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Abstract We propose and analyze threading algorithms for hybrid MPI/OpenMP
parallelization of a molecular-dynamics simulation, which are scalable on large mul-
ticore clusters. Two data-privatization thread scheduling algorithms via nucleation-
growth allocation are introduced: (1) compact-volume allocation scheduling (CVAS);
and (2) breadth-first allocation scheduling (BFAS). The algorithms combine fine-
grain dynamic load balancing and minimal memory-footprint data privatization
threading. We show that the computational costs of CVAS and BFAS are bounded
by Θ(n5/3p−2/3) and Θ(n), respectively, for p threads working on n particles on a
multicore compute node. Memory consumption per node of both algorithms scales as
O(n + n2/3p1/3), but CVAS has smaller prefactors due to a geometric effect. Based
on these analyses, we derive the selection criterion between the two algorithms in
terms of the granularity, n/p. We observe that memory consumption is reduced by
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75 % for p = 16 and n = 8,192 compared to a naïve data privatization, while main-
taining thread imbalance below 5 %. We obtain a strong-scaling speedup of 14.4
with 16-way threading on a four quad-core AMD Opteron node. In addition, our
MPI/OpenMP code achieves 2.58× and 2.16× speedups over the MPI-only imple-
mentation on 32,768 cores of BlueGene/P for 0.84 and 1.68 million particle systems,
respectively.

Keywords Hybrid MPI/OpenMP parallelization · Thread scheduling · Memory
optimization · Load balancing · Parallel molecular dynamics

1 Introduction

Molecular dynamics (MD) simulation has become an important tool to study a broad
range of scientific problems at the atomistic level [1–5]. Thanks to the rapid growth
in computing power, large spatiotemporal scale MD simulations are widely available,
enabling scientists to address more challenging problems [6–9]. However, recent im-
provements in computing power have been gained using multicore architectures in-
stead of increased clock speed. This marks the end of the free-ride era, where legacy
applications could obtain increased performance on a newer chip without substantial
modification. Furthermore, the number of cores per chip is expected to grow contin-
uously, which deepens the performance impact on legacy software.

As multicore chips become the standard of modern supercomputers, two signifi-
cant issues have emerged: (1) performance of traditional parallel applications, which
are solely based on the message passing interface (MPI), is expected to degrade sub-
stantially [10]; and (2) available memory per core tends to decrease because the num-
ber of cores per chip is growing considerably faster than the available memory [11].
Hierarchical parallelization frameworks, which integrate several parallel methods to
provide different levels of parallelism, have been proposed as a solution to this scal-
ability problem on multicore platforms [5, 12, 13]. One of the most commonly used
hierarchical parallelization frameworks is a hybrid message-passing/multithreading
paradigm [14, 15], which employs hybrid features of a distributed memory via mes-
sage passing and a shared memory via multithreading.

The necessity of hierarchical parallelization has been further emphasized by the
arrival of modern massive-scale multicore supercomputers such as “Sequoia,” the
third generation of IBM BlueGene cluster with 1.6 million cores, which will be online
at Lawrence Livermore National Laboratory (LLNL) in 2012. On such a gigantic
symmetric multiprocessing (SMP) platform, MPI-only programming will not be an
option for full-scale runs with up to 6.4 million concurrent threads. Especially for MD
simulation on this class of clusters, hybrid parallelization based on MPI/threading
schemes will likely replace the traditional MPI-only parallel MD.

However, efficiently integrating a multithreading framework into an existing MPI-
only code is challenging due to several reasons: (1) the highly overlapped memory
layout in typical MD codes incurs a serious race condition in the computational kernel
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when multithreading is used; (2) naïve threading algorithms usually create significant
memory and computation overheads, limiting the threading speedup for a large num-
ber of threads; and (3) the dynamic nature of MD requires low-overhead dynamic
load balancing for threads to maintain good performance. Therefore, it is of signifi-
cance to study and design an efficient threading algorithm particularly for a platform
with such a large number of cores.

In this paper, we introduce two data-privatization thread scheduling algorithms
based on a nucleation-growth concept to address these issues: (1) compact-volume
allocation scheduling (CVAS); and (2) breadth-first allocation scheduling (BFAS).
These two algorithms provide efficient threading schemes for MD by combining
fine-grain dynamic load balancing and minimal memory-footprint threading. We also
present an extensive theoretical analysis and comparisons of the proposed algorithms
including: (1) the upper bound of load imbalance; (2) the computational complex-
ity of the scheduling; and (3) memory consumption. These analyses provide insights
into the algorithmic characteristics, leading to the identification of the relative advan-
tage of CVAS and BFAS for different simulation parameters. Finally, we implement
CVAS and BFAS algorithms in the MD code “ddcMD” [16] and demonstrate that the
hybrid MPI/threading scheme outperforms an MPI-only scheme for strong scaling on
large-scale MD problems.

This paper is organized as follows. Section 2 summarizes the hierarchy of paral-
lel operations in ddcMD, followed by a detailed description of the proposed data-
privatization algorithms in Sect. 3. Theoretical analysis of the data-privatization al-
gorithms is given in Sect. 4. Section 5 evaluates the performance of the hybrid paral-
lelization algorithm, and conclusions are drawn in Sect. 6.

2 Domain decomposition molecular dynamics

Molecular dynamics simulation follows the phase-space trajectories of an N -particle
system, where the forces between particles are given by the gradient of a potential en-
ergy function φ(r1, r2, . . . , rN), where ri is the position of the ith particle. Positions
and velocities of all particles are updated at each MD step by numerically integrating
coupled ordinary differential equations. The dominant computation of MD simula-
tions is the evaluation of the potential energy function and associated forces. One
model of great physical importance is the interaction between a collection of point
charges, which is described by the long-range, pair-wise Coulomb field 1/r (r is the
interparticle distance), requiring O(N2) operations to evaluate. Many methods exist
to reduce this computational complexity [17–19]. We focus on the highly efficient
particle-particle/particle-mesh (PPPM) method [17]. In PPPM, the Coulomb poten-
tial is decomposed into two parts: A short-range part that converges quickly in real
space and a long-range part that converges quickly in reciprocal space. The split of
work between the short-range and long-range part is controlled through a “screening
parameter” α. With the appropriate choice of α, computational complexity for these
methods is reduced to O(N logN).

Because the long-range part of the Coulomb potential can be threaded easily (as
a parallel loop over many individual 1D fast Fourier transforms), this paper explores
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efficient parallelization of the more challenging short-range part of the Coulomb po-
tential using OpenMP threading. The short-range part is a sum over pairs:

Φ =
∑

i<j

qiqj

erfc(αrij )

rij
,

where qi is the charge of particle i, α denotes the screening parameter, rij is a separa-
tion between particles i and j , and erfc(x) denotes the complimentary error function,

erfc(x) = 2√
π

∫ ∞

x

e−t2
dt.

Though this work is focused on this particular pair function, much of the work can
be readily applied to other pair functions. In addition to this intranode parallelization,
the ddcMD code is already parallelized across nodes using a particle-based domain
decomposition implemented using MPI. Combining the existing MPI-based decom-
position with the new intranode parallelization yields a hybrid MPI/OpenMP parallel
code. An extensive comparison of MPI-only ddcMD with other pure MPI codes can
be found in [20].

2.1 Internode communication and load balancing in ddcMD

In typical parallel MD codes, the first level of parallelism is obtained by decompos-
ing the simulation volume into domains, each of which is assigned to a compute core
(i.e., an MPI task). Because particles near domain boundaries interact with particles
in nearby domains, internode communication is required to exchange particle data
between domains. The surface-to-volume ratio of the domains and the choice of po-
tential set the balance of communication to computation.

The domain-decomposition strategy in ddcMD allows arbitrarily shaped domains
that may even overlap spatially. Also, remote particle communication between non-
adjacent domains is possible when the interaction length exceeds the domain size.
A domain is defined only by the position of its center and the collection of particles
that it “owns.” Particles are initially assigned to the closest domain center, creating
a set of domains that approximates a Voronoi tessellation. The choice of the domain
centers controls the shape of this tessellation, and hence the surface-to-volume ratio
for each domain. The commonly used rectilinear domain decomposition employed by
many parallel codes is not optimal from this perspective. Improved surface-to-volume
ratios in a homogeneous system are achieved if domain centers form a body-centered
cubic, face-centered cubic, or hexagonal closed-packed lattice, which are common
high-density arrangements of atomic crystals.

In addition to setting the communication cost, the domain decomposition also con-
trols load imbalance. Because the domain centers in ddcMD are not required to form
a lattice, simulations with a nonuniform spatial distribution of particles (e.g., voids
or cracks) can be load balanced by an appropriate non-uniform arrangement of do-
main centers. The flexible domain strategy of ddcMD allows for the migration of the
particles between domains by shifting the domain centers. As any change in their
positions affects both load balance and the ratio of computation to communication,
shifting domain centers is a convenient way to optimize the overall efficiency of the
simulation. Given an appropriate metric (such as overall time spent in MPI barriers)
the domains can be shifted “on-the-fly” in order to maximize efficiency [21].
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Fig. 1 (a) 2D schematic of the linked-list cell method for pair computation with the cell dimension rc.
Only forces exerted by particles within the cutoff radius (represented by a two-headed arrow) are com-
puted for particle i. The blue particles represent particles in the top-half neighbor cells where the force is
computed directly, while the forces on the gray particles are computed in other computation units. (b) 2D
schematic of a single computation unit λk . The shaded cells Cj pointed by the arrows constitute the half
neighbor cells, nn+(Ck)

2.2 Intranode force computation

Once particles are assigned to domains and remote particles are communicated, the
force calculation begins. Figure 1(a) shows a schematic of the linked-list cell method
used by ddcMD to compute pair interactions in O(N) time. In this method, each
simulation domain is divided into small cubic cells, and a linked-list data structure
is used to organize particle data (e.g., coordinates, velocities, type, and charge) in
each cell. By traversing the linked list, one retrieves the information of all particles
belonging to a cell, and thereby computes interparticle interactions. The dimension
of the cells is determined by the cutoff length of the pair interaction, rc.

Linked-list traversal introduces a highly irregular memory-access pattern, result-
ing in performance degradation. To alleviate this problem, we reorder the particles
within each node at the beginning of every MD step, so that the particles within the
same cell are arranged contiguously in memory when the computation kernel is called
[22]. At present, we choose an ordering specifically tailored to take advantage of
the BlueGene “double-Hummer” single-instruction multiple-data (SIMD) operations
[23]. However, we could just as easily reorder the data to account for nonuniform
memory access (NUMA) or general-purpose graphics processing units (GPGPU) ar-
chitectural details. We consistently find that the benefit of the regular memory access
far outweighs the cost of particle reordering. The threading techniques proposed here
are specifically constructed to preserve these memory-ordering advantages.

The computation within each node is described as follows. Let L be the total
number of cells in the system, and {Ck|0 ≤ k < L} be the set of cells within each do-
main. The computation within each node is divided into a collection of small chunks
of work called a computation unit λ. A single computation unit λk = {(ri , rj )|ri ∈
Ck; rj ∈ nn+(Ck)} for cell Ck is defined as a collection of pair-wise computations,
where nn+(Ck) is a set of half the nearest-neighbor cells of Ck (see Fig. 1(b)). The
symmetry of the forces from Newton’s third law (fij = −fji ) allows us to halve
the number of force evaluations and use nn+(Ck) instead of the full set of nearest-
neighbor cells, nn(Ck). The pairs in all computation units are unique, and thus the
computation units are mutually exclusive. The set of all computation units on each
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node is denoted as � = {λk|0 ≤ k < L}. Since most of our analysis is performed at
a node level, n = N/P hereafter denotes the number of particles in each node (P is
the number of nodes), and p is the number of threads in each node.

2.3 Hybrid MPI/OpenMP parallelization

The hybrid MPI/OpenMP parallelization of ddcMD is implemented by introducing
a thread scheduler into the MPI-only ddcMD. Figure 2 shows the workflow of the
hybrid MPI/OpenMP code using a master-slave approach [24, 25]. The program re-
peats the following three computational phases: (1) the master thread performs ini-
tialization and internode communications using MPI; (2) the scheduler computes the
scheduled work for each thread; and (3) the worker threads execute the workloads in
an OpenMP parallel section. The program utilizes an explicit scheduler based on our
proposed algorithms to distribute the workload prior to entering the pair computation
section. The parallel threading section is initiated by #pragma omp parallel
construct. In this approach, the scheduling cannot interfere with the worker threads,
since the scheduling is already completed before the worker threads are started. Be-
cause the schedule is recomputed every MD step (or perhaps every few MD steps),
there is adequate flexibility to adapt load balancing to the changing dynamics of the
simulation. This approach also reduces the number of synchronizations and mini-
mizes context switching compared to a real-time dynamic scheduling approach.

We parallelize the explicit pair-force computation kernel of ddcMD, which is the
most computationally intensive kernel, at the thread level using OpenMP (see Fig. 3).
Two major problems commonly associated with threading are: (1) a race condition
among threads; and (2) thread-level load imbalance. The race condition occurs when
multiple threads try to update the force of the same particle concurrently. Several
techniques have been proposed previously to solve these problems:

Duplicated pair-force computation—simple and scalable, but doubles computation
(or more than double in many-body potentials). Due to its regular data-access pat-
tern, it is usually used in GPGPU threading [26, 27].

Fig. 2 Schematic workflow of a hybrid MPI/OpenMP scheme. The master thread schedules work for the
worker threads before entering the parallel threading section. The master thread also handles internode
communication, which is performed outside the threading region
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Fig. 3 Pair-force computation
kernel Algorithm Pair-force computation kernel

1. for 0 ≤ i < p

2. Ti ← scheduleWork(i)
3. end for
4. omp parallel: nthreads = p

4. i ← omp_get_thread_num()
5. for each ck : ∀λk ∈ Ti

6. for each c′ ∈ nn+(ck)

7. ComputeForce(ri , rj ) : ∀ri ∈ ck, ∀rj ∈ c′
8. end for
9. end for
10. end omp parallel

Spatial decomposition coloring—scalable without increasing computation, but
may cause considerable load imbalance [28].
Dynamic scheduling—robust and suited for dynamic load balancing, but may incur
fairly large overhead for context switching [29].
Data privatization—no penalty on computation, but with excessive Θ(np) memory
requirement per node and associated reduction sum cost [30].

We have designed CVAS and BFAS algorithms that combine a mutually exclu-
sive scheduler with a reduced memory data-privatization scheme to address the race
condition and fine-grain load balancing issues. The algorithms will be discussed in
Sect. 3.

3 Data privatization scheduling algorithms

Computation patterns in MD can lead to serious fine-grain race conditions. If the
natural symmetry of the particle forces is exploited, multiple pair interactions involv-
ing a common particle (e.g., interactions between particles i–j and j–k) possibly
cause a write conflict in memory (i.e., force array) when computed concurrently by
two different threads. The simplest solution is not to exploit force symmetry, but
this approach immediately doubles the computation (or more than double in case
of many-body potentials). Hence, this approach is not a preferred solution in most
circumstances.

To address these issues, we use a data privatization algorithm, which takes ad-
vantage of force symmetry while eliminating race conditions from the pair computa-
tions. However, a naïve implementation of data privatization consumes significantly
more memory. This will be described in Sect. 3.1. In Sect. 3.2, the nucleation-growth
allocation algorithm, an enhanced data privatization scheme with reduced memory
consumption, will be discussed.

3.1 Naïve data privatization threading algorithm

A naïve data-privatization algorithm avoids write conflict in memory by replicating
the entire write-shared data structure and allocating a private copy to each thread
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Fig. 4 Schematic of a memory layout for a naïve data privatization. To avoid data race conditions among
threads, the entire output array is locally duplicated for each thread. These local arrays are privatized on
the thread memory space, and thus eliminate race conditions during the computation phase. This approach
also incurs a reduction operation to sum the local results to the global array

(Fig. 4). Clearly, the memory requirement for this redundant allocation scales as
Θ(np). Each thread computes forces for each of its computation units and stores the
force values in its private array instead of the global array. This allows each thread
to compute forces independently without a critical section. After the force computa-
tion for each MD step is completed, the private force arrays are reduced to obtain the
global forces.

The naïve data privatization threading is simple and can be used to eliminate the
race condition regardless of threading complexity in most situations. However, this
naïve algorithm is usually not a suitable solution on a modern multicore platform be-
cause the algorithm allocates memory entirely without considering the actual work
assigned to each thread, leading to much larger memory consumption when the num-
ber of threads is large. This drawback can be remedied if the data-access pattern is
known ahead of the computation.

3.2 Nucleation-growth allocation algorithm

As explained in the previous section, the memory requirement of the naïve data-
privatization algorithm is Θ(np). However, it is not necessary to allocate a complete
copy of the force array for each thread, since only a subset of all computation units �

is assigned to each thread. Therefore, we may allocate only the necessary portion of
the global force array corresponding to the computation units assigned to each thread
as a private force array. This idea is embodied in a three-step algorithm (Fig. 5):
(1) the scheduler assigns computation units to threads and then determines which
subset of the global data each thread requires; (2) each thread allocates its private
memory as determined by the scheduler; and (3) private force arrays from all threads
are reduced into the global force array.

To do this, we create a mapping table between the global force-array index of
each particle and its thread-array index in a thread memory space. Since ddcMD
sorts the particle data based on the cell they reside in, only the mapping from the first
global particle index of each cell to the first local particle index is required. The local
ordering within each cell is identical in both the global and private arrays.
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Fig. 5 Memory layout and
three-step algorithm for the
nucleation-growth allocation
algorithm. Worker threads only
allocate the essential portion of
the force arrays, corresponding
to their assigned workload

Fig. 6 Thread load-balancing
algorithm Algorithm Fine-grain load balancing

1. for 0 ≤ i < p

2. Ti ← ∅

3. end for
4. for each λk in �

5. T min ← argmini (τ (Ti))

6. T min ← T min ∪λk

7. end for

It should be noted that assigning computation unit λk to thread Ti requires memory
allocation more than the memory for the particles in Ck . Since each computation unit
computes the pair forces of particles in cell Ck and half of its neighbor cells nn+(Ck)

as shown Fig. 1(b), the force data of particles in nn+(Ck) need to be allocated as well.
In order to minimize the memory requirement of each thread, the computation units
assigned to it must be spatially proximate, so that the union of their neighbor-cell
sets has a minimal size. This is achieved by minimizing the surface-to-volume ratio
of particles assigned to each thread Ti . To achieve this, we implement two algorithms
based on a nucleation-growth concept. This approach systematically divides the work
as equally as possible with minimal memory overhead. These two algorithms are:
(1) compact volume allocation scheduling (CVAS); and (2) breadth-first allocation
scheduling (BFAS) algorithms. CVAS and BFAS employ a fine-grain load-balancing
algorithm, which will be explained in Sect. 3.2.1. In Sects. 3.2.2 and 3.2.3, we will
discuss CVAS and BFAS algorithms in more details.

3.2.1 Thread-level load-balancing algorithm

We implement thread-level load balancing based on a greedy approach (i.e., iter-
atively assigning a computation unit to the least-loaded thread, until all computa-
tion units are assigned). Let Ti ⊆ � denote a mutually exclusive subset of com-
putation units assigned to the ith thread. The computation time spent on λk is
denoted as τ(λk). Thus, the computation time of each thread τ(Ti) = Σλ∈T iτ (λ)

is a sum of all computation units assigned to thread Ti . The algorithm initializes
Ti to be empty, and loops over λk in �. Each iteration selects the least-loaded
thread Tmin = argmin(τ (Ti)), and assigns λk to it. This original approach is a 2-
approximation algorithm [31] and its pseudocode is shown in Fig. 6.
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Algorithm Compact-volume allocation scheduling

1. Assign random root cell λroot to each thread
2. while not all of the cells are assigned
3. Find the least loaded thread T min
4. if nearest neighbor cells of T min are already assigned to other threads
5. Randomly pick new root λroot∗ for thread T min
6. Assign λroot∗ to T min
7. Set λroot∗ to be a new root of T min
8. else
9. Find an unassigned cell λj∗ which has minimal distance to the centroid

of T min
10. Assign λj∗ to T min
11. end if
12. end while

Fig. 7 CVAS algorithm

3.2.2 Compact-volume allocation scheduling (CVAS) algorithm

The CVAS algorithm consists of the following steps. First, we randomly assign a root
computation unit λroot to each thread. Next, the least-loaded thread Tmin is identified.
From the surrounding volume of Tmin, we select a computation unit λj∗ that has the
minimum distance to the centroid of Tmin, and then assign λj∗ to Tmin. The algorithm
repeats until all computation units are assigned to threads. If all of the surrounding
computation units of Tmin are already assigned, Tmin randomly chooses a new unas-
signed computation unit as a new cluster’s root and continue to grow from that point.
The pseudocode of CVAS is shown in Fig. 7.

3.2.3 Breadth-first allocation scheduling algorithm (BFAS)

One weakness of the CVAS algorithm is a fairly expensive scheduling cost. To im-
prove this aspect, we propose a breadth-first allocation scheduling (BFAS) algorithm
as an alternative. BFAS is designed to slightly increase memory consumption com-
pared to CVAS but significantly reduce the scheduling cost. BFAS consists of the fol-
lowing steps. The initialization step randomly assigns a root computation unit λroot

to each thread. Then an empty queue data structure Qi is defined as a traversal queue
for thread Ti . After that, each thread Ti adds all of the computation units surrounding
λroot into Qi . The algorithm repeats the following steps until all of the computa-
tion units are assigned: (1) find the least-loaded thread Tmin; (2) from the top of the
queue QT min, find the computation unit λj that has not been assigned to any thread;
(3) assign λj to Tmin and update workload sum of each thread. Note that the BFAS
algorithm proceeds similarly to a graph traversal using a breadth-first search (BFS)
algorithm. The pseudocode of BFAS is shown in Fig. 8.
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Fig. 8 BFAS algorithm
Algorithm Breadth-first allocation scheduling

1. for each thread Ti

2. Initialize queue Qi = ∅ as a search queue
3. Assign random root cell λroot to Ti

4. Enqueue all neighbor cells of λroot to Qi

5. end for
6. while not all of the cells are assigned
7. Find the least loaded thread T min
8. if QT min is empty
9. Randomly pick new root λroot∗ for thread

T min
10. Assign λroot∗ to T min
11. Add all neighbor cells of λroot∗ to QT min
12. else
13. do
14. λj = dequeue(QT min)
15. while λj is unassigned
16. Assign λj to T min
17. Enqueue all neighbor cells of λj to QT min
18. end if
19. end while

4 Theoretical analysis

In this section, we present a comprehensive analysis of the two proposed algorithms,
CVAS and BFAS. The analysis is important in order to understand the capabilities
and limitations of the algorithms under different circumstances. We present an upper
bound analysis for load imbalance profile (Sect. 4.1), a lower bound analysis for
memory consumption (Sect. 4.2), and computational complexity analysis (Sect. 4.3)
of the proposed algorithms. Using the analysis from Sects. 4.2 and 4.3, we are able
to identify the criterion to choose the most suitable algorithm for a particular system.
This will be discussed in Sect. 4.4.

4.1 Thread-level load imbalance analysis

The fine-grain load balancing algorithm presented in the previous section is simple
yet provides an excellent load-balancing capability. In this section, we show that this
approach has a well-defined upper bound for load imbalance. To quantify the load
imbalance, we define a load-imbalance factor γ as the difference between the runtime
of the slowest thread, max(τ(Ti)), and the average runtime, τaverage = (1/p)Σiτ(Ti),

γ = max(τ (Ti)) − τaverage

τaverage
. (1)
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By definition, γ = 0 when the loads are perfectly balanced. Since min(τ (Ti)) ≤
τaverage,

γ ≤ max(τ (Ti)) − min(τ (Ti))

τaverage
. (2)

In our load-balancing algorithm, the workload of Tmin is increased at most by
max(τ(λk)) at each iteration. This procedure guarantees that the variance of the work-
loads among all threads is limited by

max
(
τ(Ti)

) − min
(
τ(Ti)

) ≤ max
(
τ(λk)

)
. (3)

Substituting Eq. (3) in Eq. (2) provides an upper limit for the load-imbalance factor,

γ ≤ max(τ (λk))

τaverage
. (4)

For the case where the density of particles is uniform, we can further assume that all
computation units are equally expensive, thus τ(λ) = max(τ (λk)). In this case, the
upper-bound load-imbalance factor is

γuniform ≤ τ(λ)

τaverage
= pτ(λ)

Lτ(λ)
= p

L
. (5)

Performance of this load-balance scheduling algorithm depends critically on the
knowledge of time spent on each computation unit τ(λk). Since the runtime of the
computation units are unknown to the scheduler prior to the actual computation, the
scheduler has to accurately estimate the workload of each computation unit. Fortu-
nately, τ(λk) remains highly correlated between the consecutive MD steps, since par-
ticle positions change slowly. Therefore, we use τ(λk) measured in the previous MD
step as an estimator of τ(λk). This automatically takes into account any local varia-
tions in the cost of the potential evaluation. For the first step as well as steps when
the cell structure changes significantly (e.g., redistribution of the domain centers), the
workload of cell τ(λk) is estimated by counting the number of pairs in λk .

4.2 Memory consumption

Limited available memory per core becomes an important constraint for threading
algorithm design. Our nucleation-growth scheduling algorithms tend to distribute
workload equally among threads while minimizing the surface area of the assigned
workload in the physical space. Here, let us assume that the number density of parti-
cles of the system, ρ, is uniform. The memory required for storing particle forces for
each thread mt is proportional to the volume Vt occupied by the particles required for
the force computation of each thread:

mt = ρVt. (6)

The particles within volume Vt consist of two groups: (1) main particles, i.e., the
particles that are directly assigned to each thread; and (2) surface particles, i.e., the
particles that are not directly assigned to a particular thread but are required due to
their interaction with the main particles of each thread. We define the main volume
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Fig. 9 Geometric effects on surface-to-volume ratio. (a) and (b) show the shell volume of cubic and
spherical shapes with the same size of main volumes. (c) and (d) show the discretized version, which
indicates that the spherical shape consumes less volume than the cubic shape. The square grid represents
cells in which particles reside. The blue area refers to the main volume while the red area shows the shell
volume. Variable l is defined as the side length of main volume created by BFAS while r denotes the radius
of CVAS. The surface thickness is rc

Ω as a volume occupied by the main particles and the shell volume ω as a volume
occupied by the surface particles. Thus, Vt is written as

Vt = Ω + ω. (7)

From Eqs. (6) and (7), we will be able to calculate the memory consumption if the
main and shell volumes are known. Fortunately, both CVAS and BFAS algorithms
tend to form a particular geometry, which can be estimated analytically.

CVAS and BFAS algorithms are different only during the workload assignment
phase. CVAS chooses the closest unassigned cells to its centroid because it mini-
mizes the change of its centroid after assignment. This results in a spherical shape of
the main volume Ω created by CVAS (Fig. 9(b)). On the other hand, BFAS chooses
unassigned cells layer-by-layer starting with the closest ones to its root cell. Since
the cell has cubic geometry, BFAS volumes tend to form a cubic shape (Fig. 9(a)).
These considerations on the CVAS and BFAS volume geometry do not take account
the following facts: (1) the other threads might prevent the algorithms from obtain-
ing the optimal cells; and (2) discretization might cause suboptimal geometry for the
algorithms (see Figs. 9(c) and (d)). Since these factors always increase the memory
consumption from the optimal shape, an assumption of perfect CVAS or BFAS ge-
ometry implies the best-scenario (i.e., lower-bound) memory consumption for both
algorithms. We perform this analysis in detail in the following subsections.

4.2.1 Lower-bound memory consumption of CVAS algorithm

In the best case, Ω of CVAS forms a spherical shape. In this situation, the main
volume obtained by each thread is

ΩCVAS = 4

3
πr3, (8)
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or

r =
(

3

4π
ΩCVAS

)1/3

, (9)

where r is the radius of main volume’s sphere; see Fig. 8(b). The shell volume can be
calculated from half of the shell volume of the main volume (due to force symmetry)
with the shell radius equal to rc:

ωCVAS = 2

3
π

(
(r + rc)

3 − r3)

= 2

3
π

(
r3 + 3r2rc + 3rr2

c + r3
c − r3)

= 2πr2rc + 2πrr2
c + 2

3
πr3

c . (10)

Substitution of Eq. (10) with r from Eq. (9) yields

ωCVAS = 2π

(
3

4π
Ω

)2/3

rc + 2π

(
3

4π
Ω

)1/3

r2
c + 2

3
πr3

c , (11)

where Ω = ΩCVAS. Let the dimensionless quantity β be

β = Ω1/3

rc
, (12)

or

rc = Ω1/3

β
. (13)

Substituting Eq. (11) with rc from Eq. (13), we obtain

ωCVAS = 2π

(
3

4π
Ω

)2/3(
Ω1/3β−1)

+ 2π

(
3

4π
Ω

)1/3(
Ω2/3β−2) + 2

3
π

(
Ωβ−3)

= 2π

(
3

4π

)2/3

Ωβ−1 + 2π

(
3

4π

)1/3

Ωβ−2 + 2

3
πΩβ−3

= Ω

(
2π

(
3

4π

)2/3

β−1 + 2π

(
3

4π

)1/3

β−2 + 2

3
πβ−3

)

≈ Ω
(
2.4180β−1 + 3.8978β−2 + 2.0944β−3). (14)

Therefore, the total volume required by each thread in CVAS is

V CVAS
t = ΩCVAS + ωCVAS

= ΩCVAS
(
1 + 2.4180β−1 + 3.8978β−2 + 2.0944β−3). (15)
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4.2.2 Lower-bound memory consumption of BFAS algorithm

In the best case, ΩBFAS forms a cubic shape. In this situation, the main volume ob-
tained by each thread is

ΩBFAS = l3, (16)

or

l = Ω
1/3
BFAS, (17)

where l is the side length of the main volume; see Fig. 8(a). The shell volume can be
calculated from the half of the cubic shell of the main volume with shell thickness
equal to rc:

ωBFAS = 1

2

(
(l + 2rc)

3 − l3)

= 1

2

(
l3 + 6l2rc + 12lr2

c + 8r3
c − l3)

= 3l2rc + 6lr2
c + 4r3

c . (18)

Substitution of Eq. (18) with l from Eq. (17) yields

ωBFAS = 3Ω2/3rc + 6Ω1/3r2
c + 4r3

c , (19)

where Ω = ΩBFAS. Substituting rc from Eq. (19) with β from Eq. (13), we obtain

ωBFAS = 3Ω2/3(Ω1/3β−1) + 6Ω1/3(Ω2/3β−2) + 4Ωβ−3

= Ω
(
3β−1 + 6β−2 + 4β−3). (20)

Therefore, the total volume requires by each thread of BFAS is

V BFAS
t = ΩBFAS + ωBFAS

= ΩBFAS
(
1 + 3β−1 + 6β−2 + 4β−3). (21)

4.2.3 Memory scaling comparison between CVAS and BFAS

Using Eqs. (15) and (21), we can compare how the memory consumption of CVAS
and BFAS scales. Let us assume that Ω = ΩCVAS = ΩBFAS for direct comparison.
We substitute β from Eq. (13) into Eq. (15) to obtain

V CVAS
t

Ω
= 1 + 2.4180Ω−1/3rc + 3.8978Ω−2/3r2

c + 2.0944Ω−1r3
c . (22)

Since each cell has volume of r3
c , we express a main volume in terms of a dimension-

less unit Ω∗ where

Ω∗ = Ω

r3
c
. (23)

Substitution of Ω∗ from Eq. (23) into the right-hand side of Eq. (22) yields

V CVAS
t

Ω
= 1 + 2.4180Ω∗−1/3 + 3.8978Ω∗−2/3 + 2.0944Ω∗−1. (24)
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Fig. 10 The lower-bound
memory consumption of CVAS
and BFAS algorithms

Similarly, using the same analysis on BFAS volume in Eq. (21), we obtain

V BFAS
t

Ω
= 1 + 3Ω∗−1/3 + 6Ω∗−2/3 + 4Ω∗−1. (25)

Figure 10 shows the scaling ratio of Vt/Ω as a function of Ω∗ for both algorithms.
The result indicates a decreasing function of the ratio for both CVAS and BFAS. The
ratio decreases sharply up to Ω∗ ∼ 6 for both algorithms. For Ω∗ > 6, the ratio
decreases more slowly. We observe that CVAS algorithm consumes less memory
compared to the BFAS algorithm due to the geometric effect on the surface-to-volume
ratio of spheres and cubes as seen in Figs. 9(c) and (d). The memory consumption
difference between CVAS and BFAS is significant for small Ω∗ and diminishes for
larger Ω∗. BFAS uses 18 % more memory for Ω∗ = 50, and less than 10 % more
memory when Ω∗ > 269. This suggests that for a very large system, the relative
memory difference between the algorithms is insignificant.

4.2.4 Asymptotic memory consumption of CVAS and BFAS

In this subsection, the asymptotic memory consumption of CVAS and BFAS will be
analyzed. The memory consumption of CVAS and BFAS from Eqs. (15) and (21) can
be expressed as

mt = ρVt

= ρΩ
(
1 + aβ−1 + bβ−2 + cβ−3), (26)

where a, b, c,∈ � are prefactors. Substitution of β from Eq. (13) into Eq. (26) yields

mt = ρΩ
(
1 + arcΩ

−1/3 + br2
c Ω−2/3 + cr3

c Ω−1)

= ρ
(
Ω + aΩ2/3 + bΩ1/3 + c

)
. (27)

Let n be the number of particles on a node and p be the number of threads per
node. On average, each thread has n/p particles in the main volume Ω . From the
assumption that the system has uniform density, then

Ω = n

pρ
. (28)
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Substitution of Eq. (28) into Eq. (27) yields

mt = ρ

(
n

pρ
+ a

(
n

p

)2/3

+ b

(
n

p

)1/3

+ c

)

= n

p
+ a

(
n

p

)2/3

+ b

(
n

p

)1/3

+ c

= O

(
n

p
+

(
n

p

)2/3)
, (29)

as the asymptotic memory consumption per thread or O(n+n2/3p1/3) per node. This
asymptotic memory consumption of CVAS and BFAS is the same as the memory
consumption of a traditional MPI-only scheme.

4.3 Computational complexity

Since the dynamic nature of MD leads to variation of density profile over time, the
scheduling needs to be repeated in order to maintain its quality as the simulation
progresses. In this section, the computational complexity of CVAS and BFAS are
discussed.

For the CVAS algorithm, distances from the centroid to all the surrounding cells
(i.e., intermediate surface cells of the thread) need to be calculated to find the closest
cell to its centroid. Focusing on the scheduling cost of one thread Ti , there is only
one cell in the thread volume in the first step, which is the root cell. The number of
distance computations scales as the surface area of one cell. In the second assignment
phase of Ti , there are two cells in Ti , thus the number of distance computations scales
as the surface area of two cells. In the last assignment step of Ti , Ti has L/p assigned
cells, thus the number of distance computations scales as the surface area of L/p

cells. Since the surface area scales as the 2/3 power of the volume, the number of
distance computations of one thread is

tthread = 1 + (2)2/3 + (3)2/3 + · · · +
(

L

p

)2/3

=
L/p∑

k=1

k2/3. (30)

For p threads in one node, the cost is

tnode = ptthread = p

L/p∑

k=1

k2/3. (31)

For large L/p, the summation can be approximated by integration. Therefore, the
computation cost is approximated as

tnode = p

L/p∑

k=1

k2/3 ∼ p

∫ L/p

0
k2/3 dk = p

[
k5/3]L/p

k=0

= 3

2
p

(
L

p

)5/3

= Θ
(
L5/3p−2/3). (32)
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Table 1 Selection criterion
between CVAS and BFAS in
term of granularity

Granularity n/p Advantage algorithm

Memory Computation Overall

Small CVAS Small difference CVAS

Large Identical BFAS BFAS

When particles are uniformly distributed, the number of particles for each node n

scales as the number of cells L. Therefore,

tnode = Θ
(
ρn5/3p−2/3) = Θ

(
L5/3p−2/3). (33)

In the case of the BFAS algorithm, the scheduling cost of BFAS is identical to that
of BFS graph traversal on the work assignment phase. The complexity of a generic
BFS traversal is Θ(V + E), where V is the number of vertices and E is the number
of edges. In the BFAS algorithm, the number of vertices is equivalent to the number
of cells L and the number of edges is equal to 27L. Although multiple BFS searches
run simultaneously in BFAS, the total number of vertex traversals is L steps. Each
traversal consumes a constant amount of neighbor-cell lookups. Thus, the running
time of the BFAS algorithm scales as Θ(L) = Θ(ρn) = Θ(n).

4.4 Selection criterion for CVAS and BFAS

We have analyzed the CVAS and BFAS algorithms in the earlier sections. However,
for a particular simulation, it is still unclear which algorithm achieves better perfor-
mance. In this section, we discuss the relative benefit of CVAS and BFAS based on
the granularity of the simulation, n/p. This can be used as a selection criterion to
choose the better algorithm for a different simulation setup.

We begin by focusing on memory consumption. According to the memory analysis
in Sect. 4.2, CVAS has the optimal geometry that minimizes the surface-to-volume
ratio, while BFAS geometry is not optimal. Nevertheless, Fig. 9 indicates that the
difference in memory consumption is notable only when the main volume (i.e., gran-
ularity) is small. This difference diminishes when the size of the main volume in-
creases. Asymptotically, the difference becomes negligible. In summary for memory
consumption, CVAS consumes less memory for small granularity while the differ-
ence is small for large granularity.

Next, we consider the scheduling cost. Section 4.3 shows that the computational
complexity of BFAS is linear while that of CVAS is superlinear in terms of n. Clearly,
BFAS is better than CVAS in terms of computation cost especially for large n/p.
However, for small n/p, the computation costs of CVAS and BFAS are similar.

In conclusion, CVAS algorithm consumes considerably less memory than BFAS
with a comparable scheduling cost for small n/p. In contrast, BFAS algorithm con-
sumes asymptotically the same memory with much less scheduling cost when n/p

is large. Therefore, CVAS and BFAS are suitable for small and large granularities,
respectively. This is summarized in Table 1. In production simulations, n/p usually
ranges from 100–10,000 particles, corresponding to the transition from small to large
granularity.
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Table 2 Specifications of testing clusters

Platforms

LLNL-Dawn LLNL-Hera USC-HPCC

Processor IBM PowerPC 450 AMD Opteron 8356 Intel Xeon X5650

Clock Speed 850 MHz 2.3 GHz 2.66 GHz

Number of nodes 36,864 864 256

Cores per node 4 16 12

Memory per node 4 GB 32 GB 24 GB

Network IBM 3D torus Infiniband DDR Myrinet 10G

Fig. 11 Scheduling cost for the
CVAS and BFAS algorithms for
128,000-particle system on 64
BlueGene/P nodes. The circles
and squares are the average
scheduling times of CVAS and
BFAS, respectively

5 Performance evaluation

In this section, we measure the performance of the CVAS and BFAS algorithms. Sec-
tion 5.1 shows benchmarks of the scheduling cost of CVAS and BFAS algorithms.
Section 5.2 measures the load-imbalance factor of our scheduler, and Sect. 5.3 mea-
sures the memory-footprint reduction for CVAS, confirming its O(n + p1/3n2/3)

memory scaling. Section 5.4 demonstrates the reduction of the scheduling cost of
CVAS without affecting the quality of load balancing, followed by strong-scaling
comparison of the hybrid MPI/OpenMP and MPI-only schemes in Sect. 5.5 for
CVAS.

Performance evaluations in this section are performed on three testing platforms:
(1) Dawn, a BlueGene/P cluster at LLNL; (2) Hera, a quad 4-core AMD Opteron
cluster at LLNL; and (3) HPCC, a dual 6-core Intel Xeon cluster at the University of
Southern California (USC). The LLNL-Dawn cluster is used for large-scale testing,
while LLNL-Hera and USC-HPCC provide higher thread count environments for
AMD and Intel architectures, respectively. Detailed specifications for each cluster
are provided in Table 2.

5.1 Scheduling cost

We have measured the average scheduling time for a 128,000-particle system over
1,000 MD steps on 64 BlueGene/P nodes. Figure 11 shows the average scheduling
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Fig. 12 The load-imbalance
factor γ of CVAS as a function
of p from theoretical bound,
scheduler estimation, and actual
measurement

cost when the scheduling is performed every 15 steps. We observe that CVAS spends
8.1, 1.5, and 9.8 % more time on scheduling than BFAS for the number of threads
p = 2, 3, and 4, respectively. Note that for p = 1, we simply schedule all the work to
one thread.

5.2 Thread-level load balancing

We perform a load-balancing test for CVAS on a dual six-core 2.3 GHz AMD Opteron
with n = 8,192. In Fig. 12, the measured load-imbalance factor γ is plotted as a
function of p, along with its estimator introduced in Sect. 3.2.1 and the theoretical
bound, Eq. (5). The results show that γestimated and γactual are close, and are below the
theoretical bound. γ is an increasing function of p, which indicates the severity of the
load imbalance for a highly multithreaded environment and highlights the importance
of the fine-grain load balancing.

We also observe that performance fluctuates slightly depending on the selection of
root nodes in CVAS algorithm. While random root selection tends to provide robust
performance compared to deterministic selection, it is possible to use some optimiza-
tion techniques to dynamically optimize the initial cell selection at runtime. For more
irregular applications, it is conceivable to combine the light-overhead thread-level
load balancing in this paper with a high quality node-level load balancer such as a
hypergraph-based approach [32].

5.3 Memory consumption

To test the memory efficiency of the CVAS algorithm, we perform simulations on a
four quad-core 2.3 GHz AMD Opteron machine with a fixed number of particles n =
8,192, 16,000, and 31,250. We measure the memory allocation size for 100 MD steps
while varying the number of threads p from 1 to 16. Figure 12 shows the average
memory allocation size of the force array as a function of the number of threads
for the proposed algorithm compared to that of a naïve data-privatization algorithm.
The results show that the memory requirement for 16 threads is reduced by 65 %,
72 %, and 75 %, respectively, for n = 8,192, 16,000, and 31,250 compared with the
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Fig. 13 Average memory
consumption for the private
force arrays as a function of p

using CVAS compared to the
Naïve method. Numbers in the
legend denote n

Fig. 14 Average reduction-sum
operation time of the CVAS as a
function of p. Numbers in the
legend denote n

naïve Θ(np) memory per-node requirement. In Fig. 13, the dashed curves show the
reduction of memory requirement per thread estimated as

m = ap−1 + bp−2/3, (34)

where the first term represents the memory scaling from main cells and the second
term represents scaling from surface cells of each thread; see Eq. (29). In Eq. (34), a

and b are fitting parameters. The regression curves fit the measurements well, indi-
cating that the memory requirement is accurately modeled by O(n + p1/3n2/3).

5.4 Reduction-sum operation cost

We also measure the computation time spent for the reduction sum of the private
force arrays to obtain the global force array. Figure 14 shows the reduction-sum time
as a function of the number of threads p for n = 8,192, 16,000, and 31,250 particles.
Here, dashed curves represent the regression,

treduction = ap1/3 + b, (35)

where a and b are fitting parameters, which fit all cases well.
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Fig. 15 (a) Thread-level strong
scalability of the parallel section
on a four quad-core AMD
Opteron 2.3 GHz with fixed
problem size at n = 8,192
particles. Total running time per
MD steps on 1,024–32,768
Power PC 450 850 MHz cores
of BlueGene/P for a fixed
problem size at
N = 0.84-million particles (b)
and 1.68-million particles (c)

5.5 Strong-scaling benchmark

In strong-scaling benchmarks of CVAS, where the problem size is fixed, Fig. 15(a)
shows the thread-level strong-scaling speedup on a four quad-core 2.3 GHz AMD
Opteron. The algorithm achieves a speedup of 14.43 on 16 threads, i.e., the strong-
scaling multithreading parallel efficiency is 0.90. CVAS reduces the memory con-
sumption up to 65 % for n = 8,192, while still maintaining excellent strong scalabil-
ity.

Next, we compare the strong-scaling performance of the hybrid MPI/OpenMP
and MPI-only schemes for large-scale problems on BlueGene/P at LLNL. One Blue-
Gene/P node consists of four 850 MHz PowerPC 450 processors. The MPI-only
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implementation treats each core as a separate task, while the hybrid MPI/OpenMP
implementation has one MPI task per node, which spawns four worker threads for
the force computation. The test is performed on P = 8,192 nodes, which is equiv-
alent to 32,768 MPI tasks in the MPI-only case and 32,768 threads for hybrid
MPI/OpenMP. Figure 15(b) and (c) show the running time of 843,750 and 1,687,500
particles systems, respectively, for the total number of cores ranging from 1,024 to
32,768. The result indicates that the hybrid scheme performs better when the core
count is larger than 8,192. On the other hand, the MPI-only scheme gradually stops
gaining benefit from the increased number of cores and becomes even slower. The
MPI/OpenMP code shows 2.58× and 2.16× speedups over the MPI-only implemen-
tation for N = 0.84 and 1.68 million, respectively, when using 32,768 cores. Note
that the crossover granularity of the two schemes is n/p ∼ 100 particles/core for
both cases. The larger running time of the hybrid MPI/OpenMP code compared with
that of the MPI-only code for small number of nodes in Figs. 15(b) and (c) can be un-
derstood as a result of the Amdahl’s law. Namely, only the pair kernel of the ddcMD
code is parallelized, while the rest of the program is sequential in the thread level.
This disadvantage of the MPI/OpenMP code diminishes as the number of cores in-
creases. Eventually, the hybrid MPI/OpenMP code performs better than the MPI-only
code after 8,192 cores. The main factors underlying this result are: (1) the surface-
to-volume ratio associated with the spatial-decomposition domain is larger for the
MPI-only code compared to that of the hybrid MPI/OpenMP code; and (2) the aggre-
gated communication latency for each node of the MPI-only code is four times larger
than that of the hybrid MPI/OpenMP code. This result confirms the assertion that the
MPI/OpenMP model (or similar hybrid schemes) will be required to achieve better
strong-scaling performance on large-scale multicore architectures.

6 Summary

We have designed two new data-privatization algorithms, CVAS and BFAS, based
on a nucleation-growth allocation, which have minimal memory footprint. Both al-
gorithms have been thoroughly analyzed and compared. The memory consumption
per thread is found to scale as O(n + p1/3n2/3) for both CVAS and BFAS. How-
ever, geometric effects cause BFAS to consume more memory compared to CVAS.
Our analysis shows that the computational costs of CVAS and BFAS are bounded
by Θ(n5/3p−2/3) and Θ(n), respectively. These analyses identify an optimal range
for CVAS and BFAS in terms of granularity, n/p: CVAS is the better choice for
smaller granularity while BFAS is preferred for larger granularity. Massively parallel
MD benchmarks have demonstrated significant performance benefits of the hybrid
MPI/OpenMP parallelization for fine-grain large-scale applications. Namely, 2.58×
speedup has been observed for 0.8-million particle simulation on 32,768 cores of
BlueGene/P.
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