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Abstract

To enable large-scale atomistic simulations of material processes involving chemical reactions, we have designed linear-scaling molec-
ular dynamics (MD) algorithms based on an embedded divide-and-conquer (EDC) framework: first principles-based fast reactive force-
field (F-ReaxFF) MD; and quantum-mechanical MD in the framework of the density functional theory (DFT) on adaptive multigrids.
To map these O(N) algorithms onto parallel computers with deep memory hierarchies, we have developed a tunable hierarchical cellular-
decomposition (THCD) framework, which achieves performance tunability through a hierarchy of parameterized cell data/computation
structures and adaptive load balancing through wavelet-based computational-space decomposition. Benchmark tests on 1920 Itanium?2
processors of the NASA Columbia supercomputer have achieved unprecedented scales of quantum-mechanically accurate and well
validated, chemically reactive atomistic simulations—0.56 billion-atom F-ReaxFF MD and 1.4 million-atom (0.12 trillion grid points)
EDC-DFT MD—in addition to 18.9 billion-atom non reactive space—time multiresolution MD. The EDC and THCD frameworks
expose maximal data localities, and consequently the isogranular parallel efficiency on 1920 processors is as high as 0.953. Chemically
reactive MD simulations have been applied to shock-initiated detonation of energetic materials and stress-induced bond breaking in
ceramics in corrosive environments.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

There is growing interest in large-scale molecular
dynamics (MD) simulations [1-4] involving million-to-
billion atoms, in which interatomic forces are computed
quantum mechanically [5] to accurately describe chemical
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reactions. Such large reactive MD simulations would for
the first time provide requisite coupling of chemical reac-
tions, atomistic processes, and macroscopic materials
phenomena, to solve a wide spectrum of problems of great
societal impact. Examples of technological significance
include: stress corrosion cracking (corrosion-related direct
costs make up 3% of the gross domestic product in the
US), where chemical reactions at the crack tip are insepara-
ble from long-range stress fields [6]; energetic nanomateri-
als to boost the impulse of rocket fuels, in which
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Fig. 1. (a) Reactive force-field molecular dynamics simulation of shock-initiated combustion of an energetic nanocomposite material (nitramine matrix [7]
embedded with aluminum nanoparticles [9]). (b) Rendering of a molecular dynamics simulation on a tiled display at USC, showing hypervelocity impact
damage of a ceramic plate with impact velocity 15 km/s, where one quarter of the system is cut to show the internal pressure distribution (the projectile is
shown in white). Such simulations help design thermal and radiation protection systems of aerospace vehicles, which are tolerant to micrometeorite

impacts (where impact speeds are as high as 40 km/s).

chemical reactions sustain shock waves (see Fig. 1(a)) [7];
and micrometeorite impact damages to the thermal and
radiation protection layers of aerospace vehicles, under-
standing of which is essential for safer space flights
(Fig. 1(b)). Emerging petaflops computers could poten-
tially extend the realm of quantum-mechanical (QM)
simulation [8] to the macroscopic scales, but only if scalable
parallel simulation technologies were developed.

In the past few years, several promising approaches have
emerged toward achieving million-to-billion atom simula-
tions of chemical reactions. One computational approach
toward QM-based million-atom MD simulations is to per-
form a number of small density functional theory (DFT)
[10,11] calculations “on the fly” to compute interatomic
forces quantum mechanically. We have recently designed
a linear-scaling divide-and-conquer DFT algorithm on
adaptive multigrids, which achieves robust convergence,
controlled errors, and energy conservation during MD
simulations [12]. Here we present the first million-atom
DFT-based MD simulation, where electronic wave func-
tions are represented on 10'" grid points. Alternative to this
concurrent DFT-based MD approach is a sequential DFT-
informed strategy, which employs environment-dependent
interatomic potentials based on: (1) variable atomic
charges to describe charge transfers; and (2) reactive bond
orders to describe chemical bond formation and breakage.
In our first principles-based reactive force-field (ReaxFF)
approach [7,13], the parameters in the interatomic poten-
tial are “trained” to best fit thousands of DFT calculations
on small (the number of atoms, N ~ 10) clusters of various
atomic-species combinations. This paper presents a new
O(N) parallel ReaxFF algorithm, which for the first time
enables billion-atom MD simulations of chemical
reactions.

The first contribution of this paper is a unified embed-
ded divide-and-conquer (EDC) algorithmic framework
for designing linear-scaling parallel algorithms for broad
scientific and engineering problems, with specific applica-
tions to two reactive atomistic simulation methods:
ReaxFF MD and DFT-based MD. Mapping these O(N)

algorithms onto multi-teraflops to petaflops parallel com-
puters, however, poses a number of challenges, e.g., achiev-
ing high scalability for irregularly distributed billion atoms,
and enabling performance portability [14] for a wide range
of parallel architectures. To overcome these challenges, the
second contribution of this paper is a tunable hierarchical
cellular-decomposition (THCD) framework, which is
aware of deep memory hierarchies, by maximally exposing
data locality and exploiting parallelism at each decomposi-
tion level. The framework features topology-preserving
computational-space decomposition and wavelet-based
adaptive load balancing. To ensure performance portabil-
ity, a hierarchy of cell data/computational structures are
parameterized and tuned on each platform. The major
accomplishment of this paper is the unprecedented scales
of quantum-mechanically accurate and well validated,
chemically reactive atomistic simulations on the NASA
Columbia supercomputer. Benchmark tests on 1920
Itanium?2 processors have achieved 0.56 billion-atom
ReaxFF and 1.4 million-atom (0.12 trillion degrees of free-
dom) DFT simulations, in addition to 18.9 billion-atom
MD simulation, with isogranular parallel efficiency as high
as 0.953.

This paper is organized as follows. In the next section,
we describe the EDC algorithmic framework. Section 3
discusses the THCD parallel computing framework. Results
of benchmark tests are given in Section 4, and Section 5
describes applications of large-scale chemically reactive
MD simulations to shock-initiated detonation of energetic
materials and stress-induced bond breaking in ceramics in
corrosive environments. Finally, Section 6 contains
conclusions.

2. Linear-scaling embedded divide-and-conquer simulation
algorithms

We have developed a unified algorithmic framework to
design linear-scaling algorithms for broad scientific and
engineering applications, based on data locality principles.
In the embedded divide-and-conquer (EDC) algorithms,
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spatially localized subproblems are solved in a global
embedding field, which is efficiently computed with tree-
based algorithms (see Fig. 2). Examples of the embedding
field are the electrostatic field in molecular dynamics
(MD) simulations and the self-consistent Kohn—Sham
potential in the density functional theory (DFT).
Specifically, we have used the EDC framework to
develop a suite of linear-scaling MD simulation algorithms
for materials research, in which interatomic forces are com-
puted with varying accuracy and complexity. The linear-
scaling algorithms encompass a wide spectrum of physical
reality: (1) classical MD based on a many-body interatomic
potential model, which involves the formally O(N?)N-body
problem; (2) environment-dependent, reactive force-field
(ReaxFF) MD, which involves the O(N®) variable N-
charge problem; and (3) quantum-mechanical (QM) calcu-
lation based on the DFT, to provide approximate solutions
to the exponentially complex quantum N-body problem.

2.1. Space—time multiresolution molecular dynamics
algorithm

We have designed chemically reactive O(N) MD simula-
tion algorithms on the basis of their nonreactive predeces-
sor, space—time  multiresolution molecular  dynamics
(MRMD ) algorithm [3]. In the MD approach, one obtains
the phase-space trajectories of the system (positions and
velocities of all atoms at all time). Atomic force law for
describing how atoms interact with each other is mathe-
matically encoded in the interatomic potential energy,
Emp(r"), which is a function of the positions of all N
atoms, r¥ = {rji=1,...,N}, in the system. In our many-
body interatomic potential scheme, the energy,
Evip({ry}, {r;%}), is an analytic function that depends on
relative positions of atomic pairs, r;;, and triplets, r;;. Time
evolution of r" is governed by a set of coupled ordinary dif-
ferential equations. For interatomic potentials with finite
ranges, the computational cost is made O(N) using a
linked-list cell approach [3]. For the long-range electro-
static interaction, we use the fast multipole method
(FMM) [15-17] to reduce the O(N?) computational com-

Global Embedding Field

plexity of the N-body problem to O(¥). In the FMM, the
physical system is recursively divided into subsystems to
form an octree data structure, and the electrostatic field
is computed recursively on the octree with O(N) opera-
tions, while maintaining the spatial locality at each recur-
sion level. Our scalable parallel implementation of the
FMM has a unique feature to compute atomistic stress ten-
sor components based on a complex charge method [17].
The MRMD algorithm also utilizes temporal locality
through multiple time stepping (MTS), which uses different
force-update schedules for different force components
[16,18-20]. Specifically, forces from the nearest-neighbor
atoms are computed at every MD step, whereas forces
from farther atoms are updated less frequently.

For parallelization of MD simulations, we use spatial
decomposition [3]. The total volume of the system is
divided into P subsystems of equal volume, and each sub-
system is assigned to a node in an array of P compute
nodes. To calculate the force on an atom in a subsystem,
the coordinates of the atoms in the boundaries of neighbor
subsystems are ‘“‘cached” from the corresponding nodes.
After updating the atomic positions due to a time-stepping
procedure, some atoms may have moved out of its subsys-
tem. These atoms are “migrated” to the proper neighbor
nodes. With the spatial decomposition, the computation
scales as N/P, while communication scales in proportion
to (N/P)z/ 3 for an N-atom system. Tree-based algorithms
such as the FMM incur an O(logP) overhead, which is
negligible for coarse-grained (N/P > P) applications.

2.2. Fast reactive force-field molecular dynamics algorithm

The density functional theory (DFT) [10,11] has reduced
the exponentially complex quantum-mechanical problem
to O(M?>), by solving M one-electron problems self-consis-
tently instead of one M-electron problem. Unfortunately,
DFT-based MD simulations [5] are rarely performed over
N~ 10> atoms because of its O(N’) computational
complexity, which severely limits their scalability. The first
principles-based ReaxFF approach [7,13] significantly
reduces the computational cost of simulating chemical
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Fig. 2. Schematic of an embedded divide-and-conquer (EDC) algorithm. (Left) The physical space is subdivided into spatially localized cells, with local
atoms constituting subproblems (bottom), which are embedded in a global field (shaded) solved with a tree-based algorithm. (Right) To solve the
subproblem in domain @, in the EDC-DFT algorithm, coarse multigrids (gray) are used to accelerate iterative solutions on the original real-space grid
(corresponding to the grid refinement level, / = 3). The bottom panel shows fine grids adaptively generated near the atoms (spheres) to accurately operate
the ionic pseudopotentials on the electronic wave functions.
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reactions. However, because of its O(N°) complexity asso-
ciated with the variable N-charge problem and the multi-
tude of atomic n-tuple information (n = 2-6) required to
compute interatomic forces, parallelization of the ReaxFF
has only seen limited success, and the largest ReaxFF MD
simulations to date have involved N < 10* atoms.

The O(N?) complexity of ReaxFF arises from the dense
linear system of equations to determine atomic charges,
{gli=1,...,N}, at every MD step, i.e., the variable
N-charge problem. We have developed a fast reactive
force-field (F-ReaxFF) MD algorithm, which reduces the
complexity to O(N) by combining the FMM [15-17] based
on spatial locality and an iterative minimization approach
to utilize the temporal locality of the solutions [21]. To
further accelerate the convergence, we use a multilevel pre-
conditioned conjugate-gradient (MPCG) method [9,21], by
splitting the Coulomb-interaction matrix into short- and
long-range components and using the sparse short-range
matrix as a preconditioner. The extensive use of the sparse
preconditioner enhances the data locality, and thereby
improves the parallel efficiency [21].

The chemical bond order, Bj, is an attribute of an
atomic pair, (i,j), and changes dynamically adapting to
the local environment. In the ReaxFF, the interatomic
potential  energy, Ercaxer({ry}, {Fjhs (vt {qit { Bij}),
between atomic pairs, ry, triplets, r;z, and quadruplets, 1,
depends on the bond orders of all constituent atomic pairs
[13]. Force calculations in ReaxFF MD thus involve up to
atomic 4-tuples explicitly, and require information on 6-
tuples implicitly due to chain-rule differentiations through
the bond orders. To efficiently handle the resulting multiple
interaction ranges, our parallel F-ReaxFF algorithm
employs a multilayer cellular-decomposition (MCD)
scheme for caching atomic n-tuple (n =2-6) information
(see Section 3).

The F-ReaxFF calculation of RDX (1,3,5-trinitro-1,3,5-
triazine) in this paper has an extensive validation database
against DFT calculations, which include not only 1600
equilibrated molecular fragments but also 40 key reaction
energies [7].

2.3. Divide-and-conquer density functional theory
algorithm on adaptive multigrids

The concurrent DFT-based MD approach is best imple-
mented with a divide-and-conquer algorithm [22], which is
based on a data locality principle called quantum near-
sightedness [23], and naturally leads to O(N) DFT calcula-
tions [12,22,24-27]. However, it is only in the past several
years that O(N) DFT algorithms, especially with large basis
sets (>10* unknowns per electron, necessary for the trans-
ferability of accuracy [12,25-27]), have attained controlled
error bounds, robust convergence properties, and energy
conservation during MD simulations, to make large
DFT-based MD simulations practical [12,26]. For exam-
ple, we have recently designed an embedded divide-and-
conquer density functional theory (EDC-DFT) algorithm,

in which a hierarchical grid technique combines multigrid
preconditioning and adaptive fine mesh generation [12].

The DFT can be formulated as a minimization of the
energy functional, EQM(rN ,U™M), with respect to electronic
wave functions (or Kohn-Sham orbitals), y™(r)=
{Y(r)jn=1,..., M}, subject to orthonormality constraints
(M is the number of independent electronic wave functions
and is on the order of N). The EDC-DFT algorithm repre-
sents the physical system as a union of overlapping spatial
domains, Q = U,Q, (see Fig. 2), and physical properties are
computed as linear combinations of domain properties.
For example, the electronic density is expressed as
p(r) = Z,p*(0)Z, (2| (r)|’, where p*(r) is a support func-
tion that vanishes outside the ath domain ,, and f* and
Y(r) are the occupation number and the wave function
of the nth Kohn-Sham orbital in Q,. The domains are
embedded in a global Kohn-Sham potential, which is a
functional of p(r) and is determined self-consistently with
{2,y (r)}. We use the multigrid method to compute the
global potential in O(N) time [12,28].

The DFT calculation in each domain is performed using
a real-space approach [29], in which electronic wave func-
tions are numerically represented on grid points (see
Fig. 2). The real-space grid is augmented with coarser multi-
grids to accelerate the convergence of iterative solutions
[12,28,30]. Furthermore, a finer grid is adaptively generated
near every atom, in order to accurately operate ionic
pseudopotentials for calculating electron—ion interactions
[12]. We include electron—ion interactions using norm-con-
serving pseudopotentials [31] and the exchange-correlation
energy in a generalized gradient approximation [32].

The EDC-DFT algorithm on the hierarchical real-space
grids is implemented on parallel computers based on spa-
tial decomposition [12]. Each compute node contains one
or more domains of the EDC algorithm. For each domain,
its electronic structure is computed independently, with
little information needed from other compute nodes (only
the global density but not individual wave functions is
communicated). The resulting large computation/commu-
nication ratio makes this approach highly scalable on
parallel computers.

The convergence of the new algorithm has been verified
for nontrivial problems such as amorphous CdSe and
liquid Rb [12]. The EDC-DFT calculation for alumina in
this paper (with the domain size 9.0 x 7.8 x 8.2 a.u. and
the buffer lengths 4.5, 3.9, and 4.1 a.u.) reproduces an
O(N’) DFT energy within 0.001 a.u. per atom. The
EDC-DFT MD algorithm has also overcome the energy
drift problem, which plagues most O(N) DFT-based MD
algorithms [12].

3. Tunable hierarchical cellular-decomposition
parallelization framework

Data locality principles are key to developing a scalable
parallel computing framework as well. We have developed
a tunable hierarchical cellular-decomposition (THCD)
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framework to map the above O(N) algorithms onto mas-
sively parallel computers with deep memory hierarchies.
The THCD maximally exposes data locality and exploits
parallelism at multiple decomposition levels, while provid-
ing performance tunability through a hierarchy of param-
eterized cell data/computation structures (see Fig. 3).

At the finest level, EDC algorithms consist of computa-
tional cells—linked-list cells (which are identical to the
octree leaf cells in the FMM) [15-17] in MRMD and
F-ReaxFF, or domains in EDC-DFT [12] (see Fig. 3). In
the THCD framework, each compute node (often compris-
ing multiple processors with shared memory) of a parallel
computer is identified as a subsystem (P’ in Fig. 3) in spa-
tial decomposition, which contains a large number of com-
putational cells. Our EDC algorithms are implemented as
hybrid message-passing and shared-memory (MPI+
OpenMP) programs, in which inter-node communication
for caching and migrating atoms between P!’s is handled
with messages, whereas loops over cells within each P’
(or MPI process) are parallelized with threads (denoted
as dots with arrows in Fig. 3). To avoid performance-
degrading critical sections, the threads are ordered by
blocking cells, so that the atomic n-tuples being processed
by the threads share no common atom.

On top of the computational cells, cell blocks, and
spatial-decomposition subsystems, the THCD framework
introduces a coarser level of decomposition by defining
process groups as MPI Communicators (PG’ = U.P? in
Fig. 3). This provides a mechanism to optimize EDC appli-
cations distributed over a loosely coupled collection of par-
allel computers, e.g., a Grid of globally distributed parallel
computers [33,34]. Our programs are designed to minimize
global operations across PG”’s and to overlap computa-
tions with inter-group communications [34].

The cellular data structure offers an effective abstraction
mechanism for performance optimization. We optimize
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Fig. 3. In tunable hierarchical cellular decomposition (THCD), the
physical volume is subdivided into process groups, PG, each of which is
spatially decomposed into processes, P’.. Each process consists of a
number of computational cells (e.g., linked-list cells in MD or domains in
EDC-DFT) of size /.y, which are traversed concurrently by threads
(denoted by dots with arrows) to compute interatomic forces in blocks of
cells. P is dynamically augmented with 7y, layers of cached cells from
neighbor processes.

both data layouts (atoms are sorted according to their cell
indices and the linked lists) and computation layouts (force
computations are re-ordered by traversing the cells accord-
ing to a spacefilling curve, a mapping from the 3D space to
a 1D list) [35]. Cells are traversed along either a Morton
curve (Fig. 3) or a Hilbert curve, instead of the traditional
raster-scan order. In a multi-threading case, the Morton
curve ensures maximal separation between the threads
and thus eliminates critical sections. Furthermore, the cell
size is made tunable [14] to optimize the performance.
The computational cells are also used in the multilayer cel-
lular-decomposition (MCD) scheme for inter-node caching
of atomic n-tuple (n = 2-6) information (see Fig. 3), where
n changes dynamically in the MTS or MPCG algorithm
(see Section 2). The Morton curve also facilitates a data
compression algorithm based on data locality to reduce
the I/0O. The algorithm uses octree indexing and sorts
atoms accordingly on the resulting Morton curve [36]. By
storing differences between successive atomic coordinates,
the I/O requirement for a given error tolerance level
reduces from O(NlogN) to O(N). An adaptive, variable-
length encoding scheme is used to make the scheme
tolerant to outliers and optimized dynamically. An order-
of-magnitude improvement in the I/O performance was
achieved for MD data with user-controlled error bound
[36].

The THCD framework includes a topology-preserving
computational spatial-decomposition scheme to minimize
latency through structured message passing [37] and load-
imbalance/communication costs through a novel wavelet-
based load-balancing scheme [38]. The load-balancing
problem can be stated as an optimization problem, i.e.,
one minimizes the load-imbalance cost as well as the size
and the number of messages [39]. To minimize the number
of messages, we preserve the 3D mesh topology, so that
message passing is performed in a structured way in only
six steps. To minimize the load-imbalance cost as well as
the message size, we have developed a computational-space
decomposition scheme [37]. The main idea of this scheme is
that the computational space shrinks where the workload
density is high, so that the workload is uniformly distrib-
uted in the computational space. To implement the curved
computational space, we introduce a curvilinear coordinate
transformation. The sum of load imbalance and communi-
cation costs is then minimized as a functional of the coor-
dinate transformation, using simulated annealing. We have
found that wavelet representation leads to compact repre-
sentation of curved partition boundaries, and accordingly
speeds up the convergence of the minimization procedure
[38].

4. Performance tests

The two new parallel reactive MD algorithms, F-Rea-
xFF and EDC-DFT, as well as their nonreactive predeces-
sor, MRMD, are portable and have been run on various
platforms, including Intel Itanium2, Intel Xeon, AMD
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Opteron and IBM Power4-based parallel computers. This
section presents performance tests of the three algorithms
on some of the architectures.

4.1. Performance tunability

We have tested the performance tunability of the THCD
parallel implementations of the MRMD, F-ReaxFF, and
EDC-DFT algorithms. For example, we typically observe
~10% performance improvement by the data re-ordering
and computation re-ordering based on the Morton curve
for MRMD.

Fig. 4c shows the effect of the linked-list cell size (in unit
of the average volume per atom, Q/N) on the CPU time of
the MRMD algorithm for a 331,776-atom silica material
on a 1.4 GHz Pentium III processor. The CPU time takes
the minimal value at a cell size of 2.1, which can be under-
stood as a trade-off between the increasing number of float-
ing-point operations (Fig. 4a) and the decreasing number
of L2 cache misses (Fig. 4b) as a function of the cell size.
Here, we have used the Performance Application Program-
ming Interface (PAPI) to measure the number of cache
misses (see http://icl.cs.utk.edu/papi).

1.4
1.3
1.2
1.1
1.0
0.9
0.8
0.7

16
14 il
12 _
10 |
8L -
6 | | \ |

L2 Cache Miss (in 10°) Floating Point Instructions (in 10°)

62® (c) i
6.1 i
6.0 i
5.9 i
5.8 | |
5.7 i

5.6 l | \ l
1.5 2 25 3 3.5 4

Cell Size

CPU Time (sec)

Fig. 4. (a) The number of floating-point instructions, (b) the number of
L2 cache misses, and (c) the CPU time per MD step, as a function of the
linked-list cell size, for the MRMD algorithm, to study a 331,776-atom
silica material on a 1.4 GHz Pentium III processor.

There is also a trade-off between spatial-decomposition/
message-passing (MPI) and thread (OpenMP) parallelisms
[40-42] in our hybrid MPI + OpenMP programs. While
spatial decomposition involves extra computation on
cached cells from neighbor subsystems, its disjoint memory
subspaces are free from shared-memory protocol overhead.
A marked contrast in this trade-off is observed between the
MRMD and F-ReaxFF algorithms. The MRMD is char-
acterized by a low inter-node caching overhead in spatial
decomposition and a small number of floating-point oper-
ations per memory access, since it mostly consists of look-
ups for pre-computed interatomic force tables. In contrast,
F-ReaxFF has a large inter-node caching overhead for 6-
tuple information and a large computation/memory-access
ratio.

Table 1 shows the execution time of the MRMD algo-
rithm for an 8,232,000-atom silica material and that of
the F-ReaxFF algorithm for a 290,304-atom RDX crystal
on P =8 processors in an 8-way 1.5 GHz Power4 node.
(The test was performed on the Iceberg Power4 system at
the Arctic Region Supercomputing Center.) We compare
different combinations of the number of OpenMP threads
per MPI process, ny4, and that of MPI processes, n,, while
keeping P = ny X nj, constant. The optimal combination of
(n¢4,np) with the minimum execution time is (1,8) for the
MRMD and is (4,2) for the F-ReaxFF.

4.2. Scalability

Scalability tests of the two new parallel MD algorithms,
F-ReaxFF and EDC-DFT, as well as MRMD, on which
they are based, have been performed on the 10,240-proces-
sor Columbia supercomputer at the NASA Ames Research
Center. The SGI Altix 3000 system uses the NUMAflex
global shared-memory architecture, which packages pro-
cessors, memory, 1/O, interconnect, graphics, and storage
into modular components called bricks. The computational
building block of Altix is the C-Brick, which consists of
four Intel Itanium?2 processors (in two nodes), local mem-
ory, and a two-controller application-specific integrated
circuit called the Scalable Hub (SHUB). Each SHUB

Table 1
Performance of hybrid MPI + OpenMP programs

Number of OpenMP  Number of MPI

Execution time/MD time

threads, ny processes, 71, step (s)
MRMD  F-ReaxFF
1 8 4.19 62.5
2 4 5.75 58.9
4 2 8.60 54.9
8 1 12.5 120

Execution time per MD time step on P = n4 X n, = 8 processors in an 8-
way 1.5 GHz Power4 node, with different combinations of the number of
OpenMP threads per MPI process, 14, and that of MPI processes, n,, for:
(1) the MRMD algorithm for an 8,232,000-atom silica system; and (2) the
F-ReaxFF algorithm for a 290,304-atom RDX system. The minimum
execution time for each algorithm is typed in boldface.
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interfaces to the two CPUs within one node, along with
memory, I/O devices, and other SHUBs. The Altix cache-
coherency protocol implemented in the SHUB integrates
the snooping operations of the Itanium2 and the direc-
tory-based scheme used across the NUMA(flex interconnec-
tion fabric. A load/store cache miss causes the data to be
communicated via the SHUB at the cache-line granularity
and automatically replicated in the local cache.

The 64-bit Itanium?2 architecture operates at 1.5 GHz
and is capable of issuing two multiply-add operations per
cycle for a peak performance of 6Gflops. The memory hier-
archy consists of 128 floating-point registers and three on-
chip data caches (32KB L1, 256KB L2, and 6MB L3). The
Itanium?2 cannot store floating-point data in L1, making
register loads and spills a potential source of bottlenecks;
however, a relatively large register set helps mitigate this
issue. The superscalar processor implements the Explicitly
Parallel Instruction set Computing (EPIC) technology,
where instructions are organized into 128-bit VLIW bun-
dles. The Altix platform uses the NUMAIink3 intercon-
nect, a high-performance custom network in a fat-tree
topology, in which the bisection bandwidth scales linearly
with the number of processors. Columbia runs 64-bit Linux
version 2.4.21. Our experiments use a 6.4TB parallel XFS
file system with a 35-fiber optical channel connection to
the CPUs.

Columbia is configured as a cluster of 20 Altix boxes,
each with 512 processors and 1TB of global shared-access
memory. Of these 20 boxes, 12 are model 3700 and the
remaining eight are BX2—a double-density version of the
3700. Four of the BX2 boxes are linked with NUMAIlink4
technology to allow the global shared-memory constructs
to significantly reduce inter-processor communication
latency. This 2048-processor subsystem within Columbia
provides a 13Tflops peak capability platform, and was
the basis of the computations reported here.

Fig. 5 shows the execution time of the F-ReaxFF MD
algorithm for RDX material as a function of the number
of processors, P. In this and following figures, we set nyy
to 1. We scale the problem size linearly with the number
of processors, so that the number of atoms, N = 36,288 P
(P=1,...,1920). The computation time includes three
conjugate-gradient (CG) iterations to solve the electroneg-
ativity equalization problem for determining atomic
charges at each MD time step. The execution time increases
only slightly as a function of P, and this signifies an excel-
lent parallel efficiency. We define the speed of an MD pro-
gram as a product of the total number of atoms and time
steps executed per second. The speedup is the ratio between
the speed of P processors and that of one processor. The
parallel efficiency is the speedup divided by P. On 1920
processors, the isogranular parallel efficiency of the F-
ReaxFF algorithm is 0.953. A better measure of the
inter-box scaling efficiency based on NUMALIlink4 is the
speedup from 480 processors in one box to 1920 processors
in four boxes, divided by the number of boxes. On 1920
processors, the measured inter-box scaling efficiency is
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Fig. 5. Total execution (circles) and communication (squares) times per
MD time step as a function of the number of processors for the F-ReaxFF
MD algorithm with scaled workloads—36,288 P atom RDX systems on P
processors (P =1,...,1920) of Columbia.

0.995. Also the algorithm involves very small communica-
tion time (see Fig. 5).

Fig. 6 shows the performance of the EDC-DFT-based
MD algorithm with scaled workloads—720P atom alu-
mina systems on P processors (P =1,...,1920). In the
EDC-DFT calculations, each domain of size 6.66 x
5.76 x 6.06 A® contains 40 electronic wave functions, where
each wave function is represented on 28 =21,952 grid
points. The execution time includes three self-consistent
(SC) iterations to determine the electronic wave functions
and the Kohn-Sham potential, with three CG iterations
per SC cycle to refine each wave function iteratively. The
largest calculation on 1920 processors involves 1,382,400
atoms and 5,529,600 electronic wave functions on
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Fig. 6. Total execution (circles) and communication (squares) times per
MD time step as a function of the number of processors for the EDC-
DFT MD algorithm with scaled workloads—720P atom alumina systems
on P processors (P =1,...,1920) of Columbia.
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Fig. 7. Design-space diagram for reactive and nonreactive MD simula-
tions on 1920 Itanium2 processors of Columbia. The figure shows the total
execution time per MD step as a function of the number of atoms for three
linear-scaling algorithms: quantum-mechanical MD based on the embed-
ded divide-and-conquer density functional theory (EDC-DFT, circles);
fast reactive force-field MD (F-ReaxFF, squares); space-time multi-
resolution MD (MRMD, triangles). Lines show ideal O(N) scaling.

121,385,779,200 grid points, for which the isogranular par-
allel efficiency is 0.907. The inter-box scaling efficiency
between 480 and 1920 processors is 0.966.

Major design parameters for reactive and nonreactive
MD simulations of materials include the number of atoms
in the simulated material and the method to compute
interatomic forces (classically in MRMD, semi-empirically
in F-ReaxFF MD, or quantum mechanically in EDC-
DFT MD). Fig. 7 shows a design-space diagram for
classical and quantum-mechanical MD simulations on
1920 Itanium?2 processors of Columbia. The largest bench-
mark tests in this study include 18,925,056,000-atom
MRMD, 557,383,680-atom F-ReaxFF, and 1,382,400-
atom (121,385,779,200 electronic degrees-of-freedom) EDC-
DFT calculations. The figure demonstrates perfect linear
scaling for all the three algorithms, with prefactors
spanning five orders-of-magnitude. Only exception is the
F-ReaxFF algorithm below 100 million atoms, where the
execution time scales even sub-linearly.

5. Applications

The scalable parallel MD algorithms, F-ReaxFF and
EDC-DFT, have been applied to the study of a number
of chemically reactive material processes, and this section
briefly describes some of the applications.

5.1. Shock-induced detonation of energetic materials

We have performed F-ReaxFF MD simulations to
study shock-initiated detonation of RDX (1,3,5-trinitro-
1,3,5-triazine, C3NgOgHg) matrix embedded with alumi-
num nanoparticles (Fig. la). Aluminum powders are

widely used as propellants, because their combustion prod-
ucts such as Al,Oj are accompanied by a large amount of
heat release. Burn rates of propellants can be accelerated
by reducing the size of Al particles, thereby increasing
the surface to volume ratio and the rate of chemical reac-
tions. A major technical difficulty for such small reactant
particles is the dead weight of oxide layers. The thickness
of the oxidized layer in an Al particle is known to be a
few nanometers regardless of the particles size. Therefore,
the ratio of the oxidized layer, which is not effective as a
propellant, to the reactive portion increases for the smaller
Al particles. This dead-weight problem in nanoscale reac-
tant particles may be overcome by encapsulating the parti-
cles within complementary reactive materials such as RDX.

The 1.01 million-atom F-ReaxFF MD simulation has
been performed on 256 Xeon processors to study shock-ini-
tiated detonation of RDX crystal/oxidized Al nanoparticle
(n-Al) composite. In the simulation, two slabs of the RDX/
n-Al composite, each of size 482 x 353 x 65 A* in the x, y
and z directions, are impacted with the impact velocity of
5km/s in the z direction. Each oxidized n-Al consists
of 707 atoms. The simulation reveals atomistic processes
of shock compression and subsequent explosive reaction.
Strong attractive forces between oxygen and aluminum
atoms break N—O and N—-N bonds in the RDX and, subse-
quently, the dissociated oxygen atoms and NO molecules
oxidize Al, which has also been observed in our DFT-based
MD simulation [43].

The F-ReaxFF MD method has been validated by com-
paring calculated shock wave velocities in RDX with
experimental data, where a shock wave is generated by a
planar impactor. Fig. 8 compares MD and experimental
results on the shock velocity as a function of the particle
velocity that drives the shock [7]. The MD and experimen-
tal data agree very well. Furthermore, the simulation shows
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Fig. 8. F-ReaxFF MD and experimental data on the planar shock

velocity in RDX as a function of the particle velocity. An experimental
detonation velocity in Ref. [44] is also shown.
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Fig. 9. (a) Close-up of EDC-DFT MD simulation of an a-Al,O3 (0001) surface immersed in water. White, red, and green spheres represent hydrogen,
oxygen, and aluminum atoms, respectively. (b) Indentation of amorphous silica covered with absorbed water layer. White and yellow spheres are hydrogen
and silicon atoms, whereas blue and red spheres are oxygen atoms originated from water and silica substrate, respectively. The indenter is shown in green.

a sudden increase of the number of molecular products
such as HONO, N,, and OH above a shock velocity
~9 km/s, which is consistent with an experimental detona-
tion velocity [44].

5.2. Stress-induced bond breaking in ceramics in corrosive
environments

We have also started EDC-DFT MD simulations
involving 10,368 atoms on 240 dual-processor/dual-core
AMD Opteron nodes (in total of 960 cores), to study the
effect of applied stress on the bond breaking at an o-
Al,O5 (0001) surface immersed in water. The alumina sub-
strate is 57.0x 67.2x 122 A% in the [2110], [1010] and
[0001] directions, covered with 13 A layer of adsorbed
water. The performance and lifetime of materials widely
used in industrial applications is often severely limited by
corrosion of these systems in an environment containing
oxygen and water. Most critical here is premature and

catastrophic failure of materials resulting from chemically
influenced corrosion. The basic requirements for the oper-
ation of structural systems exposed to corroding conditions
under stress loads are safety and reliability. Such safe and
reliable operation is endangered by the uncertainties in
stress corrosion cracking (SCC) [45,46]. To prevent SCC
and to predict the lifetime beyond which SCC may cause
failure requires that we understand the atomistic mecha-
nisms underlying SCC; that is the conditions influencing
initiation of SCC and the dynamics and growth rates.
Fig. 9a shows a close-up of the simulation at zero stress,
which shows the dissociation of water molecules consistent
with the mechanism found by Hass et al. [47]. Under a uni-
axial strain of 0.15 in the [1010] direction, the simulation
exhibits significant relaxation of the alumina surface.

We are also studying the effect of adsorbed layers of
water and hydrazine (N,H4) on the indentation behavior
of amorphous silica using F-ReaxFF MD simulations
(Fig. 9b). Indentation is a unique local probe to measure
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Fig. 10. A hierarchy of MD simulation methods. (Top) Reactive MD methods and their largest implementations include DFT-based MD of metals
involving 1000 atoms (or N = 10,000 electrons) [50], fragment molecular orbital (FMO) method calculation of proteins involving 20,000 atoms [51], O(N)
DFT (ONDFT, the present paper), reactive force field (ReaxFF, the present paper), whereas the largest nonreactive MD simulations based on effective
force fields (EFF) include a 160 billion-atom MD of metals [52]. (Bottom) The spatiotemporal scale, N7, of MD simulations. Our large MD simulations of
ceramics [48,53,54] had NT = 0.03-0.04 atoms s, whereas one of the longest biomolecular simulations on the HP-36 peptide had N7 = 0.0096 [55].
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mechanical properties of materials [48]. Experimental
microhardness measurements by indentation exhibit load-
ing-time dependence of the crack initiation stress in water,
while no time dependence is observed in nonaqueous lig-
uids such as hydrazine [49]. The silica substrate in our sim-
ulation consists of 39,201 atoms and is 106 x 113 x 50 A°,
covered with a monolayer of adsorbed water or hydrazine.
The simulations reveal significant diffusion of water into
the silica substrate under the indenter.

6. Conclusions

Since we demonstrated a hundred thousand-atom reac-
tive molecular dynamics simulation based on the density
functional theory in 2001 [3], significant progresses have
been made in simulation methods (e.g., first principles-
based reactive force-field molecular dynamics), linear-scal-
ing algorithms (e.g., embedded divide-and-conquer density
functional theory algorithm on adaptive multigrids), and
scalable parallel computing technologies (e.g., tunable hier-
archical cellular decomposition with wavelet-based adap-
tive load balancing). See Fig. 10 for a hierarchy of MD
simulation methods. Based on these innovations, this paper
has demonstrated million-to-billion atom reactive molecu-
lar dynamics simulations, which show considerable prom-
ise for atomistic simulations of chemical reactions with
unprecedented scales and accuracy on emerging petaf-
lops-scale computer architectures.

The hierarchy of molecular dynamics simulation algo-
rithms developed in this paper can be integrated seamlessly
into a hierarchical simulation framework, which embeds
accurate but compute-intensive simulations in coarse simu-
lations only when and where high fidelity is required [6,56—
58]. Such a hybrid approach is complementary to the
approach in this paper. The hybrid approach applies to a
class of problems, e.g., certain aspects of stress corrosion
cracking, in which localized chemical reactions are studied
on moderate computational resources [6], whereas other
classes of problems, e.g., combustion of nanoenergetic
materials [7], require full quantum-mechanical simulations
developed in this paper to study extended chemical reac-
tions on the highest end computers. Our hierarchical simu-
lation framework consists of: (1) hierarchical division of
the physical system into subsystems of decreasing sizes
and increasing quality-of-solution (QoSn) requirements,
So DS D---DS,; and (2) a suite of simulation services,
M, («=0,1,...,n), of ascending order of accuracy (e.g.,
MRMD < F-ReaxFF < EDC-DFT). In our additive
hybridization scheme [6,57], an accurate estimate of the
energy of the entire system is obtained from the recurrence
relation, E,(S) = E, 1(S) + ESi+1) — Ex—1(Si+1).  The
scalable parallel simulation techniques presented in this
paper, with such a dynamically extensible hierarchical sim-
ulation framework, should open up enormous opportuni-
ties for scientific computing on high-end computers.

Data locality also plays a critical role in designing scal-
able data visualization and mining techniques within the

THCD framework. We have developed a scalable visuali-
zation system, Atomsviewer, to allow the viewer to walk
through a billion atoms [59]. The system uses: the octree
data structure as an efficient abstraction mechanism to
extract atoms within the field-of-view (view frustum cull-
ing); a novel probabilistic approach to remove far atoms
that are hidden by other atoms (occlusion culling); paral-
lel/distributed processing of these culling tasks on a Linux
cluster connected to a graphics server; a machine-learning
approach to predict the user’s next movement and prefetch
data from the Linux cluster to the graphics server; and
multiresolution rendering. The resulting system renders a
billion-atom dataset at nearly interactive frame rates on a
dual-processor SGI Onyx2 with an InfiniteReality2 graph-
ics pipeline, connected to a 4-processor Linux cluster. We
have also developed a data mining approach based on a
graph algorithm (i.e., the shortest-path circuit analysis) to
detect and track topological anomalies in multimillion-
node chemical bond networks in materials [48]. At the Col-
laboratory for Advanced Computing and Simulations
(CACS) at USC, the Atomsviewer is used on an 8 ft x 14 ft
tiled display wall (Fig. 1b) driven by a 26-processor Linux
cluster and an immersive and interactive virtual environ-
ment called ImmersaDesk. Ultrascale simulations pre-
sented in this paper, combined with these massive data
visualization and mining approaches, promise to bring in
fundamental advances in science.

Finally an important issue is the time scale studied by
MD simulations. We define the spatiotemporal scale, N7,
of an MD simulation as the product of the number of
atoms, N, and the simulated time, 7. Our large MD simu-
lations of ceramics [48,53,54] simulate sub-billion atoms for
sub-nanosecond, resulting in N7 = 0.03-0.04 atoms s. Bio-
molecular simulations, on the other hand, involve much
smaller number of atoms (N ~ 10%) but for longer times
(T ~ 107%s). One of the largest NT values, 0.0096, in bio-
molecular simulations was achieved by Duan and Kollman
in their MD simulation of the HP-36 peptide [55]. Petaflops
computers are expected to push the spatiotemporal enve-
lope to NT' ~ 1 and beyond, thereby bringing in further
new scientific knowledge.

Acknowledgements

This work was partially supported by AFOSR-DUR-
INT, ARO-MURI, DARPA-PROM, DOE, and NSF.
Benchmark tests were performed using the NASA Colum-
bia supercomputer at the NASA Ames Research Center,
and at Department of Defense’s Major Shared Resource
Centers under a DoD Challenge Project. Programs have
been developed using the 2000-processor (6Tflops) Xeon/
Opteron/Apple G5 cluster at the Collaboratory for Ad-
vanced Computing and Simulations and the 4000-proces-
sor (13.8Tflops) Linux cluster at the High Performance
Computing Center at the USC. The authors thank Walter
Kohn and Emil Prodan for discussions on O(N) density
functional theory, Zhen Lu for tunability tests, and Davin



652 A. Nakano et al. | Computational Materials Science 38 (2007) 642-652

Chan, Johnny Chang, Bob Ciotti, Edward Hook, Art Laz-
anoff, Bron Nelson, Charles Niggley, and William Thigpen
for technical discussions on Columbia.

References

[1] F.F. Abraham, R. Walkup, H.J. Gao, M. Duchaineau, T.D. de la
Rubia, M. Seager, Proc. Natl. Acad. Sci. 99 (2002) 5777-5782.

[2] K. Kadau, T.C. Germann, P.S. Lomdahl, B. Lee Holian, Science 296
(2002) 1681-1684.

[3] A. Nakano, R.K. Kalia, P. Vashishta, T.J. Campbell, S. Ogata, F.
Shimojo, S. Saini, Sci. Prog. 10 (2002) 263-270.

[4] L. Kalé, R. Skeel, M. Bhandarkar, R. Brunner, A. Gursoy, N.
Krawetz, J. Phillips, A. Shinozaki, K. Varadarajan, K. Schulten, J.
Comput. Phys. 151 (1999) 283-312.

[5] R. Car, M. Parrinello, Phys. Rev. Lett. 55 (1985) 2471-2474.

[6] S. Ogata, F. Shimojo, R.K. Kalia, A. Nakano, P. Vashishta, J. Appl.
Phys. 95 (2004) 5316-5323.

[7] A. Strachan, A.C.T. van Duin, D. Chakraborty, S. Dasgupta, W.A.
Goddard 111, Phys. Rev. Lett. 91 (2003) 098301:1-098301:4.

[8] R.A. Kendall, E. Apra, D.E. Bernholdt, E.J. Bylaska, M. Dupuis,
G.I. Fann, R.J. Harrison, J. Ju, J.A. Nichols, J. Nieplocha, T.P.
Straatsma, T.L. Windus, A.T. Wong, Comput. Phys. Commun. 128
(2000) 260-283.

[9] T.J. Campbell, R.K. Kalia, A. Nakano, P. Vashishta, S. Ogata, S.
Rodgers, Phys. Rev. Lett. 82 (1999) 4866-4869;

T.J. Campbell, G. Aral, S. Ogata, R.K. Kalia, A. Nakano, P.
Vashishta, Phys. Rev. B (2005) 205413:1-205413:14.

[10] P. Hohenberg, W. Kohn, Phys. Rev. 136 (1964) B864-B871.

[11] W. Kohn, P. Vashishta, in: N.H. March, S. Lundqvist (Eds.),
Inhomogeneous Electron Gas, Plenum, New York, 1983, pp. 79-184.

[12] F. Shimojo, R.K. Kalia, A. Nakano, P. Vashishta, Comput. Phys.
Commun. 167 (2005) 151-164.

[13] A.C.T. van Duin, S. Dasgupta, F. Lorant, W.A. Goddard III, J.
Phys. Chem. A 105 (2001) 9396-9409.

[14] R.C. Whaley, A. Petitet, J.J. Dongarra, Par. Comput. 27 (2001) 3-35.

[15] L. Greengard, V. Rokhlin, J. Comput. Phys. 73 (1987) 325-348.

[16] A. Nakano, R.K. Kalia, P. Vashishta, Comput. Phys. Commun. 83
(1994) 197-214.

[17] S. Ogata, T.J. Campbell, R.K. Kalia, A. Nakano, P. Vashishta, S.
Vemparala, Comput. Phys. Commun. 153 (2003) 445-461.

[18] M.E. Tuckerman, D.A. Yarne, S.O. Samuelson, A.L. Hughes, G.J.

Martyna, Comput. Phys. Commun. 128 (2000) 333-376.

[19] A. Nakano, Comput. Phys. Commun. 105 (1997) 139-150.

[20] A. Nakano, Int. J. High Perf. Comput. Appl. 13 (1999) 154-162.
[21] A. Nakano, Comput. Phys. Commun. 104 (1997) 59-69.

[22] W. Yang, Phys. Rev. Lett. 66 (1991) 1438-1441.

[23] W. Kohn, Phys. Rev. Lett. 76 (1996) 3168-3171, E. Prodan, W.

Kohn, private communication.

[24] S. Goedecker, Rev. Mod. Phys. 71 (1999) 1085-1123.

[25] F. Shimojo, R.K. Kalia, A. Nakano, P. Vashishta, Comput. Phys.
Commun. 140 (2001) 303-314.

[26] J.-L. Fattebert, F. Gygi, Comput. Phys. Commun. 162 (2004) 24-36.

[27] C.-K. Skylaris, P.D. Haynes, A.A. Mostofi, M.C. Payne, J. Chem.
Phys. 122 (2005) 084119:1-084119:10.

[28] T.L. Beck, Rev. Mod. Phys. 72 (2000) 1041-1080.

[29] J.R. Chelikowsky, Y. Saad, S. Ogiit, I. Vasiliev, A. Stathopoulos,
Phys. Status Solidi (b) 217 (2000) 173-195.

[30] J.-L. Fattebert, J. Bernholc, Phys. Rev. B 62 (2000) 1713-1722.

[31] N. Troullier, J.L. Martins, Phys. Rev. B 43 (1991) 1993-2006.

[32] J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996)
3865-3868.

[33] G. Allen, T. Dramlitsch, I. Foster, N.T. Karonis, M. Ripeanu, E.
Seidel, B. Toonen, in: Proceedings of SC2001, ACM, New York,
2001.

[34] H. Kikuchi, R.K. Kalia, A. Nakano, P. Vashishta, F. Shimojo, S.
Saini, in: Proceedings of SC2002, IEEE, Los Alamitos, 2002.

[35] J. Mellor-Crummey, D. Whalley, K. Kennedy, Int. J. Par. Prog. 29
(2001) 217-247.

[36] A. Omeltchenko, T.J. Campbell, R.K. Kalia, X. Liu, A. Nakano, P.
Vashishta, Comput. Phys. Commun. 131 (2000) 78-85.

[37] A. Nakano, T.J. Campbell, Par. Comput. 23 (1997) 1461-1478.

[38] A. Nakano, Concurrency: Practice and Experience 11 (1999)
343-353.

[39] A. Nakano, R.K. Kalia, A. Sharma, P. Vashishta, in: K.Y. Lam,
H.P. Lee (Eds.), Computational Methods in Large Scale Simulation,
World Scientific, Singapore, 2005, pp. 229-243.

[40] D.S. Henty, in: Proceedings of SC2000, IEEE, Los Alamitos, 2000.

[41] H. Shan, J.P. Singh, L. Oliker, R. Biswas, J. Par. Distrib. Comput. 62
(2002) 241-266.

[42] H. Shan, J.P. Singh, L. Oliker, R. Biswas, Par. Comput. 29 (2003)
167-186.

[43] N. Umezawa, R.K. Kalia, A. Nakano, P. Vashishta, F. Shimojo,
J. Chem. Phys., in press.

[44] R.D. Cowan, W. Fickett, J. Chem. Phys. 24 (1956) 932-939.

[45] T.A. Michalske, B.C. Bunker, S.W. Freiman, J. Am. Cearm. Soc. 69
(1986) 721-724.

[46] T. Zhu, J. Li, X. Lin, S. Yip, J. Mech. Phys. Solids 53 (2005) 1597-
1623.

[47] K.C. Hass, W.F. Schneider, A. Curioni, W. Andreoni, Science 282
(1998) 265-268.

[48] 1. Szlufarska, A. Nakano, P. Vashishta, Science 309 (2005)
911-914.

[49] K. Hirao, M. Tomozawa, J. Am. Cram. Soc. 70 (1987) 497-502.

[50] F. Gygi, E.W. Draeger, B.R. de Supinski, R.K. Yates, F. Franchetti,
S. Kral, J. Lorenz, C.W. Ueberhuber, J.A. Gunnels, J.C. Sexton, in:
Proceedings of SC05, ACM, New York, 2005.

[51] T. Ikegami, T. Ishida, D.G. Fedorov, K. Kitaura, Y. Inadomi, H.
Umeda, M. Yokokawa, S. Sekiguchi, in: Proceedings of SC05, ACM,
New York, 2005.

[52] T.C. Germann, K. Kadau, P.S. Lomdahl, Technical Report, Los
Alamos National Laboratory, 2005.

[53] Z. Lu, K. Nomura, A. Sharma, W. Wang, C. Zhang, A. Nakano,
R.K. Kalia, P. Vashishta, E. Bouchaud, C.L. Rountree, Phys. Rev.
Lett. 95 (2005) 135501:1-135501:4.

[54] P.S. Branicio, R.K. Kalia, A. Nakano, P. Vashishta, Phys. Rev. Lett.
96 (2006) 065502:1-065502:4.

[55] Y. Duan, P.A. Kollman, Science 282 (1998) 740-744.

[56] J.Q. Broughton, F.F. Abraham, N. Bernstein, E. Kaxiras, Phys. Rev.
B 60 (1999) 2391-2403.

[57]1 S. Ogata, E. Lidorikis, F. Shimojo, A. Nakano, P. Vashishta, R.K.
Kalia, Comput. Phys. Commun. 138 (2001) 143-154.

[58] G. Lu, E.B. Tadmor, E. Kaxiras, Phys. Rev. B 73 (2006) 024108:
1-024108:4.

[59] A. Sharma, A. Nakano, R.K. Kalia, P. Vashishta, S. Kodiyalam,
P. Miller, W. Zhao, X. Liu, T.J. Campbell, A. Haas, Presence:
Teleoperators Virtual Environ. 12 (2003) 85-95.



	A divide-and-conquer/cellular-decomposition framework for million-to-billion atom simulations of chemical reactions
	Introduction
	Linear-scaling embedded divide-and-conquer simulation algorithms
	Space-time multiresolution molecular dynamics algorithm
	Fast reactive force-field molecular dynamics algorithm
	Divide-and-conquer density functional theory�algorithm on adaptive multigrids

	Tunable hierarchical cellular-decomposition parallelization framework
	Performance tests
	Performance tunability
	Scalability

	Applications
	Shock-induced detonation of energetic materials
	Stress-induced bond breaking in ceramics in corrosive environments

	Conclusions
	Acknowledgements
	References


