Available online at www.sciencedirect.com

sc:ENcE@DIREcT" Computer Physics
Communications

}i,

B AR
ELSEVIER Computer Physics Communications 163 (2004) 53-64

www.elsevier.com/locate/cpc

Scalable and portable visualization of large atomistic datasets

Ashish Sharmg, Rajiv K. Kalia, Aiichiro Nakano, Priya Vashishta

Collaboratory for Advanced Computing and Smulations, Department of Computer Science, Department of Physics & Astronomy,
Department of Material Science & Engineering, University of Southern California, Los Angeles, CA 90089-0242, USA

Received 15 June 2004; accepted 8 July 2004
Available online 16 September 2004

Abstract

A scalable and portable code named Atomsviewer has been developed to interactively visualize a large atomistic dataset
consisting of up to a billion atoms. The code uses a hierarchical view frustum-culling algorithm based on the octree data structure
to efficiently remove atoms outside of the user’s field-of-view. Probabilistic and depth-based occlusion-culling algorithms then
select atoms, which have a high probability of being visible. Finally a multiresolution algorithm is used to render the selected
subset of visible atoms at varying levels of detail. Atomsviewer is written in C++ and OpenGL, and it has been tested on a
number of architectures including Windows, Macintosh, and SGI. Atomsviewer has been used to visualize tens of millions of
atoms on a standard desktop computer and, in its parallel version, up to a billion atoms.

Program summary

Title of program: Atomsviewer

Catalogue identifier: ADUM

Program summary URL: http://cpc.cs.qub.ac.uk/summaries/ADUM

Program obtainable from: CPC Program Library, Queen’s University of Belfast, N. Ireland

Computer for which the program is designed and others on which it has been tested: 2.4 GHz Pentium 4/Xeon processor,
professional graphics card; Apple G4 (867 MHz)/G5, professional graphics card

Operating systems under which the program has been tested: Windows 2000/XP, Mac OS 10.2/10.3, SGI IRIX 6.5
Programming languages used: C++, C and OpenGL

Memory required to execute with typical data: 1 gigabyte of RAM

High speed storage required: 60 gigabytes

No. of linesin the distributed program including test data, etc.: 550241

No. of bytesin the distributed program including test data, etc.: 6 258 245

Number of bitsin aword: Arbitrary

Y This paper and its associated computer program are availablbevi@omputer Physics Communiicans homepage on ScienceDirect
(http://www.sciencedirect.com/science/journal/00104655
* Corresponding author.
E-mail address: anakano@usc.edi&. Sharma).

0010-4655/$ — see front matter 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.cpc.2004.07.008

http://www.elsevier.com/locate/cpc
http://cpc.cs.qub.ac.uk/summaries/ADUM
http://www.sciencedirect.com/science/journal/00104655
mailto:anakano@usc.edu

54 A. Sharma et al. / Computer Physics Communications 163 (2004) 53-64

Number of processors used: 1

Has the code been vectorized or parallelized: No

Distribution format: tar gzip file

Nature of physical problem: Scientific visualization of atomic systems

Method of solution: Rendering of atoms using computer graphic techniques, culling algorithms for data minimization, and
levels-of-detail for minimal rendering

Restrictions on the complexity of the problem: None

Typical running time: The program is interactive in its execution

Unusual features of the program: None

References. The conceptual foundation and subsequent implementation of the algorithms are found in [A. Sharma, A. Nakano,
R.K. Kalia, P. Vashishta, S. Kodiyalam, P. Miller, W. Zhao, X.L. Liu, T.J. Campbell, A. Haas, Presence—Teleoperators and
Virtual Environments 12 (1) (2003)].

0 2004 Elsevier B.V. All rights reserved.

PACS 07.05.Rm; 02.70.Ns

Keywords: Visualization; Hierarchical view frustum culling; Probabilisticabusion culling; Multiresolutia algorithm; Molecular dynamics

1. Introduction A major challenge in navigating through a high-end
MD simulation dataset is to achieve interactive speed.
Although there are quite a few excellent programs

Recent developments innsulation algorithms and X i A)
to visualize atomistic datasets (e.g., VMD—Visual

parallel computing technologies have enabled large '
atomistic simulations involving million-to-billion ~ Molecular Dynamicg[6]), we are not aware of any

atoms. For example, some of the largest molecular dy- capable of rendering multimillion atoms within a frac-
namics (MD) simulations of materials have involved 1O" of second. In the past years, we have been devel-

multibillion atoms [1-3]. In these large-scale MD op.ing a scalaple a_m_d portable softyvgre named Atom-
simulations, explorative visualization of simulation sviewer for visualizing large atomistic datasets from

datasets is essential for understanding atomistic mech-mater"”l!S S|mulat|o_ns |.nvolvmg b||||<_)ﬂ§ of atoms.

. . .) Atomsviewer can visualize tens of millions of atoms
anisms underlying macroscopic material processes .)

. . . on a standard desktop computer, with extensive use of

[4,5]. Output data from an MD simulation consists of . L : .
a time series of atomistic data frames. Each data framemu“”evel and probabilistic algorithms, and its paral-
) . : lel version has been used to visualize up to a billion
is a table consisting oV rows for N atoms, and the

'th row R; is a tuple of atomistic attributes of tigh S/
1t Tow &; 1S & tuple of atomistc atlributes o This paper provides a technical overview of Atom-
atom. As a specific example, the tuple could be

sviewer, the source code of which is disseminated
through the Computer Physics Communications Pro-
Ri = (A, Ti, Vi, 0i), (1) gram Library, and documerttan describing its usage

. . . . is contained in the appendices. Sectibpresents an
Yvhereki (G, S?,' b1 ;he chemical ffec;(ss 2& the overview of Atomsvier\)/\?er, and its differepnt algorithms
’tt‘z ato)rcn,r,;we R ’gi € R, ando; = (07, 077, 07, are described in Sectid® Numerical test results are
o; 07", 0;°) € 0" are its 3D coordinate, 3D veloc- hresented in Sectioh and Sectiofs contains the sum-
ity, and 6-component stress tensor at the simulation mary. Instructions on compiling and building Atoms-
time step this data frame is taken from, d&g. 1 viewer, is contained idppendix A

Macroscopic material properties result from complex

spatio-temporal interactions among these atomistic at-

tributes, and navigating inside the simulated material, 2. System overview

while animating the data frames with atoms color-

coded according to one of these attributes, often helps Visualization of large-scale MD simulations is a
scientists to uncover causal relationships among them.nontrivial problem because of the large size of the

A. Sharma et al. / Computer Physics Communications 163 (2004) 53-64 55

Fig. 1. Visualization of a data frame from an MD simulation of nanoinagon in crystalline silicon carbide (3CSiC), in which a quarter of the
system is cut out to make atoms inside the SiC substrate v[8blBots, small spheres, and large spseepresent indenter, Si, and C atoms,
respectively. Atoms are color-coded with: (left) species (magentdenriter, red—Si, green—C); and (right) direction-averaged shear stress,
o5 = (0yz + 0zx +ny)/3-

dataset. For example, an example data frame ifBq. orientation, and feeds this information to the Data Ex-
for a 10 million-atom MD simulation contains, for traction Module (DEM). The DEM traverses the data
a given time step, 130 million numbers. The large file and extracts spatial clusters that fit in the user’s
size makes it hard for a single system to store, let field-of-view. These clusters are then passed through
alone process, data at speeds that would permit in- user defined coarse and fine grain filters that refine
teractive rendering. Rendering millions of atoms be- the data. This data is then filtered in the Occlusion
comes harder, since each atom, rendered as a sphereCulling Module to remove those atoms that are hid-
uses approximately 50 triangular primitives. This is a den from the viewer on account of other atoms oc-
problem shared by the entire computer graphics com- cluding them. Finally the Graphic Modules render the
munity, where the dataset to be rendered almost al- atoms as spheres of varying size and resolution. The
ways exceeds the capabilities of the rendering system.user can also capture the rendered scene as a snap-
This problem is however overcome by following a shot or a series of time-stamped snapshots to make a
simple rule, i.e., “avoid processing data that cannot movie.

be seen from the viewer’s current perspective”. Var-

ious algorithms have been developed following this

rule. In Atomsviewer, these include frustum-culling 3. Dataextraction and rendering algorithms

and probabilistic/depth based occlusion-culling algo-

rithms, each using the octree data abstraction. Addi- Visualizing a large atomistic dataset requires a
tional user defined filters allow the user to select atoms fast and scalable data management system. While the
that satisfy a certain criterion. Finally we have an ar- dataset is large, what the user sees at any given instant
chitecture that provides the user with multiple view- is a relatively small subset. This observation can be ex-
points, enhancing the user experierfig. 2shows the ploited in designing a data management scheme that
breakdown of Atomsviewer into its respective compo- efficiently extracts atoms that are in the user’s field-
nents and the interaction amongst them. In this figure of-view. In computer graphics, the field-of-view is
we show the two main applications—FileConverter defined with a truncated pyramidal shape called frus-
and Atomsviewer. The FileConverter program reads a tum, and view frustum culling refers to the process
plain text file and converts it into a format, in which the of removing atoms that lie outside of it. After frus-
atoms are spatially and chronologically clustered. The tum culling, atoms that are hidden from the viewer by
Atomsviewer program accepts the user position and other atoms are removed by a process called occlusion

56 A. Sharma et al. / Computer Physics Communications 163 (2004) 53-64
Simulation

FileConverter Visualization l Atom Data
Data

1]
E . > Data l jx\
i FILE CONVERTER : ;

Y

""""""""""""""""""""""" ' ! User
I Controlled
| Pt bl g R L' """"""""""""""""""""""
E ' Y Y !
User 1y | Data Extraction Octree | Position & i
Position 5 Module Regions | Atiribute based :
g Filters :
i Reduced E
' Atom |
: Data :
b RENDERING : T i :
Snapshots WINDOW L Graphic Modules cclusion Lulling | p
and Movies : Module !
........ ! i
: ATOMSVIEWER .

Fig. 2. A schematic of the Atomsviewer program showingnn components and the flow of information among them.

culling. At this stage the atoms are ready to be ren- ing reduced set of atoms. For a typical visualization
dered as spheres. However not all atoms are renderedhe number of rendered atoms is nearly indepen-
at the same resolution. Atoms that are far from the dent of the user’s viewpoint. The culling time how-
viewer will be rendered as coarse spheres, pyramids,ever scales linearly with the total number of atoms,
and even points. The decision about the resolution of and with the octree abstraction, the computational
the rendered atoms is known as selecting the Level complexity is reduced from @QV) to O(log(N/m)),

of Detail (LOD). The following subsections describe wherem is the number of atoms mapped to an oc-
the sequence of rendering algorithms used in Atom- tree node. The numben determines the number of

sviewer. subdivisions (or the depth of the octree), and it is
empirically set to~ 500. This number comes from
3.1. Hierarchical view frustum culling a trade-off between the quality of frustum approx-

imation, and the computian time. A larger depth

To achieve interactive speed and scalability for implies smaller regions and therefore a more ac-
view frustum culling, spatially close atoms are clus- curate representation of the frustum, but with the
tered to provide a convenient abstraction. The clus- penalty of greater computation. Our tests involv-
tering of atoms is performed hierarchically, using an ing million-to-billion atom datasets show no signifi-
octree data structurf9,10]. An octree is a three- cant visual gains with a granularity that is finer than
dimensional extension of a binary search tree, gener- 500 atomgregion.
ated by recursively subdividing the three-dimensional ~ View frustum culling is implemented using a se-
space into smaller subregions, d€ig. 3. Each oc- ries of bounding volumes. These are shapes that can
tree node thus becomes an abstraction of the atomsbe used to select all octree nodes that intersect or are
contained in its subspace, and we can transform the contained in them. Their size, position and orientation
process of extracting atoms to a process of extract- in 3D space are determined from the user’s position
ing regions that lie in the frustum. This transforma- and orientation. The first and foremost of these is a
tion improves the system performance as follows. The sphereS, that fully encloses the frustufii]. A coarse
total computation time is a sum of the time taken extraction is done by approximating all octree nodes
in culling and the time taken to render the result- as spheres and selecting those spheres that intersect

A. Sharma et al. / Computer Physics Communications 163 (2004) 53-64 57

— Simulation
Data

Fig. 3. Athree-level octree. Each octree node contains the coordiinatels of the corresponding subspace. A terminal node at level 2 contains
a pointer to a structure that stores data associaittdatoms in the region defined by the terminal node.

Fig. 4. The octree data structure overlain ondt@mistic data. The figure shows only the atohet tare selected for subguent rendering. The
arrow denotes the position and orientation of the viewer.

with S. This process is implemented through a tra- 3.2. Probabilistic occlusion culling

versal of the octree, where a node is tested only if

the sphere of the parent node intersegisThe end After view frustum culling, we have a list of regions
result of the process is a set of terminal nodes (re- that completely occupy the view frustum. We can re-
gions), all of which intersectS. These regions are fine this selection by repeating the frustum culling on
then pruned by testing them against a cylinder and atoms of those regions that lie on the boundary of the
subsequently a cone, each of which improves the ap- view frustum. However this test is redundant if a suf-
proximation of the frustumFig. 4 shows one such ficient octree depth is taken. There are however many
extracted view frustum from a third person perspec- atoms that are in the view frustum that will be com-
tive. pletely hidden from the @wer because of other atoms

58 A. Sharma et al. / Computer Physics Communications 163 (2004) 53-64

that are closer to the viewer. To remove these atoms closer to the viewer and it will occlude the atom that is
we begin occlusion culling. In this process we sort all recorded in the array. The array entry is thus updated.
visible regions in an increasing order of distance from As the array starts to fill up, we can stop conducting

the viewer! If atoms are uniformly distributed across
regions? a region that is closer to the viewer’s posi-
tion will contain more visible atoms than one that is
further away. This is becae the atoms in the nearer
region will probably occlude many of the atoms in the
farther regions. Thus we calculate the visibility (the
fraction of atoms that are probably seen by the user)
of an octree region from the recurrence relation,

2)

wherew, is the visibility of thecth octree region and
D, is the normalized density of atoms in thth oc-
tree region. The Oth octree region is the one closest
to the viewer. The leaf octree regions are traversed us-
ing a line-drawing algorithm, and the visibility of each
cell is calculated using Ed2). In addition to being
used in billion-atom datasets, this technique is useful
when the viewer is moving. The probabilistic occlu-
sion culling decimates atoms with probability-1v,,

with typically a few percent pixel loss. This loss is ac-
ceptable since the user is navigating and not observing
the scene. Computationally, this technique is inexpen-
sive since visibility is assigned to octree regions and
not the actual atoms.

ve = (1= Dc)ve_q,

3.3. Depth based occlusion culling

The final step in data extraction involves testing in-
dividual atoms to see if any other atoms occlude them.
In this test, atoms in the nearest regions are approxi-
mated as cubes that fully enclose the spherical projec-
tion of the atom. This cube is marked on an array that
mimics the viewer's screen. The array entries record
the distance of a particular atom from the viewer. Be-

fore an array entry can be updated, it is tested against

existing entries. For this test, a few chosen test points
are compared with the pre-existing entries in the array
(the distance of the currently recorded atoms from the
viewer). If the distance is less, then the new atoms is

1 This sorted order of visible regions is subsequently reused in
the final rendering stages of theoens when decisions pertaining to
the quality/resolution of the rendering of atoms have to be made.

2 This assumption holds for very large datasets, and thus we use
the probabilistic technique in parallel implementation.

this test on a per atom basis and instead conduct it on
a per-region basis. If the area occupied by dtrere-
gionis occluded by atoms that are closer to the viewer,
then we can avoid the per-atom testing for region

3.4. Multiresolution rendering

The atoms selected by the above culling algorithms
are rendered as spheres at various LODs using the
OpenGL API[11]. The resolution of the sphere is cal-
culated from an exponential function of distance of the
atom from the viewer. We first use the sorted list of
visible regions that was created in occlusion culling.
This list provides an approximate measure of the near-
est and farthest atoms, duaccordingly we normalize
the distance in the rang®, 1]. The normalized reso-
lution valuer is calculated as

-2, (3)
wherex is the normalized distance of the atom from
the viewer. This resolution valueis defined as a frac-
tion of the maximum resolution of the visualization.
These resolution values are mappings to the maximum
number of polygons that will be used in rendering a
sphere. As a trivial optimization, we calculate the res-
olution value on a per-atom basis, only if the resolution
value of the region is greater than 0.7 and the number
of resolutions is greater than 10. These numbers were
empirically chosen from optimal speed and quality of
the rendered image. Additionally the atoms that have
a resolution of 1 are usually rendered as points (which
are faster to render).

The color of atoms is calculated as discrete val-
ues when visualizing atomic species and as continuous
values, mapped from a color table, when visualizing
atomistic attributes such as pressure. The color table
uses the gradient function of the imaging program
GIMP [12], and it can be manipulated at runtime to
allow the user to get the best visualization effects. Dif-
ferent attributes are mapped to different color tables,
and the program comes with several standard color ta-
bles.

A. Sharma et al. / Computer Physics Communications 163 (2004) 53-64 59

8

||||rrr| |l!ll!1[|||sm] ||||m] llllITI'l ||11m?

6 Serial without
Octree

Serial with —
Octree

Parallel and Distributed

Rendering time (sec/scene)
£
|

Jlml 1 ln_mi

1000 10000

""ull—l lllwl 1L
a.1 1 10 100

Number of atoms (millions)

Fig. 5. Rendering time per scene as a function of the number of atontsefpiarallel and distributed Atomsviewer is compared with those for
the serial Atomsviewer with ahwithout the octree enhancement.

3.5. User controlled data filters pendix Cdescribes how a user can converttheir dataset
to the Atomsviewer file format. Finallyappendix D
The final data selection process is user controlled contains a complete list of commands and options of
and gives the user an ability to view the insides of a the Atomsviewer program. These commands are used
dataset. A typical usage is illustratedig. 1, where to set and manipulate the color, camera and display at-
one quarter of the system was cut out to observe the tributes of the visualization.
inside and outside of the system simultaneously. To
make such a cut at runtime, we use cut-planes that
are aligned along the 6 surfaces. By controlling their 4. Numerical results
positions, we can make different cuts or slices in a
system. The quarter cut is implemented by excluding The techniques mentioned in the previous sections
atoms whose positions lie outside a certain value. We have made Atomsviewer scalable, while maintaining
can also exclude atoms on the basis of their attributes. good frame rates. However, when visualizing datasets
Such an attribute-based plane is used, e.g., in visual-with a billion atoms or more, we run into system
izing atoms whose temperature lies within a certain limitations such as slow memory bandwidth and disk
range. Different attribute and position-based planes storage space. To address these issues, we have devel-
can be combined using Boolean operators, and whenoped a parallel and distributed version of Atomsviewer
coupled with color tables, provide the user with highly [4.5].2 We have tested the scalability of the paral-
customized visualization tools. lel and distributed archécture and associated tech-
This paper includes documentation needed to build hiques.Fig. 5 compares the timing results of the se-
and use Atomsviewer. The appendices at the end offial Atomsviewer with and without the octree-based
this paper detail the various stages of deployment View frustum culling with that of the parallel and dis-
and Subsequent usage of the progrd‘ppendix A tributed Atomsviewer. We see that the time to ex-
describes the system requirements and the steps forract and render the atoms within the field-of-view is
building Atomsviewer on a Windows, Apple Macin-
tosh and SGI computer&ppendix Boutlines the vari- 3 We plan to release the parallel and distributed Atomsviewer
ous components of the program and their purpAge. shortly.

60 A. Sharma et al. / Computer Physics Communications 163 (2004) 53-64

nearly a constant function of the number of atoms. (3) GLUT: This is the windowing toolkit that is used

The communication overhead is successfully over- by Atomsviewer, and is freely available from
come by overlapping communication and computa- http://www.xmission.com/~nate/glut.html
tion [4]. (4) Tiff Libraries: These libraries are used by Atom-

sviewer to make image files from the visualiza-
tion. They can be downloaded frohitp://www.
5. Summary libtiff.org/.
(5) GIMP: This is an imaging program, which makes
We have developed a scalable and portable code it easy to create color gradients that are used

named Atomsviewer to interactively visualize large to visualize continuous data attributes such as
atomistic datasets, based on hierarchical view frustum- stress and temperature. It can be downloaded from
culling, probabilistic occlusion-culling, and multires- http://www.gimp.org

olution rendering algorithms. The Atomsviewer has

been used to visualize up to tens of millions of atoms Mac OSX:

on a serial computer and, with its parallel version, up

to a billion atoms. (1) Apple Xcode or Project Builder v2.1 (Dec 2002
Tools) or higher: These include the OpenGL and
GLUT Frameworks that are used by the applica-

Acknowledgement tion.
(2) gcc compiler, v3.1 or higher: Xcode and Project
This work was partially supported by ARL: CHSSI, builder ship with this version.
ARO: MURI, DARPA: PROM, DOE, NSF, and (3) Tiff libraries: These libraries are used by Atoms-
AFOSR: DURINT—USC-Berkeley-Princeton. Visu- viewer to make image files from the visualiza-
alization data were taken from simulations performed tion. They can be downloaded frohitp://www.
at Department of Defense (DoD)’s Major Shared Re- libtiff.org or by using Fink fttp:/fink.sourceforge.

source Centers under DoD CHSSI and Challenge ney. _ .
projects. Parallel simulations were also performed on (4) GIMP: This program can be downloaded using
the 1896-processor HPC cluster at the Research Com- Fink. Doing so will ensure that all the required de-

puting Facility and 422-processor Linux clusters atthe ~ Pendencies are installed.
Collaboratory for Advanced Computing and Simula- _
tions at the University of Southern California. Gl Irix:

(1) gcce version 3.1 or higher.
Appendix A. Compiling Atomsviewer (2) OpenGL & GLUT.
(3) Tiff libraries.
The library program includes files to ease the build- (4) GIMP.
ing of the executable from the source code. The system
requirement for compilation on various platformsisas ~ Once Atomsviewer is built, a setup file and the fol-

follows. lowing executables are created:

Windows: e Atomsviewer: This is the visualization program.

o FileConverter: This is the program that will con-

(1) Visual Studio .NET 2003. vert a text file to the av file format.

(2) OpenGL: Microsoft ships the OpenGL APl with e AV_Setup.txt: This file is used by the FileCon-
Windows 2000/XP. For an older system or for sys- verter and Atomsviewer to identify the directories
tems without OpenGL, the API and its associated that will be used by the program to load and save
libraries can be downloaded fromttp://www. files. A user must edit ik file according to their

opengl.org system setup.

http://www.opengl.org
http://www.opengl.org
http://www.opengl.org
http://www.xmission.com/~nate/glut.html
http://www.libtiff.org/
http://www.libtiff.org/
http://www.libtiff.org/
http://www.gimp.org
http://www.libtiff.org
http://www.libtiff.org
http://www.libtiff.org
http://fink.sourceforge.net
http://fink.sourceforge.net
http://fink.sourceforge.net

A. Sharma et al. / Computer Physics Communications 163 (2004) 53-64

Appendix B. Using Atomsviewer

a text
using

61

Once all the atoms of frame 1 have been listed

(N atoms from line 2), list the number of atoms in
The typical use of Atomsviewer is a three-step frame 2 and so on.
process. In the first step, the data is converted from

format to an Atomsviewer formaty. format)
theFileConverter program. This conversion is

Options

required the first time the user visualizes a dataset. For -L Specify the octree level that will be used in the

subse

guent use the user will use the file in gwfor-

mat. Once the data has been converted, a configuration
file needs to be created, and color tables that will be -E
used to color the various data attributes, need to be se-

lected

/createdFinally the Atomsviewer program can

be used to visualize the data file. These three steps and-C
the programs associated witiem are described in de-
tail in the following appendices.

Appendix C. File conversion using FileConverter

Usage

FileConverter{L |-E][-C] text file

Descri

creation of the output file. This option is ignored

if the -E option is specified.

Causes the program to make a decision about the
octree level that will be used in the creation of the
output file.

Causes a configuration file with typical settings to
be created. This file has the same name as the in-
put file but with a cfg extension. The input file
that needs to be converted must be specified with
its full path.

Output

@)

ption

TheFileConverter program will read a text file and

conve

rt it to anav format. This text file will contain

all the data that a user wants to visualize. The output

file wi

Il have the same name as the input file and a

.av extension. It will be created in the same directory
as the input file. The input text file should be of the
following layout:

(1) The first line of the file indicates the number of
frames (or time steps) in the fil&hisis required
even if thereis only one framein the system.

(2) The second line indicate the number of atonis,

in

the first frame.

(3) The third line contains the data for an atom from
the first frame. This line is structured as follows:

x,y,z coordinates delimited by a white-space (2)
or a tab.

e White-space/tab.
e The species of the atom as a positive integer.

If all the atoms are identical or this field is not
recorded, then set this to 1.

e White-space/tab.
e Multiple data attributes associated with this

atom as integers/floating-point numbers. Each
data attribute will be delimited by a white-space
or a tab. Data attributes are optional.

The following files are created.

Atomsviewer file: An Atomsviewer file is a bi-
nary file with an .av extension that contains the
positions and data of all the atoms that will be
visualized. The atoms are spatially organized in
the file with file headers at frequent intervals to
allow the program to skip over portions of the
file that are not being rendered. Since atomic data
might contain data attribas such as temperature,
energy, etc., the file is actually composed of two
parts. A main file with only the positions and the
species of all the atoms and a set of data files
(with extensions .av.1, .av.2, etc.) that contain at
most 3 data attributes for every atom in the system.
The FileConverter progm automatically creates
these data files, when the Atomsviewer file is be-
ing created.
Configuration file: A configuration file is a text
file, with a .cfg extension, that is used to define
various graphic properties such as the size of the
atomic representations and their colors, the cam-
era viewpoints etc. A basic configuration file is
created by the FileConverter program with the -C
option. The file consists of a set of commands that
can describe any one of the following properties:
e Color and radius of the atomic representations.
e Color gradient files that specify the colors, used
to visualize various data attributes.

62 A. Sharma et al. / Computer Physics Communications 163 (2004) 53-64

e Color and format specifier for the main display the file and press enter. If the file is successfully read
label. by the program, the atomic data will be drawn. Dif-

e Camera position and direction. ferent keys on the keyboard are used to control differ-
The various commands that constitute a configu- ent functions of the program such as camera move-
ration file are listed imMppendix D These com- ment, animating the entire dataset, taking snapshots
mands are the same as the commands that can beetc. These commands are showrfig. 6.
executed at runtime. It is important that the name The following set of commands can be used to
of a configuration file must be identical to that of specify various parameters of a given visualization.
the Atomsviewer file with only a different exten- These include the size and color of the atomic repre-
sion. For example, an Atomsviewer file with the sentations, label specifiers, etc. These commands can
name of foo.runl.txav would have a configura- be grouped in a configuration file or are entered at run-
tion file called foo.runl.txefg. time.

(3) Color gradient file: This file describes the colors
that are used to visualize various data attributes. BACKGROUND_COLOR< r, g, b,a > Specify the

The color gradient files have the same name as the background color of the window in the RGBA
Atomsviewer file but with an extension ofol.1 format. The values of, g, b anda, specify
where the number 1 at the end associates a gradi- the red, green, blue and alpha components of
ent file with the data attribute in the data file. Thus the color, respectively, and lie between 0.0
an extension of3 would stand for the third data and 1.0.

attribute in the system excluding the position and BOX Toggle the display of the two bounding
species of the atoms. boxes.

To create a color gradient file, first scale the data CAM_DIR < w’, x’,y’,z' > This command allows
range to[0, 1] and then use the gradient facility the user to specify the orientation of the cam-
of the program GIMP (GNU Image Manipulation era. This is useful to recreate a particular
Program). GIMP is an open source program that orientation when viewing multiple files or
is freely available and runs on Windows, Linux record a series of camera orientations and
and Mac platforms. The color gradient file is a create an animation of an exploration of a
plain text file that gives the color at various cutoff visualized systemuw’, x’,y’, 7z’ specify the
points between 0 and 1. Atomsviewer then uses orientation as a quaterni¢gh3].

this information to interpolate the color fora given CAM_POS< x,y,z> This command allows the
value. The color values are in the RGBA format, user to specify the position of the camera.
and the interpolation is linear. This is useful to recreate a particular position

when viewing multiple files or record a series
of camera positions and create an animation

Appendix D. Visualizing of a walkthrough in a visualized system.
CAM P D<x,y,z,w',x’,y, 77> This command
Usage allows the user to simultaneously specify the
Atomsviewerav file camera position and orientation. A series of
Description these commands are used to record and recre-
The Atomsviewer program will read an Atoms- ate a walkthrough of a visualized system.
viewer file and visualize it. When the program is CLIPPING_PLANE< f > Set the clipping plane to
first launched, it will create a blank window, which the value specified by.
will display the visualization, and a console window, COMMANDS Display the list of possible commands
that will display various messages associated with the on the console with a brief description.

graphical rendering. To start the program, go to the EXIT Quit the program.

rendering window and press the letter ‘0’. This will FONT_COLOR<r, g,b,a > Specify the color of
allow the user to enter the name of the Atomsviewer the font, which will be used in the display
file that they wish to visualize. Enter the full path of window, in an RGBA format. The values of

A. Sharma et al. / Computer Physics Communications 163 (2004) 53-64 63

Set Color
from Data
Attribute

Adjust the
size of
atoms

Adjust the
quality of
atoms

Success
Get All Keys
Filename except "Enter”

IDLE
A (Display)

Get
Command

All Keys
except "Enter”

Success

{F.

Failure

Advance
Frame

Fig. 6. Frequently used commands of Atomsviewer.

r, g, b anda, specify the red, green, blue and LOAD_AV_FILE <s > Load the Atomsviewer file

alpha component of the color, respectively, (with the extension .av) specified by the
and lie between 0.0 and 1.0. strings. _ o
FRAME < f > Jump to framef. LOAD_CFG_FILE< s > Load the configuration file

(with the extension .cfg) specified by the
strings.

LOAD_GRADIENT < s > Load the color gradient
file (with the extension .col) specified by the

FRAME_LABEL < f,s > The frame label can be
used to specify a tag that can be used to de-
scribe the image being visualized. In a multi-

frame visualization, this label could for ex- stringss.
ample describe the time associated with each ORIGIN Return the camera to its default position and
frame. orientation.

FRAME_LABEL_START < f > This is useful only SPECIES COLOR:i,r,g,b,a> This lets a user
in a multi-frame visualization, where it will set the color of a specie(an integer) as an
indicate the value that will be displayed when rgba quadruple, where each color compo-

nentis a float value between O and 1. Thisis a
command that should be included in all con-
figuration files. The configuration file created
by the file converter program will have this

visualizing the first frame.
FRAME_LABEL_STEP< f > This is useful only
in a multi-frame visualization. This value in-

dicates the increment that will be used in the command in it. but with certain default color
label display of subsequent frames. values.
HIDE_SPECIES<i, j > Hide species fromi to j, SPECIES_RADIUS< i,r > This sets the radius of a

wherei < ;. speciei (an integer) to a float value. All

64 A. Sharma et al. / Computer Physics Communications 163 (2004) 53-64

atoms default to a radius of 1, and a user can
use this command to draw the atoms at pro-
portional radii.

SHOW_SPECIES: i, j > Show species fromto j,
wherei < ;.

References

[1] C.L. Rountree, R.K. Kalia, E. Lidorikis, A. Nakano, L. Van
Brutzel, P. Vashishta, Atomistic aspects of crack propagation in
brittle materials: multimillion atom molecular dynamics simu-
lations, Annual Review of Materials Research (2002).

[2] F.F. Abraham, R. Walkup, H.J. Gao, M. Duchaineau, T.D. De
la Rubia, M. Seager, Simulating materials failure by using up
to one billion atoms and the world’s fastest computer: Brittle
fracture, in: Proceedings of the National Academy of Sciences
of the United States of America, 2002.

[3] A. Nakano, R.K. Kalia, P. Vashishta, T.J. Campbell, S. Ogata,
F. Shimojo, S. Saini, Scalable atomistic simulation algorithms
for materials research, Saitific Programming 10 (2002).

[4] A. Nakano, J.X. Chen, Higldimensional data acquisition,
computing, and visualization, Comput. Sci. Engrg. 5 (5)
(2003).

[5] A. Sharma, R.K. Kalia, A. Nakano, P. Vashishta, Large multi-
dimensional data visualization for materials science, Comput.
Sci. Engrg. 5 (2) (2003).

[6] W. Humphrey, A. Dalke, K. Schulten, VMD: visual molecular
dynamics, J. Molecular Graphics 14 (1) (1996).

[7] A. Sharma, A. Nakano, R.K. Kia, P. Vashishta, S. Kodiyalam,

P. Miller, W. Zhao, X.L. Liu, T.J. Campbell, A. Haas, Im-
mersive and interactive exploration of billion-atom systems,
Presence—Teleoperators and Virtual Environments 12 (1)
(2003).

[8] I. Szlufarska, R.K. Kalia, A. Nakano, P. Vashishta, Nano-
indentation-induced amorptation in silicon carbide, Appl.
Phys. Lett., submitted for publication.

[9] J.H. Clark, Hierarchical geometric models for visible surface
algorithms, Commun. ACM 19 (10) (1976).

[10] D.V. Pinsky, J. Meyer, B. Hamann, K.l. Joy, E.S. Brugger,

M.A. Duchaineau, An error-controlled octree data structure
for large-scale visualizatiorGrossroads—The ACM Student
Magazine (spring 2000).

[11] M. Woo, J. Neider, T. Davis, D. Shreiner, The OpenGL Pro-

gramming Guide, third ed., Addison-Wesley, Reading, MA,
1999.

[12] GNU Image Manipulation Rxgram (GIMP), available under

GPL fromhttp://www.gimp.org

[13] K. Shoemake, Animating rotation with quaternion curves,

ACM SIGGRAPH Computer Graphics 19 (3) (1985).

http://www.gimp.org

	Scalable and portable visualization of large atomistic datasets
	Introduction
	System overview
	Data extraction and rendering algorithms
	Hierarchical view frustum culling
	Probabilistic occlusion culling
	Depth based occlusion culling
	Multiresolution rendering
	User controlled data filters

	Numerical results
	Summary
	Acknowledgement
	Compiling Atomsviewer
	Using Atomsviewer
	File conversion using FileConverter
	Visualizing
	References

