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a b s t r a c t

KineticMonte Carlo (KMC) simulations are used to study long-time dynamics of awide variety of systems.
Unfortunately, the conventional KMC algorithm is not scalable to larger systems, since its time scale
is inversely proportional to the simulated system size. A promising approach to resolving this issue is
the synchronous parallel KMC (SPKMC) algorithm, which makes the time scale size-independent. This
paper introduces a formal derivation of the SPKMC algorithm based on local transition-state and time-
dependent Hartree approximations, aswell as its scalable parallel implementation based on a dual linked-
list cell method. The resulting algorithm has achieved a weak-scaling parallel efficiency of 0.935 on 1024
Intel Xeon processors for simulating biological electron transfer dynamics in a 4.2 billion-heme system,
as well as decent strong-scaling parallel efficiency. The parallel code has been used to simulate a lattice of
cytochrome complexes on a bacterial-membrane nanowire, and it is broadly applicable to other problems
such as computational synthesis of new materials.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Ever-increasing processing power of parallel computers [1]
is continuously extending the spatiotemporal scales of particle
simulations [2], where each particle could represent an atom in
molecular dynamics (MD) simulations or a human in agent-based
social simulations. Essential to extending the spatial scale is linear-
scaling algorithms based on spatial locality principles, in which
the computational complexity scales linearly with the number of
particles N [3–6]. A harder problem is to increase the time scale of
processes that can be simulated, due to the inherently sequential
nature of time as a result of causality [7]. In some cases, temporal
locality principles alleviate the sequential-time bottleneck in MD
simulations [2,4,6,8]. Namely, amany-particle system tends to stay
near a localminimum-energy configuration over a long duration of
time, which is bounded by a rare transition over short time period
to another minimum. In such a case, the transition state theory
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(TST) [9,10] uses a local equilibrium assumption to reformulate the
sequential long-time dynamics as computationally more efficient
parallel search for low-activation transition events [11–14], where
the rates of the events are computed from their activation barriers.

The most widely used simulation method based on TST is ki-
netic Monte Carlo (KMC) [15–20]. In KMC simulations, an event
to occur is stochastically selected from a database of events. The
simulated time progresses according to Poisson statistics, where
the time increment t at each KMC step is inversely proportional
to the sum of the rates of all possible events. Since the summed
rate grows as at least O(N), KMC simulations progress much more
slowly for larger systems, i.e., t = O(1/N). With an O(N) imple-
mentation of the computation for a single KMC step, therefore, the
computational complexity to simulate a physical time duration of
τ is O(N × τ/t) = O(N × τN) = O(N2). The conventional KMC
algorithm is thus not scalable for large N . Here, it should be noted
that single-step KMC computation can be performed in O(logN)
time instead of O(N) [21], or even faster if the types of possible
events are bounded as O(1) [22].

More efficient long-time simulation is possible because of the
spatiotemporal locality of activated events. Namely, they are usu-
ally localized not only temporally but also spatially [23]. This leads
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Fig. 1. Hemegroups in a dimer of decaheme cytochromes,where the Fe atomwithin
each heme is represented by a yellow sphere. Each of the two cytochromes (colored
magenta and cyan) contains 10 hemes.

to computationallymore efficient simulationmethods that concur-
rently sample multiple, spatially localized events [24–28]. In such
cases, event samplingmaybe enhanced by an ensemble-mean field
approach. For example, a time-dependent Hartree (TDH) approxi-
mation has been employed to sample the dynamics of a small key
subsystem within a large molecule [29]. Here, an ensemble of MD
simulations for the subsystem is embedded in an MD simulation
of the entire molecule, where the subsystem and the rest of the
molecule interact via an ensemble-mean field [29]. In the light of
the localized nature of atomistic events [23], we here introduce a
local transition-state (LTS) approximation, in conjunction with the
TDH approximation, into the KMC simulationmethod. This leads to
a divide-and-conquer strategy that simulates multiple events con-
currently based on spatial decomposition. The resulting simulation
method is equivalent to the synchronous parallel KMC (SPKMC)
method [25–28]. Furthermore, we introduce a dual linked-list
cell (DL2C) method to further reduce the computational cost. This
paper is organized as follows. Section 2 describes a derivation and
implementation of the SPKMC algorithm. Numerical results are
presented in Section 3, and Section 4 contains conclusions.

2. Methods

In this section, we present a new derivation of the synchronous
parallel kinetic Monte Carlo (SPKMC) algorithm and its imple-
mentation on parallel computers using a dual linked-list cell
(DL2C) method. As a concrete example, we use electron-transfer
(ET) dynamics between heme groups in a large network of cy-
tochromes [30,31]. (Heme is an organic compound called por-
phyrin that contains an iron (Fe) atom at its center.) Fig. 1 shows
a dimer of decaheme cytochromes and the heme groups in it. The
Fe atom in each heme can exist in either of the two valence states,
Fe2+ or Fe3+. Conversion of irons between Fe2+ and Fe3+ allows for
the hopping of electrons between adjacent hemes. KMC simulation
treats electron-hopping events in a network of N hemes, where a
heme site at position qi is labeled by index i ∈ {1, . . . ,N}. The
ith heme is either occupied by an electron (ni = 1 or reduced,
corresponding to Fe2+) or unoccupied (ni = 0 or oxidized, corre-
sponding to Fe3+), where ni is the electron occupation number of
the ith heme. The systemdynamics are characterized by (i) electron
hopping rates Wji from the ith heme to the jth heme for adjacent
(i, j) pairs, (ii) electron injection rate Wred into a selected entrance
heme ient, and (iii) electron-ejection rate Wox from an exit heme
iexit. In our work, Wji is computed from the positions of hemes,
qi and qj, and their precomputed free energies, Gi and Gj [30]. In
addition, Wji depends on the occupation numbers, ni and nj, since

an electron can hop from i to j only when ni = 1 and nj = 0. Due
to the exponential decay of the electron-hopping rate with respect
to the heme-pair distance, Wji = 0 when |qi − qj|> qcut, where
qcut ∼ 1 nm is a cutoff distance. The following discussion also
applies to other applications such as photoexcitation dynamics in
solar cells [20] and computational synthesis of newmaterials based
on chemical vapor decomposition and other techniques [19], as
long as an event is spatially localized within a cutoff distance.

2.1. Kinetic Monte Carlo simulation

To introduce a notation necessary for the derivation of the
SPKMC algorithm, Appendix A describes the conventional KMC
simulation method [15–20]. We initialize a KMC simulation by
emptying all heme sites and resetting the time to 0. At each KMC
step, one of the following events occurs: (i) an electron is injected
with rateWred if the entrance heme is unoccupied; (ii) an electron
is ejected with rate Wox if the exit heme is occupied; or (iii) an
electron hops from heme i to one of its nearest-neighbor hemes,
j, with rateWji if heme i is occupied and heme j is unoccupied. The
method for calculating the rates for the ET dynamics can be found
in Ref. [30]. KMC simulation consists of a time-stepping loop. Let e
be one of the possible events listed above, withWe being its rate, E
be the total number of possible events, and

W =
E∑

e=1

We (1)

be the sum of the rates of all possible events. At each KMC step, the
time is incremented by

t = − ln (ξ1) /W , (2)

where ξ1 is a uniform random number in the range [0,1]. The
probability of choosing a particular event is proportional to its rate,
and specific event e∗ is chosen such that

e∗ = min
e

{
e∑

c=1

Wc > Wξ2

}
, (3)

where ξ2 is another uniform random number in [0,1].

2.2. Synchronous parallel KMC algorithm

The standard KMC method in Section 2.1 is not scalable to
larger system sizes. The cumulative event rate W grows as O(N),
and accordingly the time scale of the simulation determined by
its inverse becomes progressively smaller in larger systems, as is
seen in Eq. (2). To overcome this scaling problem, we parallelize
KMC simulations in a divide-and-conquer (DC) fashion, using a
synchronous formulation and graph coloring to avoid conflicting
events [25–28]. To do so, we first introduce a local transition-state
(LTS) approximation, in which events outside a cutoff distance are
assumed to be statistically independent.We then introduce a time-
dependentHartree (TDH) approximation, i.e., the simulated system
is subdivided into spatially localized domains and local events in a
domain are sampled independently of those in the other domains.
Appendix B provides a formal derivation of the resulting SPKMC
algorithm.

Domain decomposition: The SPKMC algorithm partitions the
3-dimensional space ℜ3 into spatially localized domains ℜ3

d that
are mutually exclusive,

ℜ
3
=

⋃
d

ℜ
3
d; ℜ

3
d ∩ ℜ

3
d′ = ∅. (4)

For simplicity, we consider a simplemesh decomposition, inwhich
the total rectangular space is subdivided into domains of equal
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Fig. 2. Two-dimensional schematic of domain decomposition into an array of 3×2
domains in the x and ydirections. Each cytochrome in a lattice of cytochromedimers
is represented by its 10 Fe positions (10 red spheres).

volume. The domains are arranged in a cubic lattice. Fig. 2 shows a
two-dimensional schematic of the domain decomposition.

In SPKMC, the cumulative rate W (d) is computed for each non-
overlapping domain ℜ3

d as in Eq. (1) but summing only over the
local events within the dth domain ℜ3

d . Below, we denote the rate
of the eth event in domain d as W (d)

e . Then, the global maximum
rate is computed as Wmax = maxd

{
W (d)

}
. SPKMC simulation is

performed concurrently among all the domains similarly to the
sequential KMC algorithm in Section 2.1, except that a null event
(where nothing occurs) is generated with the rate of W (d)

0 =

Wmax − W (d). This allows globally synchronous time evolution,
where the time is incremented by t = − ln(ξ1)/Wmax at each KMC
step, where ξ1 is a uniform random number in [0,1] which is com-
mon to all the domains. By keeping the size of domains constant
and increasing the number of domains,Wmax should remain nearly
constant and thus t = O(1) instead of O(1/N) in the conventional
KMC method. (A more rigorous mathematical analysis is required
for the actual scaling ofWmax with respect to the system size [32].)
Eachdomain d then generates a local randomnumber ξ (d)

2 (∈ [0, 1])
independently of each other, and chooses an event to occur, e(d),
according to

e(d) = min
e

{
e∑

c=1

W (d)
c > Wmaxξ

(d)
2

}
. (5)

To avoid conflicting events within qcut to occur between neigh-
boring domains, the domains are colored so that no domains of the
same color are adjacent to each other. In a cubic lattice in three
dimensions, this is achieved by arranging adjacent domains into
a block of 2 × 2 × 2 domains. Here, we assume an even number
of domains in each Cartesian direction. We require that the side
length of each domain to be larger than 2qcut, so that no heme
can be a destination of more than one electron hopping event.
Within each block, the eight domains are indexed with an octant
index (or color), c ∈ [0, . . . , 7]. Fig. 3(a) shows a two-dimensional
schematic of the blocked domain decomposition. In each SPKMC
simulation step, a color is chosen randomly, and events occur only
in the domains of the chosen color.

2.3. Dual linked-list cell (DL2C) algorithm

A naive double-loop implementation to compute electron hop-
ping rates Wji between heme pairs (i, j) would scale as O(N2). In
fact, with a finite cutoff length qcut, each heme interacts with only a
limited number of other hemes, (4πN/3V )q3cut ∼ O(1), on average
(V is the volume of the system). Thismakes the computational cost

Fig. 3. (a) Two-dimensional schematic of the blocked domain decomposition in
SPKMC. Each block of domains is delineated by solid lines, and is subdivided into
2×2 quadrants labeled (or colored) 0, 1, 2 or 3. (b) Caching of heme occupancy
in parallel SPKMC with 3×3 spatial subsystems. The central subsystem is a block
of 2×2 domains as delineated by thick lines. Each small square is a cell slightly
larger than qcut , used to compute electron-hopping rates between neighboring
hemes. A heme in a dark gray cell only interacts with those in the nearest neighbor
cells colored in light gray. Accordingly, the central subsystem only needs to be
augmented with one layer of cells with the heme information in them cached from
the neighbor subsystems.

to process all pairs of neighbor hemes to be O(N). The linked-list
cell algorithm computes the entire pair interaction with O(N) op-
erations [33,34]. This algorithm first divides the system into small
cells of equal volume, where the edge length of each cell is made
at least qcut. A heme in a cell interacts with only other hemes in the
same cell and its 26 neighbor cells. The hemes belonging to a cell
are organized as a linked list. In an array implementation, head[c]
holds the index of the first heme in the cth cell, or head[c]= NULL
if there is no heme in the cell; lscl[i] holds the heme index to which
the ith heme points. All hemes in cell c are traversed by following
links in lscl[], starting with the heme specified by head[c]. The O(N)
algorithm loops over cells, and for each cell, it loops over the 27
neighbor cells (including itself). For each pair of neighbor cells, the
corresponding linked lists are used to traverse all pairs of hemes
residing in the cell pair.

For further improvement of performance, we have designed
a DL2C algorithm, which utilizes two types of linked-list cells:
(1) small cells for constructing neighbor-heme lists for managing
nearest-neighbor hopping events; (2) larger cells for domain-block
coloring. In our original implementation, cell linked lists, head[]
and lscl[], were used in two-fold purposes. First, they were used
in function make_list() to construct neighbor-heme lists lsngb[][],
before the main KMC simulation loop is entered. For the ith heme,
lsngb[i][0] stores the number of other hemes within qcut and
lsngb[i][j] stores the ID of the jth neighbor heme. Construction of
lsngb[][] amounts to doubly nested for loops over cells (each with
a while loop to follow the link of hemes associated with the cell),
which is computationally intensive. Second, the same cell linked
listswere used at eachKMC step for traversing the hemes in a given
colored domain.

While the computation in the first usage scales as O(N), the
prefactor grows quadratically with the average number of hemes
in a cell, or equivalently sixth power of the cell size, rcell. To reduce
the computation in the first usage, DL2C uses the minimal cell
size rcell ∼ qcut ∼ 1 nm, for constructing lsngb[][] in function
make_list(). Subsequently, the algorithm dynamically creates an-
other set of cell linked lists using a larger rcell, which is dictated by
parallel-computing considerations discussed in the next subsec-
tion. Typical values used in sample applications in the next section
are rcell = 8 nm or larger.

2.4. Parallelization

Spatial decomposition: To parallelize the SPKMC algorithm, the
physical system to be simulated is partitioned into subsystems of
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equal volume [34,35]. On a parallel computer, parallel processes
are logically arranged according to the topology of these physical
subsystems. Hemes that are located in a particular subsystem are
assigned to the corresponding process. For simplicity, we use sim-
ple 3Dmesh (or torus because of the periodic boundary conditions)
decomposition. Subsystems are (and accordingly processes are
logically) arranged in a 3D array of dimensions Px × Py × Pz . Each
subsystem is a parallelepiped of size Lx × Ly × Lz . Each process is
given a unique process ID, p ∈ [0, P − 1], where P = PxPyPz is the
total number of processes. We also define a vector process ID,

→

p =
(px, py, pz), where px ∈ [0, Px−1], py ∈ [0, Py−1] and pz ∈ [0, Pz−
1]. The sequential and vector ID’s are related through the relation,
p = pxPyPz + pyPz + pz . Using periodic boundary conditions, every
subsystem has 26 neighbor subsystems that share either a corner,
an edge or a face with it.

To map the SPKMC algorithm onto the spatial decomposition,
we here adopt a simple scheme, in which each spatial subsystem
is a 2 × 2 × 2 block of domains for graph coloring as explained
in Section 2.2. This leads to coarse-grained parallelism, resulting in
highparallel efficiency according to the analysis in the next section.
Also, it should be noted that the TDH approximation underlying
SPKMC becomes exact in the large granularity limit (Appendix B).
In SPKMC, each process computes the electron injection rates into
the hemeswithin its subsystem (i.e., resident hemes) as well as the
electron ejection and hopping rates from its resident hemes. Each
process then randomly selects one event within its subsystem and
updates the heme occupation numbers {ni} accordingly.

In order to compute electron hopping rates Wji between heme
pairs within the cutoff distance, heme positions {qi} and free
energies {Gi} in the 26 neighbor subsystems (or corresponding
processes), which are located within qcut from the subsystem pe-
riphery, are copied from the corresponding processes to ‘‘this’’
process in function heme_copy() (see line 1 in Table 1). Through
message forwarding, message passing is completed only with the
six face-sharing neighbor subsystems, thus minimizing the total
message latency [35]. These cached hemes are appended after the
resident hemes in the corresponding arrays. Note that {qi} and {Gi}

are static quantities, and thus heme_copy() is called only once at the
beginning of the program before the main KMC loop begins. Here,
we adopt a single program multiple data (SPMD) convention, so
that the pseudocode of the SPKMC program in Table 1 is executed
concurrently in all processes.

Next, each process allocates cell linked lists, head[] and lscl[],
and builds them using the positions of both resident and cached
hemes, using the linked-list cell size that is slightly larger than
qcut. The linked lists are then used to construct adjacent-heme lists,
lsngb[][], for the resident hemes. The adjacency lists, lsngb[][], will
be used in the main KMC loop for computing electron hopping
rates. Once lsngb[][] are constructed, head[] and lscl[] are deallo-
cated and are rebuilt such that each cell (or domain) is now an
octant of the spatial subsystem (or domain block). These lists will
be used in the main KMC loop for performing colored synchronous
parallel KMC updates. The above computations are carried out in
functionmake_list() before the main KMC loop is entered (line 2 in
Table 1). In our implementation,make_list() also computes a part of
the electron hopping rates that is independent of heme occupancy.

After initializing heme occupation numbers and resetting the
time to zero, the algorithm enters the main KMC loop (line 4 in
Table 1) to iterate KMC simulation steps. At each KMC step, func-
tion occ_copy() is called (line 5 in Table 1) first to cache boundary
hemes’ occupancies within qcut from the periphery of the nearest
neighbor processes (or spatial subsystems), so that the electron
hopping rates for the resident hemes can be calculated locally
independent of the other processes, reflecting the latest heme
occupancies (line 6 in Table 1). Fig. 3(b) shows a schematic of this
heme-occupancy caching operation.

Subsequently, the master process, p = 0, randomly selects an
octant (or color) c and broadcasts it to all processes. Each process
p then computes the sum of all rates within the selected octant,
W (p), and its global maximumWmax over all processes is computed
using a global reduction operation (lines 8 and 9 in Table 1). Using
Wmax, each process randomly selects an event and updates heme
occupancies accordingly (line 10 in Table 1). Subsequently, the
master process increments the time according to Poisson statistics
(line 11 in Table 1).

After the heme occupancies are updated, electron hopping from
some resident hemesmay have changed the occupancy of a cached
heme out of the subspace boundary. Each process sends the change
of occupancies of cached hemes to their resident processes in
function occ_move() (line 12 in Table 1).

Table 1 shows the SPKMC algorithm. The parallel SPKMC pro-
gram is written in the C language, where interprocess communica-
tions are implemented using the message passing interface (MPI)
library [36].

3. Results

The scalability of the algorithm has been tested on a cluster of
multicore computers. This section first presents the scalability test
results, followed by an example of its application to ET dynamics
in a lattice of cytochromes on a bacterial-membrane nanowire.

3.1. Scalability tests

We test the scalability of the code on a parallel computer using
ET dynamics in a lattice of decaheme cytochromes as an example.
The scalability tests have been performed on a Linux cluster at the
Center forHigh Performance Computing of theUniversity of South-
ern California. Each computing node comprises dual octocore Intel
Xeon central processing units (CPUs) with 64 GB DDR3 memory,
operating at a clock cycle of 2.66 GHz. Each node thus has 16 CPU
cores. These nodes are interconnected via 56.6 Gbit/s Infiniband
network.

Weak scaling:We first perform isogranular-scaling tests for the
code, in which the number of hemes per core N/P is kept constant.
We compare three granularities, N/P = 127,776, 1,168,032 and
4,116,000, while varying the number of cores P from 16 to 1,024
for each granularity. Here, we use all 16 cores per computing node,
and the number of nodes is varied from 1 to 256. The cutoff length
of ET is qcut = 1 nm, and the spatial subsystem size per core
is a cube of side length L = 88 nm, 184 nm, and 280 nm for
N/P = 127,776, 1,168,032, and 4,116,000, respectively. Fig. 4(a)
shows the wall-clock time per KMC simulation step with scaled
workloads. By increasing the number of hemes linearly with the
number of cores, the wall-clock time remains almost constant,
indicating excellent scalability. While slight increase of the wall-
clock time for larger P is observed for the smallest granularity (i.e.,
N/P = 127,776), such overhead is hardly visible for the largest
granularity (i.e., N/P = 4,116,000).

To quantify the parallel efficiency, we first define the speed of
the code as a product of the total number of hemes and the number
of KMC steps executed per second. The isogranular speedup is
given by the ratio between the speed of P cores and that of 16
cores (i.e., 1 computing node) as a reference system. The weak-
scaling parallel efficiency is the isogranular speedup divided by
P/16. Fig. 4(b) shows themeasuredweak-scaling parallel efficiency
as a function of P for N/P = 4,116,000. With the granularity
of 4,116,000 hemes per core, the parallel efficiency is 0.935 on
P = 1,024 for a 4,214,784,000-heme system. This demonstrates
a very high scalability of the code for multibillion-heme systems.
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Table 1
Parallel SPKMC algorithm.

1. heme_copy (): cache boundary-heme information within the cutoff distance qcut from the periphery of the nearest neighbor subsystems (or processes)
2. make_list ()

a. Allocate and build cell linked lists, head [] and lscl [], including both resident and cached hemes, with the linked-list cell size slightly larger than qcut
b. Make adjacent-heme lists lsngb [][] for the resident hemes using the cell linked lists
c. Deallocate head [] and lscl []
d. Allocate and build cell linked lists, head [] and lscl [], including both resident and cached hemes for the block of 8 domains

3. Initialize the electron occupation numbers; reset the time t ← 0
4. for step= 1 to Max_step
5. occ_copy (): cache boundary hemes’ occupancies from the neighbor processes
6. Compute electron-hopping rates for the resident hemes
7. Master process, p = 0, randomly selects an octant (or color) c and broadcast it
8. Compute the sumW (p) of the rates of events in octant c (p is the ID of ‘‘this’’ process)
9. Global reduction:Wmax = maxp

{
W (p)

}
10. Pick an event e(p) according to Eq. (5) and update the heme occupation numbers accordingly
11. Master process increments the time by t = − ln(ξ1)/Wmax
12. occ_move (): send the change of occupancies of cached hemes to their resident processes

Fig. 4. (a) Wall-clock time per KMC simulation step, with scaled workloads, N/P =
127,776 (black), 1,168,032 (blue) and 4,116,000 (red), as a function of the number
of cores P (P = 16, . . . , 1,024). (b) Weak-scaling parallel efficiency as a function of
P forN/P = 4,116,000 (red), comparedwith the ideal efficiency (black dash–dotted
line).

The better parallel efficiency for the larger granularity observed
above can be understood by a scalability analysis. Using the spa-
tial decomposition and the O(N) linked-list cell method, the par-
allel KMC simulation of N hemes executes independently on P
processors, and the computation time is Tcomp(N, P) = aN/P ,
where a is a constant. Here, we have assumed that the hemes
are distributed uniformly on average, so that the average number

of hemes per processor is N/P. The dominant overhead of the
parallel KMC is heme caching, in which hemes near the subsys-
tem boundary within a cutoff distance q cut are copied from the
nearest neighbor processors (line 5 in Table 1). Since this nearest-
neighbor communication scales as the surface area of each spatial
subsystem, its time complexity is Tcomm(N, P) = b(N/P)2/3, where
b is a constant. Another major communication cost is for the global
maximum computation to determineWmax (line 9 in Table 1) using
the MPI_Allreduce(), which incurs Tglobal(P) = c log P , where c is
another constant.

The total execution time of the parallel MD program can thus
be modeled as
T (N, P) = Tcomp(N, P)+ Tcomm(N, P)+ Tglobal(P)

= aN/P + b(N/P)2/3 + c log P .
(6)

For isogranular scaling, the number of atoms per processor,
N/P = n, is constant, and the isogranular parallel efficiency is

EP =
T (n, 1)
T (nP, P)

=
an

an+ bn2/3 + c log P

=
1

1+ b
an
−1/3 + c

an log P
. (7)

For a given number of processors, the efficiency EP is larger for
larger granularity n. For a given granularity, EP is a weakly decreas-
ing function of P, due to the very weak log P dependence.

Strong scaling: We also perform a strong-scaling test by simu-
lating a cytochrome lattice containing a total of 3,145,728 hemes.
In this test, the number of cores ranges from P = 1 to 16 on 1
computing node, while keeping the total problem size constant.
In Fig. 5(a), the red circles show the wall-clock time per KMC
simulation step as a function of P. The time-to-solution is reduced
by a factor of 6.0 on 16 cores compared with the 1-core run. As
in the weak-scaling test, the speed of the code is defined as a
product of the total number of hemes and the number of KMC steps
executed per second. The fixed problem-size (or strong-scaling)
speedup is given by the ratio between the speed of P cores and
that of 1 core. In Fig. 5(a), the blue squares show the speedup
as a function of P, whereas the blue dash–dotted line is the ideal
speedup. The strong-scaling speedup is 6.0, on 16 cores.

For fixed problem-size scaling, the global number of hemes, N,
is fixed, and the speedup is given by

SP =
T (N, 1)
T (N, P)

=
aN

aN/P + b(N/P)2/3 + c log P

=
P

1+ b
a

( P
N

)1/3
+

c
a
P log P

N

,
(8)

and the parallel efficiency is

EP =
SP
P
=

1

1+ b
a

( P
N

)1/3
+

c
a
P log P

N

. (9)



H.S. Byun et al. / Computer Physics Communications 219 (2017) 246–254 251

From this model, we can see that the efficiency is a decreasing
function of P through both the P1/3 and P log P dependences. This
P dependence is much stronger than Eq. (7) for weak scaling.
Consequently, it is more difficult to achieve high strong-scaling
parallel efficiency compared with weak-scaling parallel efficiency.
This is due to decreasing granularity, and accordingly increasing
communication/computation ratio, for larger number of proces-
sors, in the former.

Though the strong-scaling speedup defined above is less than
the ideal value in Fig. 5(a), using a larger number of computing
cores (hence a larger number of spatial domains) increases the time
simulated by KMC simulation. Namely, the average time increment
per KMC step is inversely proportional to the sum of rates of all
events within a domain, Wmax, which in turn is proportional to
the number of hemes per domain. To quantify the actual speed of
KMC simulation, we define a more practical measure of speed as
a product of the total number of hemes and the simulated time
by KMC per running time of the program. The simulated-time
speedup is given by the ratio between the simulated-time speed
of P cores and that of 1 core. Namely, the simulated-time speedup
measures how fast the actual KMC simulation progresses on a par-
allel computer. In Fig. 5(b), the blue squares show the simulated-
time speedup as a function of P. On 16 cores, KMC simulation
progresses 95.9 times faster than on 1 core. This demonstrates a
significant computational efficiency afforded by the divide-and-
conquer approach.

3.2. Application example

Dissimilatory metal-reducing bacteria have evolved mecha-
nisms to cope with living in anaerobic environments, allowing
them to use abundant minerals outside the cell as respiratory
electron acceptors, instead of oxygen or other soluble oxidants
that would normally diffuse inside cells. This process is known as
extracellular electron transfer (EET). Shewanella oneidensis MR-1
accomplishes EET by deployingmultiheme cytochrome complexes
that form 20–30 nm conduits through the periplasm and across
the outer-membrane [37]. More recently, we learned that such
cytochrome networks extend along micrometer-long membrane
extensions called bacterial nanowires [38,39], and may even allow
conduction over entire bacterial biofilms [40,41]. The study of such
large-scale EET encompassing long length scales is beyond the
scope of conventional KMC algorithms [30,31], and hence necessi-
tates scalable parallel KMC simulations. The newparallel KMC sim-
ulation program has enabled us to perform KMC simulations with
unprecedented spatiotemporal scales, for studying over a 1.12 µm
long bacterial nanowire containing more than a thousand MtrC
decaheme cytochromes assumed to be hexagonally and uniformly
packed on the nanowire’s membrane surface as a test case. Each
MtrC molecule contains 10 hemes, thus a 12,800 heme network is
formed in 1.12 µm long nanowire.

The nanowire’s heme network is shown in Fig. 6(a). Electrons
are injected into selected entrance hemes at one end of heme
network with a rate of 107 s−1, and are ejected with a rate of 107

s−1 from selected exit hemes at the other end of the network. The
net electron flux through the whole nanowire is calculated as the
slope of the number of electrons injected/ejected as a function
of the total elapsed time after the system reaches a steady state
(Fig. 6(b)). As a result of the simulation,we estimate 104

−105 s−1 of
electron flux for thehemenanowire network. Remarkably, this rate
matches previously measured ET rates to solid phase Fe(III) oxides
from the MtrCAB complex assembled into proteoliposomes [42],
and is enough to support a single cell’s respiration rate [43]. With
this basic demonstration of SPKMC to simulate a micrometer-
long bacterial nanowire, future studies will allow us to perform
additional mechanistic simulations that will reveal the effect of
cytochrome density and orientation on nanowire ET rates, and
even study larger systems such as the redox network of whole
biofilms.

Fig. 5. (a) Wall-clock time per KMC simulation step (red) and speedup (blue)
with strong scaling—3,145,728-heme system on P cores of Intel Xeon. The blue
dash–dotted line shows the ideal speedup. (b) Wall-clock time per KMC simulation
step (red) and simulated-time speedup (blue) with strong scaling—3,145,728-heme
system on P cores of Intel Xeon. The blue dash–dotted line shows linear speedup.

4. Conclusions

We have designed a divide-and-conquer algorithm to simulate
long-time dynamics ofmany-particle systems based on spatiotem-
poral locality principles. We provided a formal derivation of the
known SPKMC algorithm based on local transition-state and time-
dependentHartree approximations. Such a formal derivation could
serve as a starting point for developing new simulation method-
ologies. An example is the use of highly accurate descriptions of
many-electron correlations within domains, which are coupled via
simple electrostatics [44] in the algorithmic framework of divide-
conquer-recombine (DCR) [6]. In addition, higher-order approxi-
mations could be introduced beyond the time-dependent Hartree
approximation [45]. We then introduced a dual linked-list cell
method to further reduce the computational cost. The resulting
parallel KMC algorithm has achieved an excellent weak-scaling
parallel efficiency and good strong-scaling parallel efficiency. The
parallel KMC program has been used to simulate a lattice of cy-
tochromes on a bacterial-membrane nanowire. Such long-time
dynamics simulations are expected to shed light on many areas
such as glass dynamics and biological self-assembly. Furthermore,
the KMC algorithm is expected to play a major role in the com-
putational synthesis of new materials based on chemical vapor
deposition and other techniques.
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Appendix A. Kinetic Monte Carlo (KMC) simulation method

For simplicity, we here consider a set of N particles following
classical mechanics at positions Q ∈ ℜ3N with momenta P ∈ ℜ3N ,
where ℜ is a set of real numbers. The dynamics of the system is
specified by the Hamiltonian,

H(P,Q) =
1
2
P •M−1 • P+ V (Q), (A.1)

where M = diag(m1,m1,m1, . . . ,mN ,mN ,mN ) ∈ ℜ3N×3N is a
diagonal mass matrix with mi being the mass of the ith particle,
and V (Q) is the potential energy.

We consider a statistical ensemble of the system and in-
troduce a probability density function f (Q, P, t), such that
f (Q, P, t)d3NQd3NP denotes the probability to find the system in
a small 6N-dimensional phase-space volume d3NQd3NP around
coordinates Q and momenta P at time t [19,46]. Time evolution of
f (Q, P, t) is governed by the Liouville equation,
∂ f
∂t
= −L̂f , (A.2)

where L̂ is the Liouville operator,

L̂ =
∂H
∂P
•

∂

∂P
−

∂H
∂Q
•

∂

∂Q
= M−1 • P •

∂

∂P
+ F(Q) •

∂

∂Q
, (A.3)

and F(Q) = −∂V/∂Q ∈ ℜ3N are the interparticle forces.
Long-time dynamics of the system is often described in terms

of a sequence of transitions between discrete states. Here, the total
configuration space is partitioned into non-overlapping discrete
states,

ℜ
3N
=

⋃
α

ℜ
3N
α ; ℜ

3N
α ∩ ℜ

3N
β = ∅, (A.4)

where ∀Q ∈ ℜ3N
α converges (via a steepest-descent procedure)

to the αth local minimum-energy configuration Qmin
α , at which

∂V/∂Qmin
α = 0, and all the eigenvalues of the Hessian matrix,

∂2V/∂Q2
|Q=Qmin

α
, are positive. Let

Pα(t) =
1

h3N

∫
ℜ
3N
α

d3NQ
∫

d3NPf (Q, P, t) (A.5)

be the probability to find the system within ℜ3N
α at time t (h is

the Planck constant). To determine the time evolution of Pα(t), we
take the time derivative of Eq. (A.5) using the Liouville equation,
Eq. (A.2). By applying Gauss’ theorem, we obtain
dPα(t)
dt

= −

∑
β

1
h3N

∫
d3NP

∫
∂ℜ3N

βα

ds

•M−1 • PΘ
(
ds •M−1 • P

)
f (Q, P, t)

+

∑
β

1
h3N

∫
d3NP

∫
∂ℜ3N

αβ

ds

•M−1 • PΘ
(
ds •M−1 • P

)
f (Q, P, t),

(A.6)

where ds ∈ ℜ3N is an area-element vector normal to the surface,
and the step function is defined as Θ(x) = 1 (x ≥ 0); 0 (else). In
Eq. (A.6), we have partitioned the (3N − 1)-dimensional surface,
∂ℜ3N

α , of ℜ3N
α into

∂ℜ3N
α =

⋃
β

∂ℜ3N
βα, (A.7)

where ∂ℜ3N
βα is the interface ofℜ3N

α and its neighbor stateℜ3N
β with

its normal vector pointing from ℜ3N
α to ℜ3N

β .
When the long-time dynamics consists of rare events (i.e., if

there is a separation of time scales between long time intervals
between consecutive interstate transitions and rapid intrastate
particle motions), the transition state theory (TST) [9,10] intro-
duces a local equilibrium approximation (LEA), i.e., the phase-space
density is in local equilibrium within each state:

f (Q, P, t) ≈
Pα(t)
Peq

α

f eq(Q, P) (A.8)

where

f eq(Q, P) =
1
Z
exp(−H(Q, P)/kBT ), (A.9)

Peq
α =

1
h3N

∫
ℜ
3N
α

d3NQ
∫

d3NPf eq(Q, P), (A.10)

Z =
1

h3N

∫
d3NQ

∫
d3NP exp(−H(Q, P)/kBT )

=

∑
α

1
h3N

∫
ℜ
3N
α

d3NQ
∫

d3NP exp(−H(Q, P)/kBT ) =
∑

α

Zα.

(A.11)
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In Eqs. (A.9) and (A.11), kB is the Boltzmann constant and T is tem-
perature. Under LEA, Eq. (A.6) is reduced to themaster equation for
discrete state transitions:
dPα(t)
dt
= −

∑
β

WβαPα(t)+
∑

β

WαβPβ (t), (A.12)

where the interstate transition probabilities are given by

Wβα =
1
Zβ

∫
d3NP

∫
∂ℜ3N

βα

ds •M−1 • PΘ
(
ds •M−1 • P

)
× exp(−H(Q, P)/kBT ). (A.13)

The surface integration in Eq. (A.13) is dominated by the contri-
bution from the saddle point Qts

βα ∈ ∂ℜ3N
βα (i.e., where the energy

is minimum among all surface points), at which ∂V/∂Qts
βα = 0

and all the eigenvalues of the Hessian matrix, ∂2V/∂Q2
|Q=Qts

βα
, are

positive except for the one corresponding to the eigenvector that
is normal to ∂ℜ3N

βα . Let q1 be the reaction coordinate along the
Hessian eigenvector with the negative eigenvalue and p1 be the
corresponding momentum. The transition probability in Eq. (A.13)
then becomes

Wβα =
kBT
h

Z ts
βα

Zα

(A.14)

where

Z ts
βα =

1
h3N−1

∫
d3N−1Q

×

∫
d3N−1P[exp(−H(Q, P)/kBT )]q1=p1=0. (A.15)

In harmonic TST, Eq. (A.15) is further simplified as

Wβα =
1
2π

exp
(
−

∆βα

kBT

) ∏3N
j=1 ωα

j∏3N
j=2 ω

βα

j

, (A.16)

where ∆βα = V (Qts
βα) − V (Qmin

α ) is the activation barrier, ωα
j

and ω
βα

j are the eigenvalues of the dynamical matrix, Dij =

(mmod(i−1,3)+1mmod(j−1,3)+1)−1/2∂2V/∂Qi∂Qj ∈ ℜ
3N×3N , at Qmin

α and
Qts

βα , respectively (we define ω
βα

1 to be the negative eigenvalue).
The KMC method [15–20] simulates discrete state transitions

governed by the master equation, Eq. (A.12). Suppose that the
system is in state α at time t = 0. The probability, P(t)dt , with
which the next event occurs in the small time interval, [t, t + dt],
is determined as follows. In a Poisson process, the probability of an
event, α→ β , to occur during dt is given byWβαdt independent of
the history. The probability that no event occurs in [0, t] and one
of the events occurs in [t, t + dt] is given by

P(t)dt = lim
dt→0

(1−Wdt)t/dtWdt = W exp(−Wt)dt, (A.17)

where W =
∑

βWβα is the sum of all possible events starting
from state α. Let ξ1 be a uniform random number in [0,1]. Then
the random variable,

t = − ln (ξ1) /W , (A.18)

follows the Poisson distribution, Eq. (A.17). KMC simulation con-
sists of a time-stepping loop, where the time is incremented by
Eq. (A.18) at each time step. The next state β is stochastically
chosen with the probability, Pβ = Wβ/W . This is achieved by
generating a second uniform random number ξ2 and selecting β

such that

β = min
c

{
c∑

b=1

Wbα > Wξ2

}
. (A.19)

Appendix B. Derivation of the synchronous parallel kinetic
Monte Carlo (SPKMC) algorithm

Scalable stochastic simulation of themaster equation, Eq. (A.12),
is possible, based on an observation that in most activated events,
the particle displacements from a local energy minimum configu-
ration Qmin

α via a transition state Qts
βα to a new local energy mini-

mum Qmin
β are localized in space [23]. In such a case, we partition

the 3-dimensional space ℜ3 into spatially localized domains,

ℜ
3
=

⋃
d

ℜ
3
d; ℜ

3
d ∩ ℜ

3
d′ = ∅. (B.1)

We assume that the domain size is larger than the cutoff distance
beyondwhich events are statistically independent. At a given local
minimum-energy configuration, we accordingly partition the set
of N particles into subsets, so that there are Nd particles in domain
ℜ

3
d (N =

∑D
d=1Nd, where D is the number of domains). We denote

the positions of the Nd particles by Qd ∈ ℜ
3Nd .

In view of the spatial locality of events, we introduce a local
transition-state (LTS) approximation as follows. For a given lo-
cal minimum-energy configuration Qmin

α , the connected neighbor
states Qmin

β can be enumerated by: (i) first specifying a spatial
domain d in which an event that connects the two states via
Qts

βα occurs (i.e., the differences between Qmin
α , Qts

βα and Qmin
β are

negligible outside ℜ3
d); and (ii) then enumerating distinct events

β ′ that occur in domain d. In other words, an event is indexed as a
pair,

LTS approximation : β =
(
d, β ′

)
. (B.2)

We then adopt the time-dependent Hartree (TDH) approximation
to the Liouville equation [29], in which the probability density
function is factored as

TDH approximation : f (Q, P, t) ∼=
∏
d

fd (Qd, Pd, t) , (B.3)

i.e., local events are statistically independent and may be sampled
independently of those in the other domains. In particular, the
calculation of the transition probability in Eq. (A.16) is performed
locally in each domain ℜ3

d .
We enumerate multiple local events at different domains ℜ3

d;
let N (d)

evt be the number of events in domain d. Here, at most one
event occurs at each domain d, and thus the set of events β in
Eq. (B.2) is replaced by {e|e = 1, . . . ,N (d)

evt}, which is a subset of
the set of D domains. For the current state α in domain d, let

W (d)
=

∑
β

W(d′,β)(d,α) (B.4)

be the sum of all possible next states. Here, we assume the locality
of state transitions such that the consecutive state positions are
bounded by a cutoff radius qcut. While the domain d′, to which the
destination state β resides, may or may not be the original domain
d, the location of β is within radius qcut from the d–d′ boundary.
We next define

Wmax = max
d

{
W (d)} , (B.5)

and assign a null event (i.e., the state remains the initial α state)
with the rate

W (d)
0 = Wmax −W (d), (B.6)

following the synchronous parallel KMC algorithm [25–28].
Under the LTS and TDH approximations, KMC simulation con-

sists of a time-stepping loop, where the time at each KMC step is
incremented by

t = − ln(ξ1)/Wmax, (B.7)
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where ξ1 is a uniform random number in the range [0,1]. Within
each domain d, the next state β is stochastically chosen with the
probability, P (d)

β = W(d′,β)(d,α)/Wmax. This is achieved by gen-
erating a second uniform random number ξ

(d)
2 per domain and

selecting β such that

β = min
c

{
c∑

b=1

W(d′,b)(d,α) > Wmaxξ
(d)
2

}
. (B.8)
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