,288 - 331,776 atoms with reordering period of 20 MD steps on
Intel Core i7 920 2.67 GHz (Nehalem) processor. The performance comparisons
of all ordering methods are shown in Table 1. The results do not exhibit signifi-
cant improvement due to different ordering methods. For example, the running
time of Hilbert curve ordering is at most 1.76% less than that of the sequential
ordering at largest granularity (331,776 atoms), while the running time of Mor-
ton curve ordering is less than 1% different for all granularities. One possible



790 M. Kunaseth et al.

Table 1. Runtime result with different ordering methods for silica systems at temper-
ature 300 K. Reordering costs shown are obtained from sequential ordering.

reason of the insensitivity of the performance on the cell-ordering method is the
small number of references across intra-node cell boundaries. For simplicity, we
employ the sequential ordering in the following.

5 Reordering Frequency Optimization

To minimize the performance degradation due to data fragmentation, we propose
to repeat data reordering periodically during MD simulation. Specifically, we
reorder atom arrays after every Nrp MD steps (i.e., the reordering period Nrp is
the number of MD steps between successive reordering operations). Though such
data reordering is beneficial and often improves overall application performance,
ordering arrays itself introduces an additional computational cost. Therefore, we
here develop a dynamic data-reordering schedule based on a performance model
and the runtime measurement in section 4. To do so, we first introduce a model
that accounts for the reordering overhead. Let tcost be the data reordering cost
(i.e. the time to reorder arrays), Ntotal is the total simulation steps, and t(n)
is the running time at step n after ordering. The total running time, τ , as a
function of reordering period, Nrp, is then written as

τ(Nrp) =

⌊
Ntotal
Nrp

⌋⎛
⎝

Nrp∑
n=1

t(n) + tcost

⎞
⎠+

mod(Ntotal,Nrp)∑
n=1

t(n) (1)

The optimal reordering period is then determined as the one that minimizes the
total running time N∗

rp = argmin(τ(Nrp)). To find the ordering cost parameters
in Eq. (1), we measure the reordering cost with different grain sizes. The results
are summarized in Table 1.

Figure 5(a) shows the total running times for 3,000 MD steps as a function
of the reordering period estimated from Eq. (1) with the measured reordering
costs in Table 1. We obtain the optimal reordering period (which minimizes
the total running time) as 69, 5, and 3 steps for 300 K, 3,000 K and 6,000 K
datasets, respectively (see the arrows in Fig. 5(a)). With the optimally scheduled
reordering thus determined, the overall performance is estimated to be improved
by a factor of 1.35, 1.36 and 1.28 at 300 K, 3,000 K and 6,000 K, respectively.



Memory-Access Optimization of Parallel Molecular Dynamics Simulation 791

Fig. 5. (a) Total run time after 3,000 MD steps as a function of reordering period.
The optimal period at 300 K, 3,000 K and 6,000 K are 69, 5 and 3 steps, respectively.
(b) Comparison of total run time of silica MD over 3,000 steps achieved by model
prediction and actual measurement of periodic reordering compared with that of the
original code without ordering. (c) Total run time over 1,000 steps of parallel runs.

To verify this model prediction, we measure the running time of MD simu-
lations that implement data reordering with the optimal reordering schedule.
Here, MD simulations of silica containing 98,304 atoms at temperatures 300 K,
3,000 K, and 6,000 K are executed using periodic reordering at every 69, 5, and
3 steps, respectively. The results show that the measured speedups in actual
executions are 1.27, 1.25, and 1.17, respectively, with 6.4%, 7.6%, and 10.0%
error from the estimated values. The running time of the system without order-
ing, the optimized running time estimated from the model, and the measured
running time with optimally scheduled reordering are compared in Fig. 5(b). To
confirm that this performance benefit carries over to parallel runs, we performed
a performance benchmark of silica MD with the same initial temperatures. The
benchmark is executed on 192 cores of dual hexcore Intel Xeon X5650 2.66 GHz
(Westmere) using 192,000 atoms per core (36 million atoms total). Figure 5(c)
shows that speedups of 1.12, 1.11, and 1.12 are obtained from 300 K, 3,000 K,
and 6,000 K runs, respectively. These figures shows a substantial effect of run-
time data reordering on the performance of MD simulations. It should be noted
that the state-of-the-art MD simulations are run up to 1012 time steps [2], for
which the 103-step pre-profiling run for constructing the performance model, Eq.
(1), can be amortized by updating the model every 106 steps.

6 Conclusions

We have developed an optimal data-reordering schedule for molecular dy-
namics simulations on parallel computers. Our analysis has identified physi-
cal/computational conditions such as a high temperature and a small granu-
larity, which considerably accelerate data fragmentation in the memory space,
thereby causing continuous performance degradation throughout the simulations



792 M. Kunaseth et al.

at runtime. Our profiling results have revealed that the degree of data frag-
mentation correlates with the number of DTLB misses and have identified the
former as a major cause of performance decrease. Based on the data fragmen-
tation analysis and a simple performance model, we have developed an optimal
data-reordering schedule, thereby archiving a speedup of 1.36 for 3,000 K sil-
ica simulation. This paper has thus proposed a practical solution to a dynamic
data-fragmentation problem that plagues many scientific and engineering ap-
plications. Future research could be focused on other physical properties such
as pressure, local density, and non-uniform mechanical loadings (such as shear
deformation). Also, performance degradation in the light of other performance
metrics such as cache misses could be explored. This work was partially sup-
ported by DOE-BES/SciDAC and NSF-CDI/PetaApps.

References

1. Chen, Y.C., Nomura, K., Kalia, R.K., Nakano, A., Vashishta, P.: Void deformation
and breakup in shearing silica glass. Phys. Rev. Lett. 103(3) (2009)

2. Dror, R.O., Jensen, M., Borhani, D.W., Shaw, D.E.: Molecular dynamics and com-
putational methods exploring atomic resolution physiology on a femtosecond to
millisecond timescale using molecular dynamics simulations. J. Gen. Physiol. 135,
555–562 (2010)

3. Han, H., Tseng, C.W.: Exploiting locality for irregular scientific codes. IEEE Trans.
Par. Dist. Sys. 17(7), 606–618 (2006)

4. Hu, Y.C., Cox, A., Zwaenepoel, W.: Improving fine-grained irregular shared-
memory benchmarks by data reordering. In: Supercomputing (2000)

5. Kushima, A., Lin, X., Li, J., Eapen, J., Mauro, J.C., Qian, X.F., Diep, P., Yip, S.:
Computing the viscosity of supercooled liquids. J. Chem. Phys. 130(22), 224504
(2009)

6. Mellor-Crummey, J., Whalley, D., Kennedy, K.: Improving memory hierarchy per-
formance for irregular applications using data and computation reorderings. Int’l
J. Par. Prog. 29(3), 217–247 (2001)

7. Nomura, K., Dursun, H., Seymour, R., Wang, W., Kalia, R.K., Nakano, A.,
Vashishta, P., Shimojo, F., Yang, L.H.: A metascalable computing framework for
large spatiotemporal-scale atomistic simulations. In: IPDPS (2009)

8. Peng, L., Kunaseth, M., Dursun, H., Nomura, K., Wang, W., Kalia, R.K., Nakano,
A., Vashishta, P.: A scalable hierarchical parallelization framework for molecular
dynamics simulation on multicore clusters. In: PDPTA (2009)

9. Phillips, J.C., Zheng, G., Kumar, S., Kale’, L.V.: NAMD: Biomolecular simulations
on thousands of processors. In: Supercomputing (2002)

10. Shaw, D.E.: A fast, scalable method for the parallel evaluation of distance-limited
pairwise particle interactions. J. Comp. Chem. 26(13), 1318–1328 (2005)

11. Singh, J.P., Hennessy, J.L., Gupta, A.: Implications of hierarchical N-body methods
for multiprocessor architectures. ACM Trans. Comput. Sys. 13(2), 141–202 (1995)

12. Wang, W.Q., Clark, R., Nakano, A., Kalia, R.K., Vashishta, P.: Fast reaction mech-
anism of a core-shell nanoparticle in oxygen. Appl. Phys. Lett. 95(26) (2009)

13. Yao, Z.H., Wang, H.S., Liu, G.R., Cheng, M.: Improved neighbor list algorithm in
molecular simulations using cell decomposition and data sorting method. Comput.
Phys. Commun. 161(1-2), 27–35 (2004)


	Memory-Access Optimization of Parallel Molecular Dynamics Simulation via Dynamic Data Reordering
	Introduction
	Parallel Molecular Dynamics
	Data Fragmentation in Parallel Molecular Dynamics
	Temperature Induced Fragmentation
	Granularity Induced Fragmentation

	Performance Measurements
	Reordering Frequency Optimization
	Conclusions
	References




