
c

ts

ic dataset
structure
ms then
elected

ted on a
illions of

r,

ct
Computer Physics Communications 163 (2004) 53–64

www.elsevier.com/locate/cp

Scalable and portable visualization of large atomistic datase✩

Ashish Sharma∗, Rajiv K. Kalia, Aiichiro Nakano, Priya Vashishta

Collaboratory for Advanced Computing and Simulations, Department of Computer Science, Department of Physics & Astronomy,
Department of Material Science & Engineering, University of Southern California, Los Angeles, CA 90089-0242, USA

Received 15 June 2004; accepted 8 July 2004

Available online 16 September 2004

Abstract

A scalable and portable code named Atomsviewer has been developed to interactively visualize a large atomist
consisting of up to a billion atoms. The code uses a hierarchical view frustum-culling algorithm based on the octree data
to efficiently remove atoms outside of the user’s field-of-view. Probabilistic and depth-based occlusion-culling algorith
select atoms, which have a high probability of being visible. Finally a multiresolution algorithm is used to render the s
subset of visible atoms at varying levels of detail. Atomsviewer is written in C++ and OpenGL, and it has been tes
number of architectures including Windows, Macintosh, and SGI. Atomsviewer has been used to visualize tens of m
atoms on a standard desktop computer and, in its parallel version, up to a billion atoms.

Program summary

Title of program: Atomsviewer
Catalogue identifier: ADUM
Program summary URL: http://cpc.cs.qub.ac.uk/summaries/ADUM
Program obtainable from: CPC Program Library, Queen’s University of Belfast, N. Ireland
Computer for which the program is designed and others on which it has been tested: 2.4 GHz Pentium 4/Xeon processo
professional graphics card; Apple G4 (867 MHz)/G5, professional graphics card
Operating systems under which the program has been tested: Windows 2000/XP, Mac OS 10.2/10.3, SGI IRIX 6.5
Programming languages used: C++, C and OpenGL
Memory required to execute with typical data: 1 gigabyte of RAM
High speed storage required: 60 gigabytes
No. of lines in the distributed program including test data, etc.: 550 241
No. of bytes in the distributed program including test data, etc.: 6 258 245
Number of bits in a word: Arbitrary

✩ This paper and its associated computer program are available viathe Computer Physics Communications homepage on ScienceDire
(http://www.sciencedirect.com/science/journal/00104655).

* Corresponding author.
E-mail address: anakano@usc.edu(A. Sharma).
0010-4655/$ – see front matter 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.cpc.2004.07.008

http://www.elsevier.com/locate/cpc
http://cpc.cs.qub.ac.uk/summaries/ADUM
http://www.sciencedirect.com/science/journal/00104655
mailto:anakano@usc.edu

54 A. Sharma et al. / Computer Physics Communications 163 (2004) 53–64

n, and

Nakano,
ors and
Number of processors used: 1
Has the code been vectorized or parallelized: No
Distribution format: tar gzip file
Nature of physical problem: Scientific visualization of atomic systems
Method of solution: Rendering of atoms using computer graphic techniques, culling algorithms for data minimizatio
levels-of-detail for minimal rendering
Restrictions on the complexity of the problem: None
Typical running time: The program is interactive in its execution
Unusual features of the program: None
References: The conceptual foundation and subsequent implementation of the algorithms are found in [A. Sharma, A.
R.K. Kalia, P. Vashishta, S. Kodiyalam, P. Miller, W. Zhao, X.L. Liu, T.J. Campbell, A. Haas, Presence—Teleoperat
Virtual Environments 12 (1) (2003)].
 2004 Elsevier B.V. All rights reserved.

PACS: 07.05.Rm; 02.70.Ns

Keywords: Visualization; Hierarchical view frustum culling; Probabilistic occlusion culling; Multiresolution algorithm; Molecular dynamics
rge

dy-
ed

n
ech-
ses
of
ame

e

-
tion

lex
at-

rial,
or-
elps
em.

nd
ed.
ms
al
y
c-
vel-

om-
m

s.
s

e of
al-
ion

m-
ted
ro-

e

s
e
-
s-

a
the
1. Introduction

Recent developments in simulation algorithms and
parallel computing technologies have enabled la
atomistic simulations involving million-to-billion
atoms. For example, some of the largest molecular
namics (MD) simulations of materials have involv
multibillion atoms [1–3]. In these large-scale MD
simulations, explorative visualization of simulatio
datasets is essential for understanding atomistic m
anisms underlying macroscopic material proces
[4,5]. Output data from an MD simulation consists
a time series of atomistic data frames. Each data fr
is a table consisting ofN rows forN atoms, and the
ith row Ri is a tuple of atomistic attributes of theith
atom. As a specific example, the tuple could be

(1)Ri = (λi , ri ,vi , σi),

whereλi ∈ {C,Si, . . .} is the chemical species of th
ith atom,ri ∈ �3, vi ∈ �3, andσi = (σ xx

i , σ
yy

i , σ zz
i ,

σ
yz
i , σ zx

i , σ
xy
i) ∈ �6 are its 3D coordinate, 3D veloc

ity, and 6-component stress tensor at the simula
time step this data frame is taken from, seeFig. 1.
Macroscopic material properties result from comp
spatio-temporal interactions among these atomistic
tributes, and navigating inside the simulated mate
while animating the data frames with atoms col
coded according to one of these attributes, often h
scientists to uncover causal relationships among th
A major challenge in navigating through a high-e
MD simulation dataset is to achieve interactive spe
Although there are quite a few excellent progra
to visualize atomistic datasets (e.g., VMD—Visu
Molecular Dynamics[6]), we are not aware of an
capable of rendering multimillion atoms within a fra
tion of second. In the past years, we have been de
oping a scalable and portable software named At
sviewer for visualizing large atomistic datasets fro
materials simulations involving billions of atom
Atomsviewer can visualize tens of millions of atom
on a standard desktop computer, with extensive us
multilevel and probabilistic algorithms, and its par
lel version has been used to visualize up to a bill
atoms[7].

This paper provides a technical overview of Ato
sviewer, the source code of which is dissemina
through the Computer Physics Communications P
gram Library, and documentation describing its usag
is contained in the appendices. Section2 presents an
overview of Atomsviewer, and its different algorithm
are described in Section3. Numerical test results ar
presented in Section4, and Section5 contains the sum
mary. Instructions on compiling and building Atom
viewer, is contained inAppendix A.

2. System overview

Visualization of large-scale MD simulations is
nontrivial problem because of the large size of

A. Sharma et al. / Computer Physics Communications 163 (2004) 53–64 55

the
s,

tress,
Fig. 1. Visualization of a data frame from an MD simulation of nanoindentation in crystalline silicon carbide (3CSiC), in which a quarter of
system is cut out to make atoms inside the SiC substrate visible[8]. Dots, small spheres, and large spheres represent indenter, Si, and C atom
respectively. Atoms are color-coded with: (left) species (magenta—indenter, red—Si, green—C); and (right) direction-averaged shear s
σs = (σyz + σzx + σxy)/3.
.
r
ge
let

t in-
e-
here

s a
om-
t al-
tem.
a

not
ar-
his
g

go-
ddi-
ms
ar-
w-

o-
ure
ter
s a
e
he

and

x-
ta
r’s

ugh
fine
ion
id-
oc-
the
The
snap-
ke a

a
the

stant
ex-
that
ld-
is
us-
ss

s-
by
sion
dataset. For example, an example data frame in Eq(1)
for a 10 million-atom MD simulation contains, fo
a given time step, 130 million numbers. The lar
size makes it hard for a single system to store,
alone process, data at speeds that would permi
teractive rendering. Rendering millions of atoms b
comes harder, since each atom, rendered as a sp
uses approximately 50 triangular primitives. This i
problem shared by the entire computer graphics c
munity, where the dataset to be rendered almos
ways exceeds the capabilities of the rendering sys
This problem is however overcome by following
simple rule, i.e., “avoid processing data that can
be seen from the viewer’s current perspective”. V
ious algorithms have been developed following t
rule. In Atomsviewer, these include frustum-cullin
and probabilistic/depth based occlusion-culling al
rithms, each using the octree data abstraction. A
tional user defined filters allow the user to select ato
that satisfy a certain criterion. Finally we have an
chitecture that provides the user with multiple vie
points, enhancing the user experience.Fig. 2shows the
breakdown of Atomsviewer into its respective comp
nents and the interaction amongst them. In this fig
we show the two main applications—FileConver
and Atomsviewer. The FileConverter program read
plain text file and converts it into a format, in which th
atoms are spatially and chronologically clustered. T
Atomsviewer program accepts the user position
,

orientation, and feeds this information to the Data E
traction Module (DEM). The DEM traverses the da
file and extracts spatial clusters that fit in the use
field-of-view. These clusters are then passed thro
user defined coarse and fine grain filters that re
the data. This data is then filtered in the Occlus
Culling Module to remove those atoms that are h
den from the viewer on account of other atoms
cluding them. Finally the Graphic Modules render
atoms as spheres of varying size and resolution.
user can also capture the rendered scene as a
shot or a series of time-stamped snapshots to ma
movie.

3. Data extraction and rendering algorithms

Visualizing a large atomistic dataset requires
fast and scalable data management system. While
dataset is large, what the user sees at any given in
is a relatively small subset. This observation can be
ploited in designing a data management scheme
efficiently extracts atoms that are in the user’s fie
of-view. In computer graphics, the field-of-view
defined with a truncated pyramidal shape called fr
tum, and view frustum culling refers to the proce
of removing atoms that lie outside of it. After fru
tum culling, atoms that are hidden from the viewer
other atoms are removed by a process called occlu

56 A. Sharma et al. / Computer Physics Communications 163 (2004) 53–64
Fig. 2. A schematic of the Atomsviewer program showing itsmain components and the flow of information among them.
en-
ered
the
ids,

n of
evel

e
m-

for
s-

lus-
an
-
ner-
nal

oms
the

act-
a-
he

en
lt-

ion
en-
-
s,

nal

c-
f
is

x-

ac-
the
lv-
fi-
an

e-
can

r are
ion
tion
s a

es
rsect
culling. At this stage the atoms are ready to be r
dered as spheres. However not all atoms are rend
at the same resolution. Atoms that are far from
viewer will be rendered as coarse spheres, pyram
and even points. The decision about the resolutio
the rendered atoms is known as selecting the L
of Detail (LOD). The following subsections describ
the sequence of rendering algorithms used in Ato
sviewer.

3.1. Hierarchical view frustum culling

To achieve interactive speed and scalability
view frustum culling, spatially close atoms are clu
tered to provide a convenient abstraction. The c
tering of atoms is performed hierarchically, using
octree data structure[9,10]. An octree is a three
dimensional extension of a binary search tree, ge
ated by recursively subdividing the three-dimensio
space into smaller subregions, seeFig. 3. Each oc-
tree node thus becomes an abstraction of the at
contained in its subspace, and we can transform
process of extracting atoms to a process of extr
ing regions that lie in the frustum. This transform
tion improves the system performance as follows. T
total computation time is a sum of the time tak
in culling and the time taken to render the resu
ing reduced set of atoms. For a typical visualizat
the number of rendered atoms is nearly indep
dent of the user’s viewpoint. The culling time how
ever scales linearly with the total number of atom
and with the octree abstraction, the computatio
complexity is reduced from O(N) to O(log(N/m)),
wherem is the number of atoms mapped to an o
tree node. The numberm determines the number o
subdivisions (or the depth of the octree), and it
empirically set to∼ 500. This number comes from
a trade-off between the quality of frustum appro
imation, and the computation time. A larger depth
implies smaller regions and therefore a more
curate representation of the frustum, but with
penalty of greater computation. Our tests invo
ing million-to-billion atom datasets show no signi
cant visual gains with a granularity that is finer th
500 atoms/region.

View frustum culling is implemented using a s
ries of bounding volumes. These are shapes that
be used to select all octree nodes that intersect o
contained in them. Their size, position and orientat
in 3D space are determined from the user’s posi
and orientation. The first and foremost of these i
sphere,S, that fully encloses the frustum[7]. A coarse
extraction is done by approximating all octree nod
as spheres and selecting those spheres that inte

A. Sharma et al. / Computer Physics Communications 163 (2004) 53–64 57

tains

e

Fig. 3. A three-level octree. Each octree node contains the coordinatebounds of the corresponding subspace. A terminal node at level 2 con
a pointer to a structure that stores data associatedwith atoms in the region defined by the terminal node.

Fig. 4. The octree data structure overlain on theatomistic data. The figure shows only the atoms that are selected for subsequent rendering. Th
arrow denotes the position and orientation of the viewer.
ra-
y if

(re-
e
and
ap-

ec-

s
re-
on
the
uf-
any
m-

s

with S. This process is implemented through a t
versal of the octree, where a node is tested onl
the sphere of the parent node intersectsS. The end
result of the process is a set of terminal nodes
gions), all of which intersectS. These regions ar
then pruned by testing them against a cylinder
subsequently a cone, each of which improves the
proximation of the frustum.Fig. 4 shows one such
extracted view frustum from a third person persp
tive.
3.2. Probabilistic occlusion culling

After view frustum culling, we have a list of region
that completely occupy the view frustum. We can
fine this selection by repeating the frustum culling
atoms of those regions that lie on the boundary of
view frustum. However this test is redundant if a s
ficient octree depth is taken. There are however m
atoms that are in the view frustum that will be co
pletely hidden from the viewer because of other atom

58 A. Sharma et al. / Computer Physics Communications 163 (2004) 53–64

ms
all
om
s

si-
is

er
he
he
ser)

est
us-
h

eful
u-

c-
ving
en-
nd

in-
em.
oxi-
jec-
hat
ord
e-
inst
ints
ray
the
s is

d in
to
e.

use

t is
ted.
ing
it on

er,

ms
the
l-

the
of

ng.
ear-

-

m
-
n.
um
a

es-
ion
ber
ere
of

ave
ich

al-
ous

ing
able
am
to
if-

les,
r ta-
that are closer to the viewer. To remove these ato
we begin occlusion culling. In this process we sort
visible regions in an increasing order of distance fr
the viewer.1 If atoms are uniformly distributed acros
regions,2 a region that is closer to the viewer’s po
tion will contain more visible atoms than one that
further away. This is because the atoms in the near
region will probably occlude many of the atoms in t
farther regions. Thus we calculate the visibility (t
fraction of atoms that are probably seen by the u
of an octree region from the recurrence relation,

(2)vc = (1− Dc)vc−1,

wherevc is the visibility of thecth octree region and
Dc is the normalized density of atoms in thecth oc-
tree region. The 0th octree region is the one clos
to the viewer. The leaf octree regions are traversed
ing a line-drawing algorithm, and the visibility of eac
cell is calculated using Eq.(2). In addition to being
used in billion-atom datasets, this technique is us
when the viewer is moving. The probabilistic occl
sion culling decimates atoms with probability 1− vc ,
with typically a few percent pixel loss. This loss is a
ceptable since the user is navigating and not obser
the scene. Computationally, this technique is inexp
sive since visibility is assigned to octree regions a
not the actual atoms.

3.3. Depth based occlusion culling

The final step in data extraction involves testing
dividual atoms to see if any other atoms occlude th
In this test, atoms in the nearest regions are appr
mated as cubes that fully enclose the spherical pro
tion of the atom. This cube is marked on an array t
mimics the viewer’s screen. The array entries rec
the distance of a particular atom from the viewer. B
fore an array entry can be updated, it is tested aga
existing entries. For this test, a few chosen test po
are compared with the pre-existing entries in the ar
(the distance of the currently recorded atoms from
viewer). If the distance is less, then the new atom

1 This sorted order of visible regions is subsequently reuse
the final rendering stages of the atoms when decisions pertaining
the quality/resolution of the rendering of atoms have to be mad

2 This assumption holds for very large datasets, and thus we
the probabilistic technique in parallel implementation.
closer to the viewer and it will occlude the atom tha
recorded in the array. The array entry is thus upda
As the array starts to fill up, we can stop conduct
this test on a per atom basis and instead conduct
a per-region basis. If the area occupied by thecth re-
gion is occluded by atoms that are closer to the view
then we can avoid the per-atom testing for regionc.

3.4. Multiresolution rendering

The atoms selected by the above culling algorith
are rendered as spheres at various LODs using
OpenGL API[11]. The resolution of the sphere is ca
culated from an exponential function of distance of
atom from the viewer. We first use the sorted list
visible regions that was created in occlusion culli
This list provides an approximate measure of the n
est and farthest atoms, and accordingly we normalize
the distance in the range[0,1]. The normalized reso
lution valuer is calculated as

(3)r = 2− 2x2
,

wherex is the normalized distance of the atom fro
the viewer. This resolution valuer is defined as a frac
tion of the maximum resolution of the visualizatio
These resolution values are mappings to the maxim
number of polygons that will be used in rendering
sphere. As a trivial optimization, we calculate the r
olution value on a per-atom basis, only if the resolut
value of the region is greater than 0.7 and the num
of resolutions is greater than 10. These numbers w
empirically chosen from optimal speed and quality
the rendered image. Additionally the atoms that h
a resolution of 1 are usually rendered as points (wh
are faster to render).

The color of atoms is calculated as discrete v
ues when visualizing atomic species and as continu
values, mapped from a color table, when visualiz
atomistic attributes such as pressure. The color t
uses the gradient function of the imaging progr
GIMP [12], and it can be manipulated at runtime
allow the user to get the best visualization effects. D
ferent attributes are mapped to different color tab
and the program comes with several standard colo
bles.

A. Sharma et al. / Computer Physics Communications 163 (2004) 53–64 59

for
Fig. 5. Rendering time per scene as a function of the number of atoms for the parallel and distributed Atomsviewer is compared with those
the serial Atomsviewer with and without the octree enhancement.
lled
f a

the
To

that
eir

a
ing
We
tes.
ual-
ain
nes
hen
ly

uild
d of
ent

s fo
-

set

s of
sed

y at-

ons
ing
sets
m
isk
devel-

er
al-
h-
e-
ed
s-
x-
is

wer
3.5. User controlled data filters

The final data selection process is user contro
and gives the user an ability to view the insides o
dataset. A typical usage is illustrated inFig. 1, where
one quarter of the system was cut out to observe
inside and outside of the system simultaneously.
make such a cut at runtime, we use cut-planes
are aligned along the 6 surfaces. By controlling th
positions, we can make different cuts or slices in
system. The quarter cut is implemented by exclud
atoms whose positions lie outside a certain value.
can also exclude atoms on the basis of their attribu
Such an attribute-based plane is used, e.g., in vis
izing atoms whose temperature lies within a cert
range. Different attribute and position-based pla
can be combined using Boolean operators, and w
coupled with color tables, provide the user with high
customized visualization tools.

This paper includes documentation needed to b
and use Atomsviewer. The appendices at the en
this paper detail the various stages of deploym
and subsequent usage of the program.Appendix A
describes the system requirements and the step
building Atomsviewer on a Windows, Apple Macin
tosh and SGI computers.Appendix Boutlines the vari-
ous components of the program and their purpose.Ap-
r

pendix Cdescribes how a user can convert their data
to the Atomsviewer file format. Finally,Appendix D
contains a complete list of commands and option
the Atomsviewer program. These commands are u
to set and manipulate the color, camera and displa
tributes of the visualization.

4. Numerical results

The techniques mentioned in the previous secti
have made Atomsviewer scalable, while maintain
good frame rates. However, when visualizing data
with a billion atoms or more, we run into syste
limitations such as slow memory bandwidth and d
storage space. To address these issues, we have
oped a parallel and distributed version of Atomsview
[4,5].3 We have tested the scalability of the par
lel and distributed architecture and associated tec
niques.Fig. 5 compares the timing results of the s
rial Atomsviewer with and without the octree-bas
view frustum culling with that of the parallel and di
tributed Atomsviewer. We see that the time to e
tract and render the atoms within the field-of-view

3 We plan to release the parallel and distributed Atomsvie
shortly.

60 A. Sharma et al. / Computer Physics Communications 163 (2004) 53–64

s.
er-
ta-

ode
ge
um-
s-
as
ms
up

I,

-
ed
e-

nge
on
om-

the
la-

ild-
tem
as

th
s-

ted

d
m

-
a-

es
sed
as

rom

2
nd
ca-

ct

s-
a-

.

ing
e-

ol-

-

-
es
ve
nearly a constant function of the number of atom
The communication overhead is successfully ov
come by overlapping communication and compu
tion [4].

5. Summary

We have developed a scalable and portable c
named Atomsviewer to interactively visualize lar
atomistic datasets, based on hierarchical view frust
culling, probabilistic occlusion-culling, and multire
olution rendering algorithms. The Atomsviewer h
been used to visualize up to tens of millions of ato
on a serial computer and, with its parallel version,
to a billion atoms.

Acknowledgement

This work was partially supported by ARL: CHSS
ARO: MURI, DARPA: PROM, DOE, NSF, and
AFOSR: DURINT—USC-Berkeley-Princeton. Visu
alization data were taken from simulations perform
at Department of Defense (DoD)’s Major Shared R
source Centers under DoD CHSSI and Challe
projects. Parallel simulations were also performed
the 1896-processor HPC cluster at the Research C
puting Facility and 422-processor Linux clusters at
Collaboratory for Advanced Computing and Simu
tions at the University of Southern California.

Appendix A. Compiling Atomsviewer

The library program includes files to ease the bu
ing of the executable from the source code. The sys
requirement for compilation on various platforms is
follows.

Windows:

(1) Visual Studio .NET 2003.
(2) OpenGL: Microsoft ships the OpenGL API wi

Windows 2000/XP. For an older system or for sy
tems without OpenGL, the API and its associa
libraries can be downloaded fromhttp://www.
opengl.org.
(3) GLUT: This is the windowing toolkit that is use
by Atomsviewer, and is freely available fro
http://www.xmission.com/~nate/glut.html.

(4) Tiff Libraries: These libraries are used by Atom
sviewer to make image files from the visualiz
tion. They can be downloaded fromhttp://www.
libtiff.org/.

(5) GIMP: This is an imaging program, which mak
it easy to create color gradients that are u
to visualize continuous data attributes such
stress and temperature. It can be downloaded f
http://www.gimp.org.

Mac OS X:

(1) Apple Xcode or Project Builder v2.1 (Dec 200
Tools) or higher: These include the OpenGL a
GLUT Frameworks that are used by the appli
tion.

(2) gcc compiler, v3.1 or higher: Xcode and Proje
builder ship with this version.

(3) Tiff libraries: These libraries are used by Atom
viewer to make image files from the visualiz
tion. They can be downloaded fromhttp://www.
libtiff.org or by using Fink (http://fink.sourceforge
net).

(4) GIMP: This program can be downloaded us
Fink. Doing so will ensure that all the required d
pendencies are installed.

SGI Irix:

(1) gcc version 3.1 or higher.
(2) OpenGL & GLUT.
(3) Tiff libraries.
(4) GIMP.

Once Atomsviewer is built, a setup file and the f
lowing executables are created:

• Atomsviewer: This is the visualization program.
• FileConverter: This is the program that will con

vert a text file to the av file format.
• AV_Setup.txt: This file is used by the FileCon

verter and Atomsviewer to identify the directori
that will be used by the program to load and sa
files. A user must edit this file according to their
system setup.

http://www.opengl.org
http://www.opengl.org
http://www.opengl.org
http://www.xmission.com/~nate/glut.html
http://www.libtiff.org/
http://www.libtiff.org/
http://www.libtiff.org/
http://www.gimp.org
http://www.libtiff.org
http://www.libtiff.org
http://www.libtiff.org
http://fink.sourceforge.net
http://fink.sourceforge.net
http://fink.sourceforge.net

A. Sharma et al. / Computer Physics Communications 163 (2004) 53–64 61

ep
rom

s
For

ation
be
se-

and
-

d

tput
d a
ry

he

of

m
:
ce

er.
ot

is
ch

ce

ted
in

he
d

t the
he

to
e in-

ith

i-
he
be

in
to
e
ata
e,
wo
e
les
at
m.

s
e-

t
ne
the
m-
is
-C
hat
s:
ns.
ed
Appendix B. Using Atomsviewer

The typical use of Atomsviewer is a three-st
process. In the first step, the data is converted f
a text format to an Atomsviewer format (.av format)
using theFileConverter program. This conversion i
required the first time the user visualizes a dataset.
subsequent use the user will use the file in the .av for-
mat. Once the data has been converted, a configur
file needs to be created, and color tables that will
used to color the various data attributes, need to be
lected/created. Finally theAtomsviewer program can
be used to visualize the data file. These three steps
the programs associated withthem are described in de
tail in the following appendices.

Appendix C. File conversion using FileConverter

Usage
FileConverter [-L | -E] [-C] text file

Description
TheFileConverter program will read a text file an

convert it to an .av format. This text file will contain
all the data that a user wants to visualize. The ou
file will have the same name as the input file an
.av extension. It will be created in the same directo
as the input file. The input text file should be of t
following layout:

(1) The first line of the file indicates the number
frames (or time steps) in the file.This is required
even if there is only one frame in the system.

(2) The second line indicate the number of atoms,N ,
in the first frame.

(3) The third line contains the data for an atom fro
the first frame. This line is structured as follows
• x, y, z coordinates delimited by a white-spa

or a tab.
• White-space/tab.
• The species of the atom as a positive integ

If all the atoms are identical or this field is n
recorded, then set this to 1.

• White-space/tab.
• Multiple data attributes associated with th

atom as integers/floating-point numbers. Ea
data attribute will be delimited by a white-spa
or a tab. Data attributes are optional.
Once all the atoms of frame 1 have been lis
(N atoms from line 2), list the number of atoms
frame 2 and so on.

Options

-L Specify the octree level that will be used in t
creation of the output file. This option is ignore
if the -E option is specified.

-E Causes the program to make a decision abou
octree level that will be used in the creation of t
output file.

-C Causes a configuration file with typical settings
be created. This file has the same name as th
put file but with a .cfg extension. The input file
that needs to be converted must be specified w
its full path.

Output

The following files are created.

(1) Atomsviewer file: An Atomsviewer file is a b
nary file with an .av extension that contains t
positions and data of all the atoms that will
visualized. The atoms are spatially organized
the file with file headers at frequent intervals
allow the program to skip over portions of th
file that are not being rendered. Since atomic d
might contain data attributes such as temperatur
energy, etc., the file is actually composed of t
parts. A main file with only the positions and th
species of all the atoms and a set of data fi
(with extensions .av.1, .av.2, etc.) that contain
most 3 data attributes for every atom in the syste
The FileConverter program automatically create
these data files, when the Atomsviewer file is b
ing created.

(2) Configuration file: A configuration file is a tex
file, with a .cfg extension, that is used to defi
various graphic properties such as the size of
atomic representations and their colors, the ca
era viewpoints etc. A basic configuration file
created by the FileConverter program with the
option. The file consists of a set of commands t
can describe any one of the following propertie
• Color and radius of the atomic representatio
• Color gradient files that specify the colors, us

to visualize various data attributes.

62 A. Sharma et al. / Computer Physics Communications 163 (2004) 53–64

ay

gu-

n be
me
of
-
e

-

rs
tes.
the

radi-
us
a
nd

ata
ty
n
hat
x
a
ff

ses
n

at,

-
is
h
w,
the
the
ill
er

of

ad
if-
fer-
ve-

hots

to
on.
re-
can

un-

A

s of
.0

g

m-
lar
r
nd
a

e
ra.
on
es
ion

he
of
cre-

s

y
f

• Color and format specifier for the main displ
label.

• Camera position and direction.
The various commands that constitute a confi
ration file are listed inAppendix D. These com-
mands are the same as the commands that ca
executed at runtime. It is important that the na
of a configuration file must be identical to that
the Atomsviewer file with only a different exten
sion. For example, an Atomsviewer file with th
name of foo.run1.txt.av would have a configura
tion file called foo.run1.txt.cfg.

(3) Color gradient file: This file describes the colo
that are used to visualize various data attribu
The color gradient files have the same name as
Atomsviewer file but with an extension of.col.1
where the number 1 at the end associates a g
ent file with the data attribute in the data file. Th
an extension of.3 would stand for the third dat
attribute in the system excluding the position a
species of the atoms.
To create a color gradient file, first scale the d
range to[0,1] and then use the gradient facili
of the program GIMP (GNU Image Manipulatio
Program). GIMP is an open source program t
is freely available and runs on Windows, Linu
and Mac platforms. The color gradient file is
plain text file that gives the color at various cuto
points between 0 and 1. Atomsviewer then u
this information to interpolate the color for a give
value. The color values are in the RGBA form
and the interpolation is linear.

Appendix D. Visualizing

Usage
Atomsviewerav file

Description
The Atomsviewer program will read an Atoms

viewer file and visualize it. When the program
first launched, it will create a blank window, whic
will display the visualization, and a console windo
that will display various messages associated with
graphical rendering. To start the program, go to
rendering window and press the letter ‘o’. This w
allow the user to enter the name of the Atomsview
file that they wish to visualize. Enter the full path
the file and press enter. If the file is successfully re
by the program, the atomic data will be drawn. D
ferent keys on the keyboard are used to control dif
ent functions of the program such as camera mo
ment, animating the entire dataset, taking snaps
etc. These commands are shown inFig. 6.

The following set of commands can be used
specify various parameters of a given visualizati
These include the size and color of the atomic rep
sentations, label specifiers, etc. These commands
be grouped in a configuration file or are entered at r
time.

BACKGROUND_COLOR< r,g, b, a > Specify the
background color of the window in the RGB
format. The values ofr, g, b anda, specify
the red, green, blue and alpha component
the color, respectively, and lie between 0
and 1.0.

BOX Toggle the display of the two boundin
boxes.

CAM_DIR < w′, x ′, y ′, z′ > This command allows
the user to specify the orientation of the ca
era. This is useful to recreate a particu
orientation when viewing multiple files o
record a series of camera orientations a
create an animation of an exploration of
visualized system.w′, x ′, y ′, z′ specify the
orientation as a quaternion[13].

CAM_POS< x,y, z > This command allows th
user to specify the position of the came
This is useful to recreate a particular positi
when viewing multiple files or record a seri
of camera positions and create an animat
of a walkthrough in a visualized system.

CAM_P_D< x,y, z,w′, x ′, y ′, z′ > This command
allows the user to simultaneously specify t
camera position and orientation. A series
these commands are used to record and re
ate a walkthrough of a visualized system.

CLIPPING_PLANE< f > Set the clipping plane to
the value specified byf .

COMMANDS Display the list of possible command
on the console with a brief description.

EXIT Quit the program.
FONT_COLOR< r,g, b, a > Specify the color of

the font, which will be used in the displa
window, in an RGBA format. The values o

A. Sharma et al. / Computer Physics Communications 163 (2004) 53–64 63
Fig. 6. Frequently used commands of Atomsviewer.
d
ly,

e
de-
lti-
-

ach

l
en

-
he

e

e

t
e

nd

r

o-
is a
n-
d

is
r

a

r, g, b anda, specify the red, green, blue an
alpha component of the color, respective
and lie between 0.0 and 1.0.

FRAME < f > Jump to framef .
FRAME_LABEL < f, s > The frame label can b

used to specify a tag that can be used to
scribe the image being visualized. In a mu
frame visualization, this label could for ex
ample describe the time associated with e
frame.

FRAME_LABEL_START< f > This is useful only
in a multi-frame visualization, where it wil
indicate the value that will be displayed wh
visualizing the first frame.

FRAME_LABEL_STEP< f > This is useful only
in a multi-frame visualization. This value in
dicates the increment that will be used in t
label display of subsequent frames.

HIDE_SPECIES< i, j > Hide species fromi to j ,
wherei � j .
LOAD_AV_FILE < s > Load the Atomsviewer file
(with the extension .av) specified by th
strings.

LOAD_CFG_FILE< s > Load the configuration file
(with the extension .cfg) specified by th
strings.

LOAD_GRADIENT < s > Load the color gradien
file (with the extension .col) specified by th
strings.

ORIGIN Return the camera to its default position a
orientation.

SPECIES_COLOR< i, r, g, b, a > This lets a use
set the color of a speciei (an integer) as an
rgba quadruple, where each color comp
nent is a float value between 0 and 1. This
command that should be included in all co
figuration files. The configuration file create
by the file converter program will have th
command in it, but with certain default colo
values.

SPECIES_RADIUS< i, r > This sets the radius of
speciei (an integer) to a float valuer. All

64 A. Sharma et al. / Computer Physics Communications 163 (2004) 53–64

an
ro-

n
n in
u-

De
up

ttle
ces

ta,
ms

,
(5)

lti-
put.

r

,
-
s,
(1)

o-
.

ce

er,
ure
t

ro-
A,

r

es,
atoms default to a radius of 1, and a user c
use this command to draw the atoms at p
portional radii.

SHOW_SPECIES< i, j > Show species fromi to j ,
wherei � j .

References

[1] C.L. Rountree, R.K. Kalia, E. Lidorikis, A. Nakano, L. Va
Brutzel, P. Vashishta, Atomistic aspects of crack propagatio
brittle materials: multimillion atom molecular dynamics sim
lations, Annual Review of Materials Research (2002).

[2] F.F. Abraham, R. Walkup, H.J. Gao, M. Duchaineau, T.D.
la Rubia, M. Seager, Simulating materials failure by using
to one billion atoms and the world’s fastest computer: Bri
fracture, in: Proceedings of the National Academy of Scien
of the United States of America, 2002.

[3] A. Nakano, R.K. Kalia, P. Vashishta, T.J. Campbell, S. Oga
F. Shimojo, S. Saini, Scalable atomistic simulation algorith
for materials research, Scientific Programming 10 (2002).

[4] A. Nakano, J.X. Chen, High-dimensional data acquisition
computing, and visualization, Comput. Sci. Engrg. 5
(2003).
[5] A. Sharma, R.K. Kalia, A. Nakano, P. Vashishta, Large mu
dimensional data visualization for materials science, Com
Sci. Engrg. 5 (2) (2003).

[6] W. Humphrey, A. Dalke, K. Schulten, VMD: visual molecula
dynamics, J. Molecular Graphics 14 (1) (1996).

[7] A. Sharma, A. Nakano, R.K. Kalia, P. Vashishta, S. Kodiyalam
P. Miller, W. Zhao, X.L. Liu, T.J. Campbell, A. Haas, Im
mersive and interactive exploration of billion-atom system
Presence—Teleoperators and Virtual Environments 12
(2003).

[8] I. Szlufarska, R.K. Kalia, A. Nakano, P. Vashishta, Nan
indentation-induced amorphization in silicon carbide, Appl
Phys. Lett., submitted for publication.

[9] J.H. Clark, Hierarchical geometric models for visible surfa
algorithms, Commun. ACM 19 (10) (1976).

[10] D.V. Pinsky, J. Meyer, B. Hamann, K.I. Joy, E.S. Brugg
M.A. Duchaineau, An error-controlled octree data struct
for large-scale visualization,Crossroads—The ACM Studen
Magazine (spring 2000).

[11] M. Woo, J. Neider, T. Davis, D. Shreiner, The OpenGL P
gramming Guide, third ed., Addison–Wesley, Reading, M
1999.

[12] GNU Image Manipulation Program (GIMP), available unde
GPL fromhttp://www.gimp.org.

[13] K. Shoemake, Animating rotation with quaternion curv
ACM SIGGRAPH Computer Graphics 19 (3) (1985).

http://www.gimp.org

	Scalable and portable visualization of large atomistic datasets
	Introduction
	System overview
	Data extraction and rendering algorithms
	Hierarchical view frustum culling
	Probabilistic occlusion culling
	Depth based occlusion culling
	Multiresolution rendering
	User controlled data filters

	Numerical results
	Summary
	Acknowledgement
	Compiling Atomsviewer
	Using Atomsviewer
	File conversion using FileConverter
	Visualizing
	References

