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H I G H - D I M E N S I O N A L
D A T A  

How does a crack propagate in a com-
posite material? How does a high-
speed projectile interact with its
target? And how can we use this

knowledge to make fracture- and impact-resis-
tant materials? Materials science poses such
questions, and we can answer them by simulat-
ing materials on supercomputers and analyzing
their properties. Scientific visualization is an ex-
cellent tool in this analysis, and researchers have
developed systems to explore very large, multi-
dimensional data sets from materials simulations
in immersive and interactive environments.

Material processes such as fracture and hyper-
velocity impact involve multiple length scales
and phenomena—for example, the collective
motions of individual atoms give rise to higher-
level structures such as a network of topological
defects, which in turn determine macroscopic
properties such as toughness. Furthermore,
these material properties result from complex
causality relationships involving multiple phe-

nomena such as structural transformation, melt-
ing, and flow. Materials scientists abstract these
complex phenomena in large multidimensional
space (that is, billions of atoms, each with multi-
ple attributes such as species, 3D coordinate and
velocity vectors, and stress tensor) into simpli-
fied scenarios. A fracture in ceramic-fiber com-
posite materials, for example, involves the sliding
of fibers and ceramic matrix; the associated fric-
tional energy explains these materials’ high
toughness value.1 In hypervelocity impact, high
pressure and temperature in front of a projectile
cause structural transformation, which changes
materials properties such as stiffness, and melt-
ing, which causes materials flow. These effects
in turn determine how the projectile’s kinetic en-
ergy will dissipate.

Visualization enhances this type of materials
research. Imagine a materials scientist shrunk to
the size of an atom walking through a material
to investigate a fracture. The scientist has video
cameras with filters to view information such as
atomic species, temperature, and pressure.
Whenever the scientist finds an interesting
viewpoint (some things are visible only from a
certain distance or at a certain angle), he or she
leaves a video camera with a filter to record the
entire fracture process. By playing these multi-
ple videos simultaneously, the scientist attains
telepresence and multiple modalities of vision. 
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Materials scientists use scientific visualization to explore very large multidimensional data
sets. The Atomsviewer visualization system enables telepresence and provides multimodal
views of simulation data. 
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The Collaboratory for Advanced Computing
and Simulations at the University of Southern
California has developed the Atomsviewer sys-
tem, which visualizes large data sets from mate-
rials simulations involving billions of atoms, al-
lowing materials scientists to view fractures from
many angles and distances.  We are currently de-
veloping a multicamera, multimodal extension
to Atomsviewer that will let scientists simulta-
neously view different parts of a system.  

Atomsviewer Overview

The large data sets required in large-scale mole-
cular dynamics (MD) simulations of materials
make visualization difficult. An MD data set per
time step for a billion atoms is a table of a bil-
lion entries, each with columns of data for phys-
ical attributes such as atomic species, positions,
velocities, and stresses, and occupies 100 Gbytes
of disk space.2 Few workstations can process this
volume of data for interactive rendering.

Atomsviewer solves this problem by visualiz-
ing billion-atom data sets at interactive speeds
in an immersive environment. In visualization,
polygon rendering on a graphics pipeline is the
primary bottleneck; thus, we minimize the
pipeline workload by processing only the data
the viewer will see.3 To do this, we use data-man-
agement techniques based on the octree data
structure.4,5 Novel algorithms and techniques,
such as our probabilistic approach, to remove
hidden atoms can further reduce the rendering
pipeline’s workload. Furthermore, we offload all
processing that precedes rendering to a PC clus-
ter and dedicate the graphics server to render-
ing through a parallel and distributed design.
The resulting architecture provides multiple
viewpoints, thus enhancing the user experience.
Figure 1 shows a block diagram of Atomsviewer.

Data Management

Visualizing 100-Gbyte data sets requires a fast and
scalable data management system. Although the
data set is large, users only see a relatively small
subset at any given instant. Thus, our data man-
agement scheme efficiently extracts atoms in the
users’ field of view. Computer graphics systems
define field of view with a truncated pyramid shape
called a frustum. View frustum culling is the process
of removing atoms that lie outside the frustum.

To achieve interactive speed and scalability for
view frustum culling, we cluster spatially close
atoms hierarchically using an octree data struc-

ture. An octree is a 3D extension of a binary
search tree generated by recursively subdividing
the 3D space into smaller subregions, as Figure 2
shows. Each octree node is an abstraction of the
atoms in its region. We thus transform the pro-
cess of removing atoms outside the frustum to
one of extracting regions inside the frustum,
which significantly reduces computation time.
Total computation time includes culling and ren-
dering time for the reduced set of atoms. The
number of rendered atoms is largely indepen-
dent of the viewpoint most of the time, whereas
the culling time scales linearly with the total
number of atoms. Using octree abstraction, we
cull many atoms at a time, reducing the compu-
tational complexity from O(N) to O(log N). 
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Figure 1. Overview of the Atomsviewer visualization system. To
prevent bottlenecking caused by polygon rendering, the system
processes only those data that the viewer will see.
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Figure 2. A three-level octree implementation. Each octree node
contains the coordinate bounds of the corresponding subspace. 
A terminal node at level 2 points to a structure that stores data
associated with atoms in the region defined by the terminal node.
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By trading frustum approximation quality for
computation time, we can empirically determine
the number of subdivisions (the octree depth)
such that each region represented by a terminal
node contains approximately 500 atoms. A larger

depth implies smaller regions and therefore a
more accurate representation of the frustum, but
requires more computation. Our tests involving
million- to billion-atom data sets show no sig-
nificant visual gains with a finer granularity than
500 atoms per region. 

We implement view frustum culling through a
series of bounding volumes: shapes that let us se-
lect all octree nodes that intersect the shape or
are contained in them. The user’s position and
orientation determines the shape’s size, position,
and orientation in 3D space. The first of these
shapes is a sphere S that fully encloses the frus-
tum.6 We perform a coarse extraction by ap-
proximating all octree nodes as spheres and se-
lecting those that intersect S. To do this, we
traverse only those children nodes whose parent-
node sphere intersects S. The end result is a set of
terminal nodes, or regions, all of which intersect
S. We then prune these regions by testing them
against a cylinder and subsequently a cone, each
of which improves the frustum approximation.
Figure 3 shows the extracted view frustum.

Probabilistic Occlusion Culling 
and Per-Atom Occlusion Culling

Using the data management techniques de-
scribed earlier, we identify all nodes in the view
frustum. Not all the atoms in the extracted re-
gions are visible, however. Our tests show that
60 percent of the extracted atoms typically are
invisible because atoms lying between them and
the viewer occlude them—that is, they hide them.
To prevent the unnecessary rendering of so
many atoms, we perform occlusion culling—we re-
move objects that are in the frustum but are hid-
den by other objects closer to the viewer. 

Occlusion culling on large data sets requires
enormous computing, but we can exploit the oc-
tree abstraction to minimize the complexity. To
do this, we introduce a probabilistic approach in
occlusion culling, illustrated in Figure 4. The ba-
sic idea comes from the observation that the oc-
tree regions closest to the user will likely occlude
regions that are further away. We can thus de-
fine a visibility value (the fraction of visible atoms)
for each region. The visibility value decreases as
the object’s distance from the viewer increases.
A visibility function for a region R is a recursive
function dependent on the visibility of the near-
est neighboring region that lies along the short-
est path between R and the viewer. Once Atoms-
viewer has calculated the visibility values for all
octree regions, it forwards them to the renderer,

Figure 3. The octree data structure overlain on the atomistic data.
The figure shows only the atoms that are selected for subsequent
rendering.
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Figure 4. Probabilistic occlusion culling. The viewer is in region R1.
To calculate the visibility of region R7, for example, we trace a line
from R7 to R1 and calculate the visibility using the visibility of the
regions along this line.  The visibility of R7 is therefore a function of
the visibility of R6 and the distance of R7 from R1.
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where a random number generator decides
which atoms in a region will be drawn.6,7

Data loss due to our probabilistic occlusion
culling is small. Figure 5 shows the algorithm’s
effect and the resulting data loss. Our tests have
shown that although the algorithm produces im-
ages that typically have 5 percent pixel loss, it
achieves a threefold speed up.

The tests performed so far use the octree ab-
straction, working on a per-region level rather
than the actual data set. At this stage, however,
we can perform a more traditional occlusion
culling that works on a per-atom level.8 Atoms-
viewer uses per-atom occlusion culling, which
simulates a buffer with pixel data for the ren-
dered image (a depth buffer). Next, the system
generates a rectangle that approximates an
atom’s projection on screen. Using the rectan-
gle and the atom’s distance from the viewer, we

test the approximated shape against our depth
buffer across several test points to determine
whether the viewer can see any part of the shape.
If, for any test point, the depth is lower than the
depth buffer value at that point, Atomsviewer
marks the atom as visible, draws it, and updates
the depth buffer. The system can use the octree
abstraction again to speed up the occlusion
process by approximating a node as a rectangle
and testing this shape against the depth buffer.
If the test is negative, it skips the testing process
for all atoms in the node.

Figure 6 shows a pair of images, rendered with-
out and with per-atom occlusion. Per-atom occlu-
sion reduces the number of atoms processed from
90,000 to 4,500, thereby increasing the frame rate
from 0.94 frames per second to 3.22 fps.

We are now ready to render the atoms. In ren-
dering, distant objects appear to have fewer de-

Figure 5. Occlusion culling in Atomsviewer: (a) an image produced by the system without probabilistic
occlusion; (b) an image produced by the system with probabilistic occlusion; and (c) the difference
between the two images.

(a) (b) (c)

Figure 6. A wireframe rendering of a scene (a) without occlusion for rendering and (b) with occlusion
for rendering. Figure 6a is rendered at 0.94 frames per second and includes 90,000 atoms. Figure 6b is
rendered at 3.22fps and includes only 4,500 atoms.

(a) (b)



30 COMPUTING IN SCIENCE & ENGINEERING

tails. Therefore, we use multiresolution render-
ing—we render atoms that are farther away as
spheres with fewer polygons or even as points.
To determine the atom resolution (the number of
polygons used to draw an atom), we define reso-
lution as an exponentially decreasing function of
the atom’s distance from the viewer. Now that
our set contains only visible atoms and their re-
spective resolutions, we can pass this informa-
tion to the rendering pipeline.

Parallel and Distributed Architecture

As mentioned previously, polygon rendering is
the primary bottleneck in a visualization system.
Offloading the data-reduction techniques to sep-

arate computing platforms and dedicating the
graphics server to the rendering operation sig-
nificantly increases frame rate. To achieve this,
we divide Atomsviewer into three independent
modules, as Figure 7 shows: 

• Data extraction module (DEM), which uses the
octree-based view frustum culling algorithm

• Probabilistic occlusion module (POM)
• Rendering and visualization module (RVM),

which performs per-atom occlusion culling
and multiresolution rendering 

Because the nongraphic modules (DEM and
POM) use the octree-based data abstraction and
hence can be isolated from the actual atomistic
data during runtime, Atomsviewer executes them
on a PC cluster. The application keeps only the
atomistic data on the graphics server to reduce
the amount of network transfer.

Latency Hiding
Although DEM, POM, and RVM are largely in-
dependent modules that collaborate to deliver
graphics, a certain level of interdependency exists
among them. For instance, RVM must send
DEM the viewer’s position before DEM can be-
gin its function. Subsequently, DEM must send
POM a set of regions in the view frustum before
POM can perform probabilistic occlusion culling.
Finally, POM must send RVM a set of atom IDs
for rendering. To ensure that network delays don’t
affect module operations, we overlap intermod-
ule communication with module computation.9
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Figure 7. Parallel and distributed implementation of Atomsviewer. By delegating data-reduction
functions to the two nongraphic modules (DEM and POM) and dedicating the graphics server (RVM)
to rendering, we significantly increase the frame rate.
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Figure 8. The parallel implementation of the
octree-based view frustum culling. The concentric
shells, each of equal volume, are distributed over
a PC cluster to perform a coarse extraction of
octree regions.



MARCH/APRIL 2003 31

This overlap occurs in RVM, where it triggers the
event sequence driving DEM and POM.

In the traditional dataflow scheme, RVM at
time t renders the scene of time t – 1, obtains the
viewer’s new position at time t, waits for the
other modules to deliver the data to be rendered,
and returns to the rendering step for time t. This
approach involves a significant wait time be-
tween sending a data request and receiving the
data. By introducing a one-time-step lag, the
RVM can render the scene at time t – 1 while
waiting for the data for time t generated by the
computations in DEM and POM. We use mul-
tiple threads in each of the modules to imple-
ment this communication–computation over-
lapping scheme. Each module creates three
threads, two of which are responsible for sending
and receiving data while a third thread performs
the actual computation. Such a multithreaded
design makes the communication nonblocking
because the application can queue incoming data
while it processes current data. 

We are investigating a scheme to significantly
boost the frame rate by combining parallel and
distributed rendering with predictive user posi-
tion prefetching. Furthermore, to ensure that a
user’s position can act as a corrective variable, we
could add a priority queue to ensure that the ac-
tual viewer position has precedence over a pre-
dicted position.

Parallelized Data Management
When processing a billion atoms, DEM must
handle a few million octree nodes, so its serial
implementation cannot achieve interactive
speeds. Parallelizing DEM can resolve this bot-
tleneck. Specifically, decomposing the bound-
ing sphere into a set of concentric shells and an
inner sphere, all of which have equal volume,
parallelizes the coarse extraction process, as
Figure 8 shows. The number of shells is one
fewer than the number of available processors
(one processor is allocated to the innermost
sphere, or core). The sequence of tests used to
extract the regions is similar to that used in the
serial implementation; however, the tests in the
DEM visit an octree child-node shell only if the
parent-node shell is intersected. 

Because we perform all tests in the culling
process on a per-region basis and the paral-
lelization spatially decomposes the sphere into
equal volumes, the computational load involved
in extracting regions is nearly balanced across all
processors. Each processor keeps a copy of the
complete octree to reduce communication over-

head. This also allows for fault tolerance: should
a disturbance occur, such as the loss of a proces-
sor, the module need only recalculate the radii
of its bounding shells.

We have tested the scalability of our parallel
and distributed architecture and associated tech-
niques. Figure 9 compares the serial Atoms-
viewer’s timing results (both with and without
the octree-based view frustum culling) with the
parallel and distributed application’s results. The
time to extract and render the atoms within the
field of view is nearly a constant function of the
number of atoms. The communication overhead
is successfully overcome by the communica-
tion–computation overlapping technique.

Multimodal Multidisplay System

Although our visualization system provides sig-
nificant information about the simulation data,
the amount of information scientists can extract
depends on the view they adopt. In complex data
sets, however, a single view rarely provides the
necessary insight; thus, a series of interconnected
viewpoints is preferable. To provide such a user
experience, we have extended Atomsviewer to
let scientists use many viewpoints displaying a
variety of data attributes (or modalities). This
provides simultaneous control and viewpoints
from all cameras across all desired modalities.

The multimodal visualization system works on
top of the Atomsviewer graphics framework. For
a system offering n viewpoints, we initialize n
rendering pipelines, each of which abstracts a
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Figure 9. Rendering time per scene as a function
of the number of atoms for the parallel and
distributed Atomsviewer versus rendering time
for the serial Atomsviewer with and without the
octree enhancement.
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user-controlled camera. The user initializes the
camera positions at desired viewpoints and uses
one of these cameras to perform a walkthrough
at runtime. The other cameras, on their respec-
tive displays, simultaneously show the simula-
tion data time sequence. This extension has had
little impact on the system’s overall performance
because each display runs its own Atomsviewer
and is synchronized by a server that transmits
the user’s position and motion.

Figure 10 shows an application of the multi-
modal, multidisplay visualization system to an
MD simulation of hypervelocity impact of a pro-
jectile on aluminum nitride (AlN) ceramic, which
materials scientists have considered for armor ap-
plications—armor used in US Army tanks and
other vehicles. In this simulation, understanding
ballistic damage initiation and evolution during
the hypervelocity impact of a projectile is essen-
tial to improving ceramics armor efficiency. 

Figure 10a shows a time sequence of the
atomic-level pressure distribution during the
projectile’s penetration of the AlN plate (we’ve
cut out a quarter of the system to show the dam-
age inside the AlN plate). The projectile’s pene-
tration of the AlN plate creates a high-pressure
region ahead of the projectile. Figure 10a also

shows regions with residual pressure around the
cavity formed by the projectile penetration. In
these regions, the system undergoes a high-pres-
sure structural transformation. A structural
analysis in Figure 10c, which shows the distrib-
ution of six coordinated atoms indicating the
high-pressure phase, verifies this result. 

Figure 10b shows the temperature distribu-
tion. The high-impact velocity melts the atoms
in front of the projectile, accelerating the struc-
tural transformation. The multicamera multi-
modal animation, which reveals complex micro-
scopic processes of impact damage, identifies
spatial–temporal correlations and cause–effect
relationships among various physical quantities. 

The multimodal display system is
amenable to parallel and distributed
processing on a Grid of distributed
computing and visualization re-

sources. Grid computing is a relatively new com-
puting paradigm in which an application can
harness a collection of computing resources as
one large computing resource. In such a system,
a Grid would discover and allocate computing
resources on demand as the user adds cameras;
thus, the user would experience no delay as the
number of cameras increased. Such a Grid-en-
abled multimodal display system would be useful
in collaborative sessions in which researchers
from around the world could simultaneously ex-
plore the same simulation data from different
viewpoints and modalities. 

Scalable implementation of multidisplay Atoms-
viewer on the Grid would be useful in many ar-
eas that require visualization of large multidi-
mensional data sets such as those generated in
material science, biology, medicine, and other
physical and engineering sciences. The idea of
using multiple viewpoints to simultaneously view
and track a multitude of data attributes could be
implemented in different scientific visualization
applications.
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