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Deformation, plasticity, and flow in silica-based glasses have been studied for decades, and yet

important questions remain about the atomistic mechanisms underlying these processes. Our

molecular dynamics simulations of nanoindentation indicate that these mechanical processes have

a unified underlying atomistic mechanism. The simulations reveal that indentation nucleates

under-coordinated silicon and oxygen defects, which migrate by switching bonds in string-like

processes. We also observe defect annihilation in the plastic region underneath and the pileup

region around the indenter. These defects have also been observed in simulations of nanovoid

coalescence under hydrostatic tension and in nanovoid deformation and breakup in shearing silica

glass. VC 2011 American Institute of Physics. [doi:10.1063/1.3637052]

In recent years, considerable progress has been made in

indentation testing1 by combining it with atomic force mi-

croscopy (AFM).2–10 In indentation experiments, the hard-

ness of a material is obtained from the ratio of the maximum

applied load (Pmax) to the contact area (Ac). Since the contact

area in nanoindentation experiments is too small for direct

observation by optical microscopy, one estimates the pro-

jected area (Ap) from a functional relationship between Ap

and the measured contact depth (hc). This can introduce con-

siderable uncertainty in the value of hardness. AFM circum-

vents this problem by allowing direct observation of the

impression created by the indenter and precise determination

of the contact area.3 Another advantage of AFM indentation

tests over conventional nanoindentation is that indentation

impressions can be made shallower by applying smaller nor-

mal loads in the range of nano to pico newtons. Miyake et al.
have used AFM indentation tests to measure the hardness of

fused silica and their estimate (10 GPa) is considerably lower

than the one obtained by using the Oliver-Pharr relationship

between the projected area and the contact depth.3

In the molecular dynamics (MD) simulations of nanoin-

dentation described here, the applied load and the size of the

indentation impression are comparable to those in an AFM

nanoindentation experiment.3 The MD simulation, however,

has an advantage over an AFM indentation experiment in

that it can provide atomistic-level stress distribution as well

as the structure and dynamics of defects associated with de-

formation and plasticity in the system.11–15

Figure 1(a) shows a snapshot of one of the simulated

amorphous silica (a-SiO2) systems at the maximum indenta-

tion depth. This system contains 40� 106 atoms and has

dimensions 100 nm� 100 nm� 60 nm. We have also per-

formed indentation on a system with 66� 106 atoms in a vol-

ume of (100 nm).3 Both amorphous systems were prepared

by melting b-cristobalite and then quenching the melt incre-

mentally to a very low temperature (see supplementary mate-

rial16). Subsequently, periodic boundary condition in the z
direction was removed and atoms within 5.5 Å from the bot-

tom x-y plane were frozen. The two amorphous systems

were heated gradually to 300 K, thermalized, and then

indented normal to the x-y plane. Two kinds of indenters

were used: one had a sharp tip and the other had a spherical

tip of radius 10 nm. Both were rigid, square-based indenters

with an apical angle of 70.5�. The indenter atoms interact

with the atoms of the silica substrate via steric repulsion.

The parameters of the indenter-substrate interatomic poten-

tial are given in the supplementary material.16

Figure 1(b) displays the applied load as a function of the

penetration depth of the indenter for the amorphous system

with 40� 106 atoms. The load is calculated from the z com-

ponent of the force on the indenter atoms and the area of in-

dentation impression by dividing the system into voxels of

dimension (1 nm)3 and identifying empty voxels (without

atoms) at the level of the original unperturbed surface. Upon

unloading at the maximum indentation depth, the hardness

values are found to be 10.6 and 12.0 GPa for the atomisti-

cally sharp and blunt indenters, respectively. These results

compare favorably with the AFM measurement of hardness

(10 GPa) in fused silica.3 In the larger system (66� 106

atoms), where the frozen atoms at the bottom of the substrate

are much farther from the indenter tip, we obtain the same

load-displacement curves and hardness values.

Figures 2(a) and 2(b) are snapshots of the mass density

and pressure in the indented silica film at the maximum in-

dentation depth. The density and pressure distributions

around the indenter are computed from atomic distributions

and virial stresses in 1 nm size voxels when the indenter is

immobile. Figure 2(a) shows a considerable pileup and a

20% increase in the mass density of a-SiO2 (Refs. 19 and 20)

beneath the indenter relative to the mass density of bulk

silica glass under ambient conditions (2.2 g/cc). Perriot et al.
have used Raman micro-spectroscopy to characterize plastic

behavior in an indentation experiment on fused silica,21 and

they find densification of up to 20%. Figure 2(b) shows a

high-pressure region around the indenter and a low-pressure

pile-up region where the density ranges between 1.8 and 2.0

g/cc. The maximum pressure around the indenter is 7 GPa,

which is well below the critical pressure (>10 GPa) for thea)Electronic mail: priyav@usc.edu.
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transformation to the stishovite phase of silica.22,23 During

the unloading phase of the simulation, the silica substrate

exhibits elastic recovery and the density just beneath the in-

denter goes back to the bulk density (2.2 g/cc), although

there is still significant pileup around the indenter. It should

be noted that no cracks are found upon loading or unloading

the indenter, which is in agreement with a recent Vickers in-

dentation experiment by Gross and Tomozawa.24

Detailed analyses of atomistic configurations and stress

distributions reveal that point defects in the silica network

glass play a central role in the plastic deformation and pileup

observed in nanoindentation simulations. Normally, the

coordinations of Si and O are 4 and 2, respectively. We

observe a few 5-fold coordinated Si (Ref. 25) and 3-fold

coordinated O atoms during loading. However, these over-

coordinated Si and O atoms relax to their normal coordina-

tions of 4 and 2, respectively, when the indenter is pulled

out. We have also analyzed Si-O ring structure in silica

glass.26 Before indentation, the ring distribution is peaked

around 6. At the maximum indentation depth, the popula-

tions of smaller rings (2, 3, and 4 fold) increase and larger

rings (5, 6, 7, and 8 fold) decrease by a few percent.

The defects migrate by a bond-switching mechanism in

which either a silicon or an oxygen atom severs its bond

with one of its nearest neighbors and forms a new bond with

a different neighbor atom. Figures 3(a)–3(c) show how such

a bond-switching event occurs. The three atoms involved in

this event are labeled as O1, Si2, and O3. Initially, Si2 and

O3 have normal coordinations, and O1 is a non-bridging ox-

ygen atom. At the transition state, Si2-O3 bond breaks, and

these two atoms become under-coordinated. Subsequently,

Si2 and O1 become fully coordinated by bonding with each

other and the oxygen labeled O3 becomes a defect. Later on,

O3 bonds with another Si atom that has detached from one

of its oxygen neighbors.

Figures 3(d)–3(f) show the annihilation of a non-bonded

pair of undercoordinated Si and O atoms. The four atoms

involved in this event are labeled as Si1, O2, Si3, and O4.

Initially, O2 is bonded with Si3, and they have coordinations

of 2 and 4, respectively. In the transition state, O2-Si3 bond

breaks, and they both become undercoordinated. In the final

state, Si1 forms a bond with O2 and Si3 with O4, and now

these four atoms have normal coordinations.

MD simulations reveal a mechanism of defect transport

in which under-coordinated silicon and/or non-bridging oxy-

gen atoms cascade along a chain27 by switching bonds with

their fully coordinated nearest neighbor atoms. Figure 4(a) is

a snapshot of a defect migration event observed at the maxi-

mum indentation depth. Here defect migration begins when

an under-coordinated silicon atom (Si1) becomes four-fold

coordinated by bonding with a bridging oxygen atom (O2),

and the latter severs its bond with another silicon atom (Si3).

In this bond-switching process via a bridging oxygen atom,

the defect migrates from the position of Si1 to the position of

Si3. In the next bond-switching event, Si3 becomes fully

coordinated by bonding with oxygen atom O4, and the sili-

con atom Si5 becomes a defect after Si5-O4 bond is broken.

This bond-switching sequence terminates after silicon atom

FIG. 2. (Color) (a) Density distribution and (b) pressure inside a-SiO2 at the

maximum load. For clarity, the panels show a diagonal cut through the sub-

strate in the x-y plane. Note the densification and pressure build-up around

the indenter and the low-density material pileup near the surface.

FIG. 3. (Color) (a)-(c) Snapshot showing hopping of an oxygen defect; (a)

initial state, (b) transition state, and (c) final state. Atoms involved in the event

are labeled as O1, Si2 and O3. The oxygen defect migrates by switching

bonds from Si2-O3 to O1-Si2. Atomic configurations showing an annihilation

event for a pair of defect atoms in the initial (d), transition (e), and final (f)

states. Atoms involved in the event are labeled as Si1, O2, Si3 and O4.

FIG. 1. (Color) (a) Pileup around the indenter at the maximum indentation

depth. The colors represent “temperature” estimated from kinetic energy of

atoms. (b) Load versus displacement during loading and unloading phases of

indentation.
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Si9 becomes under-coordinated. The average speed at which

this point defect cascades from Si1 to Si9 is about 200 m/s.

Figure 4(b) shows another kind of event in which a defect

pair migrates along a chain and is annihilated when the two

atoms become nearest neighbors. Here at the top of the chain

an under-coordinated oxygen atom (O1) bonds with a silicon

atom (Si2) after the bond between Si2 and another oxygen

atom (O3) is broken. Thus, the non-bridging oxygen defect

migrates from O1 to O3. At the bottom of the chain, an under-

coordinated silicon atom (Si8) forms a bond with a bridging

oxygen atom (O7) when the latter breaks its bond with another

silicon atom (Si6). Next, the under-coordinated silicon defect

migrates from Si6 to Si4 when the former breaks, and the lat-

ter forms a bond with a bridging oxygen atom (O5). After

becoming nearest neighbors, the non-bridging oxygen (O3)

bonds with under-coordinated silicon (Si4), and thus the

defect pair is annihilated. The simulations also reveal reverse

events where an under-coordinated silicon and a non-bridging

defect pair is nucleated when the bond between them breaks

and then these defects migrate away from each other by

switching bonds with their nearest neighbor atoms. We have

calculated the statistics of defects and find that the number of

defect migration events, Nevent, decreases exponentially with

an increase in the number of bond-switching atoms, l:
Nevent / expð�l=l0Þ. The rate of bond-switching event

increases with the indentation depth: for example, at indenta-

tion depths of 8 and 28 nm, the rates of bond-switching events

in the longest defect migration chain are 7 � 1011 and

1.0 � 1012 s�1, respectively.

We have also estimated energy barriers for defect migra-

tion and defect pair annihilation events using the nudged

elastic band method.28 The barrier heights for these events

are quite close—0.61 eV for defect migration and 0.63 eV

for defect annihilation. However, the energy differences

between the initial and final states for these events are sub-

stantially different (�0.64 eV for defect migration and

�1.84 eV for defect pair annihilation).

In conclusion, the MD simulations of nanoindentation

reveal that undercoordinated silicon and non-bridging oxy-

gen defects in the amorphous silica network cause plastic

deformation and pileup around the indenter. The defects

migrate preferentially along pressure gradients on the in-

denter faces and along shear-stress gradients normal to the

indenter faces. Such defects were theoretically postulated by

Mott29 to explain shear flow in silica glass. We have also

observed these defects in MD simulations of (a) shear-

induced void deformation, damage, and flow in silica glass

and (b) in coalescence of nanovoids and fracture in amor-

phous silica.30,31 Taken together, the simulations indicate a

unified atomistic defect mechanism of deformation, flow,

and fracture in silica glass.
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FIG. 4. (Color) Snapshots showing (a) migration of an under-coordinated Si

defect and (b) annihilation of an under-coordinated Si and a non-bridging O

defect. Yellow and red spheres show positions of silicon and oxygen atoms.

For clarity, only the participating atoms in these events are shown. Dotted

and solid lines indicate covalent bonds before and after each event. Arrows

represent defect migration pathways.
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