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Abstract

A linear-scaling algorithm has been developed to perform large-scale molecular-dynamics (MD) simulations, in which in-
teratomic forces are computed quantum mechanically in the framework of the density functional theory. A divide-and-conquer
algorithm is used to compute the electronic structure, where non-additive contribution to the kinetic energy is included with
an embedded cluster scheme. Electronic wave functions are represented on a real-space grid, which is augmented with coars
multigrids to accelerate the convergence of iterative solutions and adaptive fine grids around atoms to accurately calculate ionic
pseudopotentials. Spatial decomposition is employed to implement the hierarchical-grid algorithm on massively parallel com-
puters. A converged solution to the electronic-structure problem is obtained for a 32,768-atom amorphous CdSe system on
512 IBM POWERA4 processors. The total energy is well conserved during MD simulations of liquid Rb, showing the applica-
bility of this algorithm to first principles MD simulations. The parallel efficiency is 0.985 on 128 Intel Xeon processors for a
65,536-atom CdSe system.
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1. Introduction

There is growing interest in large-scale molecular dynamics (MD) simulations involving multimillion atoms
[1-3], in which interatomic forces are computed quantum mechani¢4/] in the framework of the density
functional theory (DFT)6—8] to accurately describe chemical reactions. Such large DFT-based MD simulations
would provide requisite coupling of chemical reactions, atomistic processes, and long-range stress phenomena
for broad applications. Examples are energetic materials, in which chemical reactions sustain sho¢®, W@yes
and stress corrosion, where chemical reactions at the crack tip need to be coupled with long-range stress fields
[11]. Unfortunately, DFT-based MD simulations are rarely performed dver 10? atoms because of their(@3)
computational complexity, which severely limits their applicability.

One computational approach toward quantum mechanically informed million-atom MD simulations employs
environment-dependent interatomic potent[af2], based on variable atomic chargé8-17]to describe charge
transfers and bond ordef$8,19] to describe bond formation and breakage. In the reactive force field (ReaxFF)
approachH12], the parameters in the interatomic potential are “trained” to best fit thousands of DFT calculations
on small(N ~ 10) clusters of various atomic-species combinatiff¥. Thus, the determination of the potential
parameters prior to MD simulations constitutes the most critical and nontrivial part of the ReaxFF-MD approach.

Alternative to this sequential DFT-informed MD approach is to perform a number of small DFT calculations “on
the fly” to compute interatomic forces quantum mechanically during an MD simulg&®#22] The concurrent
DFT-based MD approach may be realized using a divide-and-conquer (DC) alg¢2i#w®5] The DC-DFT
algorithm represents the physical system as a union of overlapping spatial domains, and physical properties are
computed as linear combinations of domain properties. This algorithm is based on a data locality principle called
the quantum near sightedng28], which naturally leads to V) DFT calculation§27-29]

In this paper, we develop an extension of the DC algorithm, i.e. an embedded divide-and-conquer (EDC) al-
gorithm, in which non-additive correction to the kinetic energy is included with an embedded cluster approach
[30,31] DFT calculations of atomic clusters (or domains) involved in the EDC algorithm are efficiently performed
using a real-space approach, in which electronic wave functions are numerically represented on gii8)38its
The real-space grid is augmented with coarser multigrids to accelerate the convergence of iterative FaR&ions
29,34-36] Furthermore, a finer grid is adaptively generated near every [@tb)37], in order to accurately operate
ionic pseudopotential88—40]to describe electron—ion interactions. We include electron—electron interactions us-
ing the generalized gradient approximatjda] to the exchange—correlation energy. Since the EDC-DFT algorithm
involves solutions to small (i.e. the average number of atoms per domairh0) electronic-structure problems,
it solves some of the convergence problems often associated with iterative solutions in large electronic-structure
calculations. For example, it is difficult to achieve any convergence for nontrivial electronic-structure problems
such as amorphous materials with a large nungbet0*) of atoms using a large (2@rid points per electronic
wave function) basis set, unless very good initial guess for the wave functions and the electron number density is
available[29]. Our numerical tests show that the EDC-DFT algorithm has robust convergence properties such that,
starting from random initial wave functions, it is able to obtain converged solutions to such problems.

The EDC-DFT algorithm on the hierarchical real-space grids is implemented on massively parallel computers,
based on spatial decompositif8)29], in which the physical system is divided into subsystems of equal volume
and each subsystem is assigned to a processor in a parallel computer. Each subsystem (or processor) contains one
more domains of the EDC algorithm. For each domain, &aPDDFT algorithm is used to calculate its electronic
structures, with little information needed from other processors. The resulting large computation/communication
ratio makes this approach highly scalable on parallel computers.

This paper is organized as follows. The next section describes the EDC-DFT algorithm for quantum mechan-
ically based MD simulations, and its parallelization is discussed in Se8tiblumerical results are presented in
Section4, and finally Sectiorb contains summary.
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2. Embedded divide-and-conquer density-functional-theory algorithm on hierarchical real-space grids

In the Kohn—Sham formulatiof] of the density-functional theory (DFT$,8], the energy of a physical sys-
tem is expressed as a functional @fatomic posmons,RN = {R, | I =1,..., N}, and Npang One-electron wave
functions (or Kohn—Sham orbitalsy;¥eand = {y,,(7) [n =1, ..., Npand- The energy functional in the atomic unit
reads

Elp] =T[p] + / dr p(F)vioc(F) + Enilp]

& p(r)p(r ) Z1Zy
E 1
/ f + Exclp] + Z |R1 RJ| 1)

whereT[p] is the kinetic energy of a noninteractmg electron gas in its ground state with the number geisijty,
of valence electronsEyc[ o] is the exchange—correlation energy, the last term is the electrostatic energy between
ions with valence{Z; | I =1, ..., N}, and

Vioc(F) = Z VPG — Ry) @
is the local ionic pseudopotential. In Ed.), the nonlocal pseudopotential enef§$—40] Enlp], is given by
Enlol =Y. 3% [ G wi @G - Ro) [ & 5@~ Riwa @, 3)
n [ Im

Wheresl{n r - I_é,) is a projection state localized §t, with the angular momentum quantum numbeérandm.
The valence electron number densiyi), is calculated as

Npand

p(F) =2 |Yu(
n=1

where only doubly occupied states are considered. _
The ground-state energy of the system, with given atomic positiMsjs obtained by minimizingz[p] with
respect tayVeand| subjected to orthonormality constraints,

R . . 1 (n=n)),
d . n' =8 =
/ r o, (F) Y () {O (n ).
The constrained minimization leads to the Kohn—Sham equations,
I:h/fn(?)zgnwnﬁ)» (6)
where the Kohn—Sham Hamiltonian operatir, is defined through

(4)

®)

~ R 1 R R R N
Hy, () = [_§v2 + vioe(F) + vH(F) + m(r)}wn @)
UDIDSUACEY AY L MUEY AU )
I Im

In Eq.(7), V2 is the Laplacian operator, the Hartree potential is given by

vH(r)—/d*’ p(r3,| ®)

and we use the generalized gradient approximafitt] to the exchange—correlation potentiak.(¥) =
8 Exc/8p(¥), which is a function of the local value @f(¥) and its gradienty o ().
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Fig. 1. Schematic of the divide-and-conquer algorithm in 2D. The physical spaisea union of overlapping domain® = J,, 2. Each
domain is further decomposed into the non-overlapping a@sg, the primary buffer layer ™, (see the shaded area), and the secondary buffer
layer, I, (see the hatched area). The depth of the primary and tetptimary + secondary) buffer layers ark andd, respectively.

2.1. Divide-and-conquer density-functional-theory algorithm

In the divide-and-conquer (DC) algorithf23—25,42] the three-dimensional spagzis covered with overlap-
ping domains (seEig. 1),

Q:UQa. )

Each domaing2,, is further decomposed into its sub-volumes,
24 = 8200 U ' U oy, (20)
where$2q, is the non-overlapping core,

2=J2«  20N20p=0 @#p) (11)

and Iy, and Iy, are the primary and secondary buffer layers, respect[2&ly
For each domain, we define a domain support functigef (¥), such that it is only nonzero within the core and
primary buffer layer of the domain,

p(F)=0 ifF ¢ Qoy U Iy, (12)
with the sum rule,

Y oA =1 (13)

satisfied at every spatial position, Because of the sum rule, the valence electron number density is exactly
decomposed into

p(F) =Y p*@), (14)
where
p*(F) = p*(F)p(F) (15)

is the partial contribution to the electron density from domain
The essential approximation in the DC-DFT algorithm is the replacement of the self-consistent Kohn—Sham
Hamiltonian, H, by its subspace approximatioH,, which is formally identical to Eq(7), but the Kohn—Sham
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equations, Eq(6), are solved in each domaifz,, to obtain locally orthonormal Kohn—Sham orbit&lg (7)}:
1 (n=n"),

0 (m#n). (16)

/ G Y FIWE ) = S = {

Boundary conditions ofw“ (7)} are imposed at the domain bounda&2, . We use either the rigid-wall boundary
condition, in which the wave function vanishes at the boundary, or the periodic boundary condition. The wave
function values in the secondary buffer lay€s,, may be contaminated by the artificial boundary conditions at
082, This is the reason why the domain support functigh(7), is made zero in>, [25], so that the contaminated
wave function values do not contribute to the dengity).

To determine the number of occupied local Kohn—Sham orbitals in the DC-DFT algorithm, we first note that
Eq. (4) is an expansion of the valence electron density,

p(7) = 2(F|O(er — H)IF), (17)

in terms of the eigenstates of the Kohn—Sham Hamiltonfanin Eq. (17), |7} is the coordinate eigenstate, the
step function® (x), is 1 forx > 0 and is 0 otherwise, and the Fermi enekgy,is determined from the number of
valence electronsyg, through the relation,

Nel = f dr p (7). (18)

In the DC-DFT algorithm, the local Kohn—Sham orbitglg® ()}, are compactly supported on each domaiy,
and thus the partial densii;y“ ), is expanded in terms of them as

p*(F)=p (r)Zf (19)

wheree? is the nth eigenvalue off,, and f(e¥) = 20 (er — &¥). Accordingly, the normalization condition,
Eq.(18), reads

- we )
Nei=) > f(e) / dF p* (#)| v ®)|° (20)
o n
In MD simulations, we numerically integrate Newton’s equations of motion,
& - S
My SR =Fj, (21)

where the forcef;, acting on the'th ion, is calculated according to the Hellmann—Feynman theorem as

F F|0n+ Floc+ Fnl

-y z,z,f’i /drp(r)(r—RI) Yloc
J(#]) RI | _RI|
J o p Y () 65"" — [ &gl 7 = R ()
NI ) : e e (22)
i m |+ p"‘(r)x/f:f (r)s,m(r — Ry) [ & Syt ()

In EqQ. (22), the ionic contributionF}O”, can be computed efficiently with(@) operations using the fast multi-
pole method (FMM)43]. Scalable FMM algorithms to compuﬁ‘-;ion on parallel computers are described in our
previous publication$44,45] For systems with the periodic boundary condition, methods based on the Ewald
summation are effective, including th& ®log N) particle mesh Ewald methdd6]. (A parallel Ewald algorithm

is described in Ref47].)
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2.2. Embedded-cluster scheme for non-additive kinetic energy correction

The DC-DFT algorithm amounts to approximating the kinetic energy functidipgd], as

Tylpl =) T}[p"], (23)
where
T [p%] = Z f(en) f d7 p* v () (—%vz) Yo i), (24)

i.e. the kinetic energy is additive with respect to domain contributions. Its non-additive correction can be introduced
using an embedded-cluster schef@@,31], in which the kinetic energy of the total system is expressed as

Tylpl =) _TF[p"1+ Tilpl = Y T 1p°], (25)

and an explicit functional of the electron density is used for the second and third terms. For example, the Thomas—
Fermi approximation leads to an expression for the kinetic energy,

Tilpl =) T;1p*1+ CTF< f CIGRAEDY f dr p* <?)5/3), (26)
whereCtr = 3(372)%/3/10. Accordingly, the local Kohn—Sham Hamiltonian becomes

Y = 1 = = = S = o o

He () = [—Evz + Vioc(F) + vh () + vxe(P) + ZCTE(p () = p <r)2/3)}pn Q)

ISP BY L MuEY A (27)

I Im

2.3. Hierarchical real-space grids

For efficient parallel implementation of DFT, we have developed a hierarchical real-space grid method, based
on higher-order finite differencingg2,33]and multigrid acceleratiof84,35] In the hierarchical grid method, the
real-space multigrids are adaptively refirf8d@] near each atom to accurately operate the ionic pseudopotentials
on the electronic wave functions (sEgg. 2).

Py

Fig. 2. Schematic of hierarchical real-space grids in 2D. Coarse multigrids (gray) are used to accelerate iterative solutions of the DFT problem on
the original real-space grid (corresponding to the grid refinement lexeB). The bottom panel shows that fine grids are adaptively generated
near the atoms (spheres) to accurately operate the ionic pseudopotentials on the wave functions.
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In the high-order finite difference method for calculating the derivatives (i.e. kinetic-energy operator2i }=q.
Y& () and p(r) are represented by numerical values on real-space grid points. The kinetic energy operator is
expanded using the finite difference method3¥

L
= > Gy (xi+Ah,yj. 2) + O(h?H+2), (28)

F=(xi,yj,2%)  p=—L

329 (7)

9x2

whereh is the grid spacing, and is the order of the finite difference method. Since the calculations are performed
entirely in real space, this method is most suitable for localized configurations such as clusters, which is the case in
the EDC-DFT algorithm. Since the finite difference expansion involves only short-ranged operations, an efficient
implementation on parallel computers is poss[B& 29]

The constrained minimization d&[p] with respect tqy} is performed by searching for an energy-minimum
iteratively based on the conjugate-gradient (CG) mefd@d The self-consistent minimization loop consists of
the following steps:

(i) Calculate the electronic potentialsec(¥), {£/, (F — R))}, v (F), anduxe(7), using the densityp (7), from the
previous step or the starting value (in case of the first step); these potentials are common to all the domains;
the Hartree potential is obtained by iterative solution to the Poisson equefiop () = —4mp(7), using the
multigrid method49].
(iiy For all domainsx, perform the following.
(@) Perform a unitary transformation pf,} to diagonalize the Hamiltonian matrik]” , = an dr wfl‘*(?) X
Ay (7).

(b) Improve{y:%(r)} iteratively.
(c) Orthonormalizey ()} according to Eq(16) with the Gram—Schmidt methdd8].

(iii) Determine the Fermi energyr, to reproduce the number of valence electravig, by solving Eq.(20) by the
Newton—Raphson methdd9].

(iv) Calculate the new density,(7), according to Eqs(14) and (19)using the update¢/® (r)}; refine p(¥) by
mixing the new and old densities using the Pulay charge-mixing scf&fhe

The above steps, (i)—(iv), are repeated until the self-consistency betwegnand p(r) is achieved within a
prescribed error tolerance.

The step (ii)(b) in the self-consistent loop includes two inner loops: One is associated with the bandandex
the other is the CG iteration for each band involving a loop indgx, To reduce long wavelength components
of the residual, we use the multigrid methfdd,,29,34] On a coarser grid, the following residual equations are
solved,

[=3V2+ 0@ et () = g2 (). (29)

In this method, the electronic potentialy), as well as the residual vectgt (v), on a fine grid are restricted to a
coarser grid by using restriction operations. Here,

V() = vioc(F) + V() + vxe(F) + SCTE(p ()3 — p* () ?3) (30)

excludes the nonlocal pseudopotential, since it is short-ranged and does not influence the solutions on coarser grids
The solutiong? (r), of Eq.(29) on the coarse grid is prolongated to the fine grid, and is adde (6).

The computational complexity of the EDC-DFT algorithm i¢N) for N atoms, as analyzed below. Since the
most time consuming part is step (ii), we concentrate on the computational complexity of this step. The orthogonal-
ization in step (ii)(c) requires Q’domaimgampgrid) operations, wher&/qomainis the number of domains, amgang
andngig are the number of Kohn—Sham orbitals and that of real-space grid points per domain, respectively. Since
we choos&Vgomain= O(N), bothnpang andngrig are Qn) = O(1), wheren = N/ Ngomain iS the average number
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Fig. 3. Schematic of the parallel divide-and-conquer algorithm in 2D. The physical system is divided into subsggtemsps, of equal

volume, and each subsystem is assigned to a processor in a parallel computer. Each subsystem, in turn, consists of multiple non-overlapping cor
domains£2qg, - - -, £20s. To perform electronic-structure calculations on overlapping domadgs,. ., £2g, on processoPy, the contributions

to the total electron density,(¥), within the primary buffer-layer depth, (see the hatched area), need to be cached from the nearest-neighbor
processors. In addition, the ionic positions within depthr¢ (enclosed by dashed lines) need to be cached from the nearest-neighbor processors

to compute ionic pseudopotentials. Hafeandrc are the total buffer-layer depth and the range of nonlocal pseudopotentials, respectively.

of atoms per domain. Consequently, this operation scaleg &&% = O(N). All calculations in step (ii) except
for the orthogonalization require(@gomair?band?grid) = O(Nn?) = O(N) operations. The orthogonalization step,
which scales as QVr?), is negligible[29] for relatively small domaing: < 100) used in our calculations.

3. Parallélization

The hierarchical grid EDC-DFT algorithm has been implemented on parallel computers based on spatial de-
composition[3,29], in which the physical system is divided into subsystems of equal volume, and each subsystem
is assigned to a processor in a parallel computer Egpe3). The processors are logically arranged as a 3D mesh
of size P = P, x Py, x P,. Each subsystem, in turn, consists of multiple domains.

In this parallelization scheme, each domain is local to a processor, and the Kohn—Sham ¢yi@lg, need
not be exchanged between processors. Consequently, there is no need for the massive communication requirel
for orthonormalization in conventional parallel DFT algorithfiS]. Instead, there are two major sources of in-
terprocessor communications in the parallel EDC-DFT algorithm. First, for the computation of the total electron
density,p (¥), in a given domaing2,, partial contributions{p® (7)}, within the primary buffer-layer dept#y, need
to be cached from the nearest-neighbor processdr§econd, the positions of ions within depiht- . need to
be cached from the nearest-neighbor processors to compute ionic pseudopotentiald. dielrg, are the total
buffer-layer depth and the range of nonlocal pseudopotentials, respectively.

The computational time of this parallel EDC-DFT algorithm scales @&@mair/ P)n2) = O(N/P)n3). The
communication time for the above two tasks, on the other hand, scale$(&s P)%/3). The communication
overhead of this algorithm, @N/P)~Y/3n=3), is extremely low, because of the small surface-to-volume ratio
and the absence of communicating»® Kohn—Sham orbitals. The parallel multigrid algorithm to compute the
Hartree potential fronp () requires additional interprocessor communications, which scaledaeg ® [51]. For
coarse-grained applications, in whidlyiq/ P > P, however, this logarithmic overhead is negligible.

4. Numerical results

We have tested the convergence properties and scalability of the parallel EDC-DFT algorithms, as well as its
applicability to MD simulations, for a number of materials, including amorphous cadmium selenide (CdSe) and
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liquid rubidium (Rb). For these numerical tests, we have used periodic boundary conditions to obtain local Kohn—
Sham orbitals, because a faster convergence has been achieved compared with the rigid wall boundary conditions
For the support function, we use a cubic interpolation function such that both the function value and its derivative is
continuous ap*(¥) = 0 and 1. Since we discard the wave functions within the secondary buffer layers, numerical
results are likely to be insensitive to the choice of the support function. The program is written in Fortran 90 with
MPI (Message Passing Interface) for massage passing.

Numerical tests have been performed on an IBM SP4 computer at the Naval Oceanographic Office (NAVO) Ma-
jor Shared Resource Center and Intel Xeon-based Linux clusters at the Collaboratory for Advanced Computing and
Simulations (CACS) and the Research Computing Facility (RCF) at the University of Southern California (USC).
The 1184-processor SP4 consists of 148 nodes or LPARs (Logical Partitions), each containing eight 1.3 GHz
POWERA4 processors. (Four LPARS, i.e. 32 processors, in turn constitute a physical unit.) An LPAR contains four
dual-processor chips, which share 8 GB of memory. In each chip, the two processors share 1.4 MB L2 cache. The
SP4 uses a proprietary network and IBM’s Colony Il switch to communicate between nodes. The network switch
provides 2.88 Gb/s bi-directional bandwidth, with 21 ps latency. The SP4 runs the AIX 5.1 operating system. The
266-processor CACS Linux cluster consists of 133 nodes, with two 2.8 GHz Intel Xeon processors and 2GB DDR
memory per node, 512 KB L2 cache per processor, and 533 MHz bus. These nodes are interconnected by Myri-
com’s Myrinet with 4 Gb/s of point-to-point bandwidth in the duplex mode and 7-9 us latency. The CACS cluster
runs Red Hat Linux 8.0 operating system, Myricom GM network software, MPICH-GM for message passing, and
Intel Fortran compiler. The 1976-processor RCF Linux clusters consists of Intel Xeon and Pentium IIl processors,
including 464 3.06 GHz Xeon processors, connected by Myrinet. The RCF cluster also runs Red Hat Linux and
Intel Fortran.

We first test the convergence of the EDC-DFT algorithm, with respect to the domairF&jz€. shows the
potential energy as a function of the domain size for an amorphous CdSe system containing 512 atoms in a cubic
cell of length, 45.664 a.u. The amorphous configuration is prepared by a melt-quench prdé2flimeMD
simulation based on an empirical interatomic potential. Here, and in the following, the grid spacing is chosen as
0.476 a.u. The total buffer siz&, is fixed as 2.854 a.u. In all the numerical tests, the primary buffer size is chosen
asdi = d/2. The potential energy converges within 0.003 a.u. per atom above the domain size 6 a.u. The number
of self-consistent iterations required for convergence decreases with increased domain size.

Next, we test the convergence of the potential energy as a function of the buffet sfoe,an amorphous
CdSe system containing 512 atoms in a cubic cell of length, 45.664 a.uFie®. The domain size is fixed

-1.28 T T
34
g -1.30[ 8
RS
8
E 1321 -
)
[ 21
134 19 164
L | L | L
0 4 8 12

Domain size (bohr)

Fig. 4. Potential energy per atom as a function of the domain size for an amorphous CdSe system (512 atoms in a cubic cell of side length,
45.664 a.u.). The buffer size is fixed as 2.854 a.u. The atomic units are used for both energy and length. Numerals in the figure indicate the
number of self-consistent iterations required for the convergence of the electron density {Withif) — p,»,1(7))/,o0}2) <1074, wherep; (F)

is the electron density ath iteration, og is the average electron density, 0.0215 a.u., and the brackets denote the average over the grid in the
entire system.
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Fig. 5. Potential energy as a function of the buffer lendttior an amorphous CdSe system (512 atoms in a cubic cell of side length, 45.664 a.u.).
The domain size is fixed as 11.416 a.u. The atomic units are used for both energy and length. Numerals in the figure indicate the number of
self-consistent iterations required for the convergence of the electron density Withitr) — p,-,l(F))/po}2> < 1074, wherep; (7) is the

electron density atth iteration, pg is the average electron density, 0.0215 a.u., and the brackets denote the average over the grid for the entire
system.
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!

! |
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Fig. 6. The potential energy as a function of the number of self-consistent iterations for an amorphous CdSe system (32,768 atoms in a cubic
cell of side length, 182.656 a.u.), whefig,i, denotes the converged energy (or the potential energy obtained at the 50th iteration). The domain
and buffer sizes are 11.416 and 5.708 a.u., respectively. The atomic units are used for both energy and length. The calculation was performed
on 512 IBM POWER4 processors.

as 11.416 a.u. The potential energy converges within 0.001 a.u. per atom@bodea.u. The number of self-
consistent iterations required for convergence decreases with increased buffer length.

To test the convergence of the EDC-DFT algorithm for larger systems with irregular atomic distribbtgnrés,
shows the potential energy as a function of the number of self-consistent iterations for an amorphous CdSe system
containing 32,768 atoms in a cubic cell of length, 182.656 a.lFitn 6, Emin denotes the converged energy
(or the potential energy obtained at the 50th iteration). The domain and buffer sizes are 11.416 and 5.708 a.u.,
respectively. This result shows that the algorithm is convergent for disordefealtd® systems with nontrivial
electronic structures. This test has been performed on 512 IBM POWER4 processors.

Although convergent for the 32,768-atom amorphous CdSe, the convergence rate is slower than those for smaller
systemsFig. 7 compares the convergence of the electron density for 32,768-atom and 512-atom amorphous CdSe
systems. The left panel shows the convergence of the electron density in the self-consistent iterations for an amor-
phous CdSe system containing 32,768 atoms in a cubic cell of length, 182.656 a.upiterés the electron
density atith iteration, andpg is the average electron density, 0.0215 a.u. The figure plots the electron density av-
eraged over the grid in the entire system. The domain and buffer sizes are 11.416 and 5.708 a.u., respectively. The
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Fig. 7. (Left) Convergence of the electron density in the self-consistent iterations for an amorphous CdSe system (32,768 atoms in a cubic cell

of side length, 182.656 a.uy); (r) is the electron density ath iteration,pg is the average electron density, 0.0215 a.u., and the brackets denote

the average over the grid in the entire system. The domain and buffer sizes are 11.416 and 5.708 a.u., respectively. (Right) Convergence of
the electron density in the self-consistent iterations for an amorphous CdSe system (512 atoms in a cubic cell of side length, 45.664 a.u.). The
domain and buffer sizes are the same as in the left panel.
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Fig. 8. Total (solid curve) and potential (dashed curve) energies in the atomic unit as a function of time in a molecular-dynamics simulation of
liguid Rb at 1400 K (432 atoms in a cubic cell of side length, 65.696 a.u.). The domain and buffer sizes are 16.424 and 8.212 a.u., respectively.

right panel shows the same quantity for a 512-atom amorphous CdSe system in a cubic cell of length, 45.664 a.u.
The convergence for the 32,768-atom system is slightly slower than for the 512-atom system. However, the con-
vergence rate of the EDC-DFT algorithm is sufficiently high to allow practical electronic-structure calculations for
disordered 1fratom systems.

To test the applicability of the EDC-DFT algorithm for first principles MD simulatidfig, 8 shows the total
and potential energies as a function of time in an MD simulation of liquid Rb at 1400 K. The system contains 432
atoms in a cubic cell of length, 65.696 a.u. The domain and buffer sizes are 16.424 and 8.212 a.u., respectively.
The time discretization unit ias = 4 fs. The total energy is conserved withik2L0~* a.u. per atom for 500 MD
time steps. The figure demonstrates the applicability of the EDC-DFT algorithm for large-scale first principles MD
simulations on parallel computers.

Finally, we test the scalability of the parallel EDC-DFT algorithfig. 9 shows the wall-clock time per self-
consistent iteration with scaled workloads—5£2atom CdSe system oA processors of an Intel Xeon-based
Linux cluster. By increasing the number of atoms linearly with the number of processors, the wall-clock time
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Fig. 9. Wall-clock (circles) and communication (squares) times per self-consistent iteration of the parallel EDC-DFT algorithm, with scaled
workloads—512P atom CdSe system oP processorsP =1, ..., 128) on an Intel Xeon-based Linux cluster.

increases little, indicating an excellent scalability. To quantify the parallel efficiency, we first define the speed of
the EDC-DFT algorithm as a product of the total number of atoms and the number of self-consistent iterations
executed per second. The constant-grain speedup is given by the ratio between the $ppeatetsors and that

of one processor. The constant-grain efficiency is the constant-grain speedup divitidedma 65,536-atom CdSe
system, the parallel efficiency is 0.985 on 128 Intel Xeon procesB@s9 also shows the communication time

per self-consistent iterations as a functionPofThe communication overhead increases little for larger numbers of
processors, and is negligible compared with the computational time.

5. Summary

We have developed a linear-scaling algorithm to perform large-scale first principles MD simulations, in which
interatomic forces are computed quantum mechanically in the framework of the DFT. The embedded divide-and-
conguer algorithm computes the electronic structure (v 0time and includes non-additive contribution to the
kinetic energy. Electronic wave functions are represented on a real-space grid, which is augmented with coarse
multigrids to accelerate the convergence of iterative solutions and adaptive fine grids around atoms to accurately
calculate ionic pseudopotentials. Spatial decomposition is employed to implement the hierarchical-grid EDC-DFT
algorithm on massively parallel computers. A converged solution is obtained for a 32,768-atom amorphous CdSe
system on 512 IBM Power 4 processors, demonstrating the applicability of the EDC-DFT algorithm for large-
scale electronic structure calculations with irregular atomic distributions. The total energy is well conserved during
MD simulations of liquid Rb, showing the applicability of this algorithm for first principles MD simulations.

The parallel EDC-DFT algorithm exhibits an excellent scalability: parallel efficiency is 0.985 on 128 Intel Xeon
processors for a 65,536-atom CdSe system. Sugt)@ilgorithms are indispensable for application software

to keep up with the Moore’s law of computer hardware, i.e. compute power of a processor doubles every 18
months.



F. Shimojo et al. / Computer Physics Communications 167 (2005) 151-164 163

Acknowledgements

This work was partially supported by AFOSR-DURINT, ARO-MURI, DARPA-PROM, DOE, NSF, and Okawa
Foundation. Numerical tests were performed at Department of Defense’s Major Shared Resource Centers undel
Challenge and CHSSI projects, and at the University of Southern California using the 1976-processor Linux clus-
ter at the Research Computing Facility and the 432-processor Linux clusters at the Collaboratory for Advanced
Computing and Simulations.

References

[1] F.F. Abraham, R. Walkup, H.J. Gao, et al., Proc. Natl Acad. Sci. USA 99 (2002) 5777.
[2] T.C. Germann, P.S. Lomdahl, IEEE Comput. Sci. Engrg. 1 (2) (1999) 10.
[3] A. Nakano, R.K. Kalia, P. Vashishta, et al., Sci. Programming 10 (2002) 263.
[4] R. Car, M. Parrinello, Phys. Rev. Lett. 55 (1985) 2471.
[5] J.-L. Fattebert, F. Gygi, Comput. Phys. Comm. 162 (2004) 24.
[6] P. Hohenberg, W. Kohn, Phys. Rev. 136 (1964) B864.
[7] W. Kohn, L.J. Sham, Phys. Rev. 140 (1965) A1133.
[8] W. Kohn, P. Vashishta, in: N.H. March, S. Lundgvist (Eds.), Inhomogeneous Electron Gas, Plenum, 1983, p. 79.
[9] D.W. Brenner, D.H. Robertson, M.L. Elert, et al., Phys. Rev. Lett. 70 (1993) 2174.
[10] A. Strachan, A.C.T. van Duin, D. Chakraborty, et al., Phys. Rev. Lett. 91 (2003) 098301.
[11] S. Ogata, F. Shimojo, R.K. Kalia, et al., J. Appl. Phys. 95 (2004) 5316.
[12] A.C.T. van Duin, S. Dasgupta, F. Lorant, et al., J. Phys. Chem. A 105 (2001) 9396.
[13] A.K. Rappe, W.A. Goddard, J. Phys. Chem. A 95 (1991) 3358.
[14] F.H. Streitz, J.W. Mintmire, Phys. Rev. B 50 (1994) 11996.
[15] S.W. Rick, S.J. Stuart, B.J. Berne, J. Chem. Phys. 101 (1994) 6141.
[16] A. Nakano, Comput. Phys. Comm. 104 (1997) 59.
[17] T. Campbell, R.K. Kalia, A. Nakano, et al., Phys. Rev. Lett. 82 (1999) 4866.
[18] J. Tersoff, Phys. Rev. B 37 (1988) 6991.
[19] D.W. Brenner, Phys. Stat. Sol. (b) 217 (2000) 23.
[20] H. Kikuchi, R.K. Kalia, A. Nakano, et al., in: Proc. Supercomputing '02, IEEE, 2002.
[21] S. Ogata, E. Lidorikis, F. Shimojo, et al., Comput. Phys. Comm. 138 (2001) 143.
[22] S. Ogata, F. Shimojo, R.K. Kalia, et al., Comput. Phys. Comm. 149 (2002) 30.
[23] W. Yang, Phys. Rev. Lett. 66 (1991) 1438.
[24] W. Yang, T.-S. Lee, J. Chem. Phys. 103 (1995) 5674.
[25] S.L. Dixon, K.M. Merz, J. Chem. Phys. 107 (1997) 879.
[26] W. Kohn, Phys. Rev. Lett. 76 (1996) 3168.
[27] S. Goedecker, Rev. Mod. Phys. 71 (1999) 1085.
[28] F. Shimojo, T.J. Campbell, R.K. Kalia, et al., Future Generation Comput. Syst. 17 (2000) 279.
[29] F. Shimojo, R.K. Kalia, A. Nakano, et al., Comput. Phys. Comm. 140 (2001) 303.
[30] T. Wesolowsk, A. Warshel, J. Phys. Chem. 98 (1994) 5183.
[31] N. Govind, Y.A. Wang, E.A. Carter, J. Chem. Phys. 110 (1999) 7677.
[32] J.R. Chelikowsky, N. Troullier, K. Wu, et al., Phys. Rev. B 50 (1994) 11355.
[33] J.R. Chelikowsky, Y. Saad, S. Ogiit, et al., Phys. Stat. Sol. (b) 217 (2000) 173.
[34] E.L. Briggs, D.J. Sullivan, J. Bernholc, Phys. Rev. B 54 (1996) 14362.
[35] J.-L. Fattebert, J. Bernholc, Phys. Rev. B 62 (2000) 1713.
[36] T.L. Beck, Rev. Mod. Phys. 72 (2000) 1041.
[37] T. Ono, K. Hirose, Phys. Rev. Lett. 82 (1999) 5016.
[38] L. Kleinman, D.M. Bylander, Phys. Rev. Lett. 48 (1982) 1425.
[39] N. Troullier, J.L. Martins, Phys. Rev. B 43 (1991) 8861.
[40] R.D. Kingsmith, M.C. Payne, J.S. Lin, Phys. Rev. B 44 (1991) 13063.
[41] J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865.
[42] D.E. Keyes, Y. Saad, D.G. Truhlar, Domain-Based Parallelism and Problem Decomposition Methods in Computational Science and Engi-
neering, SIAM, Philadelphia, 1995.
[43] L. Greengard, V. Rokhlin, J. Comput. Phys. 73 (1987) 325.



164 F. Shimojo et al. / Computer Physics Communications 167 (2005) 151-164

[44] A. Nakano, R.K. Kalia, P. Vashishta, Comput. Phys. Comm. 83 (1994) 197.

[45] S. Ogata, T.J. Campbell, R.K. Kalia, et al., Comput. Phys. Comm. 153 (2003) 445.

[46] T. Darden, D. York, L. Pederson, J. Chem. Phys. 98 (1993) 10089.

[47] R.K. Kalia, S.W. de Leeuw, A. Nakano, et al., Comput. Phys. Comm. 74 (1993) 316.

[48] M.C. Payne, M.P. Teter, D.C. Allan, et al., Rev. Mod. Phys. 64 (1992) 1045.

[49] W.H. Press, S.A. Teukolsky, W.T. Vetterling, et al., Numerical Recipes, second ed., Cambridge University Press, Cambridge, UK, 1992.
[50] P. Pulay, Chem. Phys. Lett. 73 (1980) 393.

[51] A. Nakano, P. Vashishta, R.K. Kalia, Comput. Phys. Comm. 83 (1994) 181.

[52] J.P. Rino, I. Ebbsjo, P.S. Branicio, et al., Phys. Rev. B 70 (2004) 045207.



	Embedded divide-and-conquer algorithm on hierarchical real-space grids: parallel molecular dynamics simulation  based on linear-scaling density functional theory
	Introduction
	Embedded divide-and-conquer density-functional-theory algorithm on hierarchical real-space grids
	Divide-and-conquer density-functional-theory algorithm
	Embedded-cluster scheme for non-additive kinetic energy correction
	Hierarchical real-space grids

	Parallelization
	Numerical results
	Summary
	Acknowledgements
	References


