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Abstract

A linear-scaling algorithm has been developed to perform large-scale molecular-dynamics (MD) simulations, in w
teratomic forces are computed quantum mechanically in the framework of the density functional theory. A divide-and-
algorithm is used to compute the electronic structure, where non-additive contribution to the kinetic energy is includ
an embedded cluster scheme. Electronic wave functions are represented on a real-space grid, which is augmented
multigrids to accelerate the convergence of iterative solutions and adaptive fine grids around atoms to accurately calcu
pseudopotentials. Spatial decomposition is employed to implement the hierarchical-grid algorithm on massively para
puters. A converged solution to the electronic-structure problem is obtained for a 32,768-atom amorphous CdSe s
512 IBM POWER4 processors. The total energy is well conserved during MD simulations of liquid Rb, showing the a
bility of this algorithm to first principles MD simulations. The parallel efficiency is 0.985 on 128 Intel Xeon processor
65,536-atom CdSe system.
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1. Introduction

There is growing interest in large-scale molecular dynamics (MD) simulations involving multimillion a
[1–3], in which interatomic forces are computed quantum mechanically[4,5] in the framework of the densit
functional theory (DFT)[6–8] to accurately describe chemical reactions. Such large DFT-based MD simul
would provide requisite coupling of chemical reactions, atomistic processes, and long-range stress ph
for broad applications. Examples are energetic materials, in which chemical reactions sustain shock wave[9,10],
and stress corrosion, where chemical reactions at the crack tip need to be coupled with long-range str
[11]. Unfortunately, DFT-based MD simulations are rarely performed overN ∼ 102 atoms because of their O(N3)

computational complexity, which severely limits their applicability.
One computational approach toward quantum mechanically informed million-atom MD simulations em

environment-dependent interatomic potentials[12], based on variable atomic charges[13–17] to describe charg
transfers and bond orders[18,19] to describe bond formation and breakage. In the reactive force field (Rea
approach[12], the parameters in the interatomic potential are “trained” to best fit thousands of DFT calcu
on small(N ∼ 10) clusters of various atomic-species combinations[10]. Thus, the determination of the potent
parameters prior to MD simulations constitutes the most critical and nontrivial part of the ReaxFF-MD app

Alternative to this sequential DFT-informed MD approach is to perform a number of small DFT calculatio
the fly” to compute interatomic forces quantum mechanically during an MD simulation[20–22]. The concurren
DFT-based MD approach may be realized using a divide-and-conquer (DC) algorithm[23–25]. The DC-DFT
algorithm represents the physical system as a union of overlapping spatial domains, and physical prope
computed as linear combinations of domain properties. This algorithm is based on a data locality principl
the quantum near sightedness[26], which naturally leads to O(N) DFT calculations[27–29].

In this paper, we develop an extension of the DC algorithm, i.e. an embedded divide-and-conquer (E
gorithm, in which non-additive correction to the kinetic energy is included with an embedded cluster ap
[30,31]. DFT calculations of atomic clusters (or domains) involved in the EDC algorithm are efficiently perfo
using a real-space approach, in which electronic wave functions are numerically represented on grid points[32,33].
The real-space grid is augmented with coarser multigrids to accelerate the convergence of iterative solutio[5,22,
29,34–36]. Furthermore, a finer grid is adaptively generated near every atom[11,37], in order to accurately opera
ionic pseudopotentials[38–40]to describe electron–ion interactions. We include electron–electron interactio
ing the generalized gradient approximation[41] to the exchange–correlation energy. Since the EDC-DFT algor
involves solutions to small (i.e. the average number of atoms per domain,n < 50) electronic-structure problem
it solves some of the convergence problems often associated with iterative solutions in large electronic-s
calculations. For example, it is difficult to achieve any convergence for nontrivial electronic-structure pro
such as amorphous materials with a large number(> 104) of atoms using a large (105 grid points per electronic
wave function) basis set, unless very good initial guess for the wave functions and the electron number d
available[29]. Our numerical tests show that the EDC-DFT algorithm has robust convergence properties su
starting from random initial wave functions, it is able to obtain converged solutions to such problems.

The EDC-DFT algorithm on the hierarchical real-space grids is implemented on massively parallel com
based on spatial decomposition[3,29], in which the physical system is divided into subsystems of equal vol
and each subsystem is assigned to a processor in a parallel computer. Each subsystem (or processor) con
more domains of the EDC algorithm. For each domain, an O(n3) DFT algorithm is used to calculate its electron
structures, with little information needed from other processors. The resulting large computation/commu
ratio makes this approach highly scalable on parallel computers.

This paper is organized as follows. The next section describes the EDC-DFT algorithm for quantum m
ically based MD simulations, and its parallelization is discussed in Section3. Numerical results are presented
Section4, and finally Section5 contains summary.
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2. Embedded divide-and-conquer density-functional-theory algorithm on hierarchical real-space grids

In the Kohn–Sham formulation[7] of the density-functional theory (DFT)[6,8], the energy of a physical sys
tem is expressed as a functional ofN atomic positions,�RN = { �RI | I = 1, . . . ,N}, andNband one-electron wave
functions (or Kohn–Sham orbitals),ψNband = {ψn(�r) | n = 1, . . . ,Nband}. The energy functional in the atomic un
reads

E[ρ] = Ts[ρ] +
∫

d�r ρ(�r)vloc(�r) + Enl[ρ]

(1)+ 1

2

∫
d�r

∫
d�r ′ ρ(�r)ρ(�r ′)

|�r − �r ′| + Exc[ρ] +
∑
I<J

ZIZJ

| �RI − �RJ | ,

whereTs[ρ] is the kinetic energy of a noninteracting electron gas in its ground state with the number densitρ(�r),
of valence electrons,Exc[ρ] is the exchange–correlation energy, the last term is the electrostatic energy b
ions with valence,{ZI | I = 1, . . . ,N}, and

(2)vloc(�r) =
∑
I

vloc
I (�r − �RI )

is the local ionic pseudopotential. In Eq.(1), the nonlocal pseudopotential energy[38–40], Enl[ρ], is given by

(3)Enl[ρ] =
∑
n

∑
I

∑
lm

∫
d�r ψ∗

n (�r)ξ I
lm(�r − �RI )

∫
d�r ′ ξI∗

lm(�r ′ − �RI )ψn(�r ′),

whereξI
lm(�r − �RI ) is a projection state localized at�RI with the angular momentum quantum numbers,l andm.

The valence electron number density,ρ(�r), is calculated as

(4)ρ(�r) = 2
Nband∑
n=1

∣∣ψn(�r)
∣∣2,

where only doubly occupied states are considered.
The ground-state energy of the system, with given atomic positions,�RN , is obtained by minimizingE[ρ] with

respect toψNband, subjected to orthonormality constraints,

(5)
∫

d�r ψ∗
n (�r)ψn′(�r) = δnn′ ≡

{
1 (n = n′),
0 (n �= n′).

The constrained minimization leads to the Kohn–Sham equations,

(6)Ĥψn(�r) = εnψn(�r),
where the Kohn–Sham Hamiltonian operator,Ĥ , is defined through

Ĥψn(�r) =
[
−1

2
∇2 + vloc(�r) + vH(�r) + vxc(�r)

]
ψn(�r)

(7)+
∑
I

∑
lm

ξ I
lm(�r − �RI )

∫
d�r ′ ξI∗

lm(�r ′ − �RI )ψn(�r ′).

In Eq.(7), ∇2 is the Laplacian operator, the Hartree potential is given by

(8)vH(�r) =
∫

d�r ′ ρ(�r ′)
|�r − �r ′| ,

and we use the generalized gradient approximation[41] to the exchange–correlation potential,vxc(�r) =
δE /δρ(�r), which is a function of the local value ofρ(�r) and its gradient,∇ρ(�r).
xc
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Fig. 1. Schematic of the divide-and-conquer algorithm in 2D. The physical spaceΩ is a union of overlapping domains,Ω = ⋃
α Ωα . Each

domain is further decomposed into the non-overlapping core,Ω0α , the primary buffer layer,Γ1α (see the shaded area), and the secondary b
layer,Γ2α (see the hatched area). The depth of the primary and total (= primary+ secondary) buffer layers ared1 andd , respectively.

2.1. Divide-and-conquer density-functional-theory algorithm

In the divide-and-conquer (DC) algorithm[23–25,42], the three-dimensional spaceΩ is covered with overlap
ping domains (seeFig. 1),

(9)Ω =
⋃
α

Ωα.

Each domain,Ωα , is further decomposed into its sub-volumes,

(10)Ωα = Ω0α ∪ Γ1α ∪ Γ2α,

whereΩ0α is the non-overlapping core,

(11)Ω =
⋃
α

Ω0α; Ω0α ∩ Ω0β = 0 (α �= β),

andΓ1α andΓ2α are the primary and secondary buffer layers, respectively[25].
For each domainα, we define a domain support function,pα(�r), such that it is only nonzero within the core a

primary buffer layer of the domain,

(12)pα(�r) = 0 if �r /∈ Ω0α ∪ Γ1α,

with the sum rule,

(13)
∑
α

pα(�r) = 1,

satisfied at every spatial position,�r . Because of the sum rule, the valence electron number density is e
decomposed into

(14)ρ(�r) =
∑
α

ρα(�r),

where

(15)ρα(�r) = pα(�r)ρ(�r)
is the partial contribution to the electron density from domainα.

The essential approximation in the DC-DFT algorithm is the replacement of the self-consistent Kohn
Hamiltonian,Ĥ , by its subspace approximation,Ĥ , which is formally identical to Eq.(7), but the Kohn–Sham
α
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equations, Eq.(6), are solved in each domain,Ωα , to obtain locally orthonormal Kohn–Sham orbitals,{ψα
n (�r)}:

(16)
∫

Ωα

d�r ψα∗
n (�r)ψα

n′(�r) = δnn′ ≡
{

1 (n = n′),
0 (n �= n′).

Boundary conditions on{ψα
n (�r)} are imposed at the domain boundary,∂Ωα . We use either the rigid-wall bounda

condition, in which the wave function vanishes at the boundary, or the periodic boundary condition. Th
function values in the secondary buffer layer,Γ2α , may be contaminated by the artificial boundary condition
∂Ωα . This is the reason why the domain support function,pα(�r), is made zero inΓ2α [25], so that the contaminate
wave function values do not contribute to the density,ρ(�r).

To determine the number of occupied local Kohn–Sham orbitals in the DC-DFT algorithm, we first no
Eq.(4) is an expansion of the valence electron density,

(17)ρ(�r) = 2〈�r|Θ(εF − Ĥ )|�r〉,
in terms of the eigenstates of the Kohn–Sham Hamiltonian,Ĥ . In Eq. (17), |�r〉 is the coordinate eigenstate, t
step function,Θ(x), is 1 forx > 0 and is 0 otherwise, and the Fermi energy,εF, is determined from the number o
valence electrons,Nel, through the relation,

(18)Nel =
∫

d�r ρ(�r).
In the DC-DFT algorithm, the local Kohn–Sham orbitals,{ψα

n (�r)}, are compactly supported on each domain,Ωα ,
and thus the partial density,ρα(�r), is expanded in terms of them as

(19)ρα(�r) = pα(�r)
∑
n

f
(
εα
n

)∣∣ψα
n (�r)∣∣2,

where εα
n is the nth eigenvalue ofĤα , and f (εα

n ) = 2Θ(εF − εα
n ). Accordingly, the normalization condition

Eq.(18), reads

(20)Nel =
∑
α

∑
n

f
(
εα
n

)∫
d�r pα(�r)∣∣ψα

n (�r)∣∣2.
In MD simulations, we numerically integrate Newton’s equations of motion,

(21)MI

d2

dt2
�RI = �FI ,

where the force,�FI , acting on theI th ion, is calculated according to the Hellmann–Feynman theorem as

�FI = �F ion
I + �F loc

I + �F nl
I

=
∑

J ( �=I )

ZIZJ

�RI − �RJ

| �RI − �RJ |3 +
∫

d�r ρ(�r)(�r − �RI )
dvloc

d|�r − �RI |

(22)+
∑
α

∑
n

f
(
εα
n

)∑
lm




∫
d�r pα(�r)ψα∗

n (�r) ∂ξI
lm

∂(�r− �RI )

∫
d�r ′ ξI∗

lm(�r ′ − �RI )ψ
α
n (�r ′)

+ ∫
d�r pα(�r)ψα∗

n (�r)ξ I
lm(�r − �RI )

∫
d�r ′ ∂ξI∗

lm

∂(�r ′− �RI )
ψα

n (�r ′)


 .

In Eq. (22), the ionic contribution,�F ion
I , can be computed efficiently with O(N) operations using the fast mult

pole method (FMM)[43]. Scalable FMM algorithms to compute�F ion
I on parallel computers are described in o

previous publications[44,45]. For systems with the periodic boundary condition, methods based on the E
summation are effective, including the O(N logN) particle mesh Ewald method[46]. (A parallel Ewald algorithm
is described in Ref.[47].)
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2.2. Embedded-cluster scheme for non-additive kinetic energy correction

The DC-DFT algorithm amounts to approximating the kinetic energy functional,Ts[ρ], as

(23)Ts[ρ] =
∑
α

T ∗
s [ρα],

where

(24)T ∗
s [ρα] =

∑
n

f
(
εα
n

)∫
d�r pα(�r)ψα∗

n (�r)
(

−1

2
∇2

)
ψα

n (�r),

i.e. the kinetic energy is additive with respect to domain contributions. Its non-additive correction can be intr
using an embedded-cluster scheme[30,31], in which the kinetic energy of the total system is expressed as

(25)Ts[ρ] =
∑
α

T ∗
s [ρα] + Ts[ρ] −

∑
α

T ∗
s [ρα],

and an explicit functional of the electron density is used for the second and third terms. For example, the T
Fermi approximation leads to an expression for the kinetic energy,

(26)Ts[ρ] =
∑
α

T ∗
s [ρα] + CTF

(∫
d�r ρ(�r)5/3 −

∑
α

∫
d�r ρα(�r)5/3

)
,

whereCTF = 3(3π2)2/3/10. Accordingly, the local Kohn–Sham Hamiltonian becomes

Ĥ αψα
n (�r) =

[
−1

2
∇2 + vloc(�r) + vH(�r) + vxc(�r) + 5

3
CTF

(
ρ(�r)2/3 − ρα(�r)2/3)]ψα

n (�r)

(27)+
∑
I

∑
lm

ξ I
lm(�r − �RI )

∫
d�r ′ ξI∗

lm(�r ′ − �RI )ψ
α
n (�r ′).

2.3. Hierarchical real-space grids

For efficient parallel implementation of DFT, we have developed a hierarchical real-space grid method
on higher-order finite differencing[32,33]and multigrid acceleration[34,35]. In the hierarchical grid method, th
real-space multigrids are adaptively refined[37] near each atom to accurately operate the ionic pseudopote
on the electronic wave functions (seeFig. 2).

Fig. 2. Schematic of hierarchical real-space grids in 2D. Coarse multigrids (gray) are used to accelerate iterative solutions of the DFT p
the original real-space grid (corresponding to the grid refinement level,l = 3). The bottom panel shows that fine grids are adaptively gene
near the atoms (spheres) to accurately operate the ionic pseudopotentials on the wave functions.
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In the high-order finite difference method for calculating the derivatives (i.e. kinetic-energy operator) in Eq(27),
ψα

n (�r) and ρ(�r) are represented by numerical values on real-space grid points. The kinetic energy ope
expanded using the finite difference method as[32]

(28)
∂2ψn(�r)

∂x2

∣∣∣∣�r=(xi ,yj ,zk)

=
L∑

λ=−L

Cλψ
α
n (xi + λh,yj , zk) + O(h2L+2),

whereh is the grid spacing, andL is the order of the finite difference method. Since the calculations are perfo
entirely in real space, this method is most suitable for localized configurations such as clusters, which is th
the EDC-DFT algorithm. Since the finite difference expansion involves only short-ranged operations, an e
implementation on parallel computers is possible[28,29].

The constrained minimization ofE[ρ] with respect to{ψα
n } is performed by searching for an energy-minimu

iteratively based on the conjugate-gradient (CG) method[48]. The self-consistent minimization loop consists
the following steps:

(i) Calculate the electronic potentials,vloc(�r), {ξI
lm(�r − �RI )}, vH(�r), andvxc(�r), using the density,ρ(�r), from the

previous step or the starting value (in case of the first step); these potentials are common to all the d
the Hartree potential is obtained by iterative solution to the Poisson equation,∇2vH(�r) = −4πρ(�r), using the
multigrid method[49].

(ii) For all domainsα, perform the following.
(a) Perform a unitary transformation of{ψα

n } to diagonalize the Hamiltonian matrix,Hα
nn′ = ∫

Ωα
d�r ψα∗

n (�r) ×
Ĥ αψα

n′(�r).
(b) Improve{ψα

n (�r)} iteratively.
(c) Orthonormalize{ψα

n (�r)} according to Eq.(16)with the Gram–Schmidt method[48].
(iii) Determine the Fermi energy,εF, to reproduce the number of valence electrons,Nel, by solving Eq.(20)by the

Newton–Raphson method[49].
(iv) Calculate the new density,ρ(�r), according to Eqs.(14) and (19), using the updated{ψα

n (�r)}; refineρ(�r) by
mixing the new and old densities using the Pulay charge-mixing scheme[50].

The above steps, (i)–(iv), are repeated until the self-consistency between{ψα
n } and ρ(�r) is achieved within a

prescribed error tolerance.
The step (ii)(b) in the self-consistent loop includes two inner loops: One is associated with the band inden and

the other is the CG iteration for each band involving a loop index,iCG. To reduce long wavelength compone
of the residual, we use the multigrid method[11,29,34]. On a coarser grid, the following residual equations
solved,

(29)
{−1

2∇2 + v(�r)}ϕα
n (�r) = gα

n (�r).
In this method, the electronic potential,v(�r), as well as the residual vector,gα

n (�r), on a fine grid are restricted to
coarser grid by using restriction operations. Here,

(30)v(�r) = vloc(�r) + vH(�r) + vxc(�r) + 5
3CTF

(
ρ(�r)2/3 − ρα(�r)2/3)

excludes the nonlocal pseudopotential, since it is short-ranged and does not influence the solutions on coa
The solution,ϕα

n (�r), of Eq.(29)on the coarse grid is prolongated to the fine grid, and is added toψα
n (�r).

The computational complexity of the EDC-DFT algorithm is O(N) for N atoms, as analyzed below. Since t
most time consuming part is step (ii), we concentrate on the computational complexity of this step. The orth
ization in step (ii)(c) requires O(Ndomainn

2
bandngrid) operations, whereNdomainis the number of domains, andnband

andngrid are the number of Kohn–Sham orbitals and that of real-space grid points per domain, respectivel
we chooseN = O(N), bothn andn are O(n) = O(1), wheren = N/N is the average numbe
domain band grid domain
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Fig. 3. Schematic of the parallel divide-and-conquer algorithm in 2D. The physical system is divided into subsystems,P0, . . . ,P3, of equal
volume, and each subsystem is assigned to a processor in a parallel computer. Each subsystem, in turn, consists of multiple non-over
domains,Ω00, . . . ,Ω08. To perform electronic-structure calculations on overlapping domains,Ω0, . . . ,Ω8, on processorP0, the contributions
to the total electron density,ρ(�r), within the primary buffer-layer depthd1 (see the hatched area), need to be cached from the nearest-ne
processors. In addition, the ionic positions within depthd+rc (enclosed by dashed lines) need to be cached from the nearest-neighbor pro
to compute ionic pseudopotentials. Here,d andrc are the total buffer-layer depth and the range of nonlocal pseudopotentials, respective

of atoms per domain. Consequently, this operation scales as O(Nn3) = O(N). All calculations in step (ii) excep
for the orthogonalization require O(Ndomainnbandngrid) = O(Nn2) = O(N) operations. The orthogonalization ste
which scales as O(Nn3), is negligible[29] for relatively small domains(n < 100) used in our calculations.

3. Parallelization

The hierarchical grid EDC-DFT algorithm has been implemented on parallel computers based on sp
composition[3,29], in which the physical system is divided into subsystems of equal volume, and each sub
is assigned to a processor in a parallel computer (seeFig. 3). The processors are logically arranged as a 3D m
of sizeP = Px × Py × Pz. Each subsystem, in turn, consists of multiple domains.

In this parallelization scheme, each domain is local to a processor, and the Kohn–Sham orbitals,{ψα
n (�r)}, need

not be exchanged between processors. Consequently, there is no need for the massive communicatio
for orthonormalization in conventional parallel DFT algorithms[29]. Instead, there are two major sources of
terprocessor communications in the parallel EDC-DFT algorithm. First, for the computation of the total e
density,ρ(�r), in a given domain,Ωα , partial contributions,{ρα′

(�r)}, within the primary buffer-layer depthd1, need
to be cached from the nearest-neighbor processors,α′. Second, the positions of ions within depthd + rc need to
be cached from the nearest-neighbor processors to compute ionic pseudopotentials. Here,d and rc are the total
buffer-layer depth and the range of nonlocal pseudopotentials, respectively.

The computational time of this parallel EDC-DFT algorithm scales as O((Ndomain/P )n3) = O((N/P )n3). The
communication time for the above two tasks, on the other hand, scales as O((N/P )2/3). The communication
overhead of this algorithm, O((N/P )−1/3n−3), is extremely low, because of the small surface-to-volume r
and the absence of communicating O(n) Kohn–Sham orbitals. The parallel multigrid algorithm to compute
Hartree potential fromρ(�r) requires additional interprocessor communications, which scales as O(logP) [51]. For
coarse-grained applications, in whichNgrid/P 
 P , however, this logarithmic overhead is negligible.

4. Numerical results

We have tested the convergence properties and scalability of the parallel EDC-DFT algorithms, as we
applicability to MD simulations, for a number of materials, including amorphous cadmium selenide (CdS
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liquid rubidium (Rb). For these numerical tests, we have used periodic boundary conditions to obtain loca
Sham orbitals, because a faster convergence has been achieved compared with the rigid wall boundary c
For the support function, we use a cubic interpolation function such that both the function value and its deriv
continuous atpα(�r) = 0 and 1. Since we discard the wave functions within the secondary buffer layers, num
results are likely to be insensitive to the choice of the support function. The program is written in Fortran 9
MPI (Message Passing Interface) for massage passing.

Numerical tests have been performed on an IBM SP4 computer at the Naval Oceanographic Office (NAV
jor Shared Resource Center and Intel Xeon-based Linux clusters at the Collaboratory for Advanced Compu
Simulations (CACS) and the Research Computing Facility (RCF) at the University of Southern California (
The 1184-processor SP4 consists of 148 nodes or LPARs (Logical Partitions), each containing eight 1
POWER4 processors. (Four LPARs, i.e. 32 processors, in turn constitute a physical unit.) An LPAR conta
dual-processor chips, which share 8 GB of memory. In each chip, the two processors share 1.4 MB L2 ca
SP4 uses a proprietary network and IBM’s Colony II switch to communicate between nodes. The network
provides 2.88 Gb/s bi-directional bandwidth, with 21 µs latency. The SP4 runs the AIX 5.1 operating syste
266-processor CACS Linux cluster consists of 133 nodes, with two 2.8 GHz Intel Xeon processors and 2G
memory per node, 512 KB L2 cache per processor, and 533 MHz bus. These nodes are interconnected
com’s Myrinet with 4 Gb/s of point-to-point bandwidth in the duplex mode and 7–9 µs latency. The CACS
runs Red Hat Linux 8.0 operating system, Myricom GM network software, MPICH-GM for message passin
Intel Fortran compiler. The 1976-processor RCF Linux clusters consists of Intel Xeon and Pentium III proc
including 464 3.06 GHz Xeon processors, connected by Myrinet. The RCF cluster also runs Red Hat Lin
Intel Fortran.

We first test the convergence of the EDC-DFT algorithm, with respect to the domain size.Fig. 4 shows the
potential energy as a function of the domain size for an amorphous CdSe system containing 512 atoms i
cell of length, 45.664 a.u. The amorphous configuration is prepared by a melt-quench procedure[52] in MD
simulation based on an empirical interatomic potential. Here, and in the following, the grid spacing is ch
0.476 a.u. The total buffer size,d , is fixed as 2.854 a.u. In all the numerical tests, the primary buffer size is ch
asd1 = d/2. The potential energy converges within 0.003 a.u. per atom above the domain size 6 a.u. The
of self-consistent iterations required for convergence decreases with increased domain size.

Next, we test the convergence of the potential energy as a function of the buffer size,d , for an amorphous
CdSe system containing 512 atoms in a cubic cell of length, 45.664 a.u. (seeFig. 5). The domain size is fixed

Fig. 4. Potential energy per atom as a function of the domain size for an amorphous CdSe system (512 atoms in a cubic cell of s
45.664 a.u.). The buffer size is fixed as 2.854 a.u. The atomic units are used for both energy and length. Numerals in the figure in
number of self-consistent iterations required for the convergence of the electron density within〈{(ρi (�r)−ρi−1(�r))/ρ0}2〉 � 10−4, whereρi(�r)
is the electron density atith iteration,ρ0 is the average electron density, 0.0215 a.u., and the brackets denote the average over the g
entire system.
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Fig. 5. Potential energy as a function of the buffer length,d , for an amorphous CdSe system (512 atoms in a cubic cell of side length, 45.664
The domain size is fixed as 11.416 a.u. The atomic units are used for both energy and length. Numerals in the figure indicate the
self-consistent iterations required for the convergence of the electron density within〈{(ρi (�r) − ρi−1(�r))/ρ0}2〉 � 10−4, whereρi(�r) is the
electron density atith iteration,ρ0 is the average electron density, 0.0215 a.u., and the brackets denote the average over the grid for
system.

Fig. 6. The potential energy as a function of the number of self-consistent iterations for an amorphous CdSe system (32,768 atoms
cell of side length, 182.656 a.u.), whereEmin denotes the converged energy (or the potential energy obtained at the 50th iteration). The
and buffer sizes are 11.416 and 5.708 a.u., respectively. The atomic units are used for both energy and length. The calculation was
on 512 IBM POWER4 processors.

as 11.416 a.u. The potential energy converges within 0.001 a.u. per atom aboved = 4 a.u. The number of self
consistent iterations required for convergence decreases with increased buffer length.

To test the convergence of the EDC-DFT algorithm for larger systems with irregular atomic distributionsFig. 6
shows the potential energy as a function of the number of self-consistent iterations for an amorphous CdS
containing 32,768 atoms in a cubic cell of length, 182.656 a.u. InFig. 6, Emin denotes the converged ener
(or the potential energy obtained at the 50th iteration). The domain and buffer sizes are 11.416 and 5.
respectively. This result shows that the algorithm is convergent for disordered 104-atom systems with nontrivia
electronic structures. This test has been performed on 512 IBM POWER4 processors.

Although convergent for the 32,768-atom amorphous CdSe, the convergence rate is slower than those fo
systems.Fig. 7compares the convergence of the electron density for 32,768-atom and 512-atom amorpho
systems. The left panel shows the convergence of the electron density in the self-consistent iterations for
phous CdSe system containing 32,768 atoms in a cubic cell of length, 182.656 a.u. Here,ρi(r) is the electron
density atith iteration, andρ0 is the average electron density, 0.0215 a.u. The figure plots the electron dens
eraged over the grid in the entire system. The domain and buffer sizes are 11.416 and 5.708 a.u., respect
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Fig. 7. (Left) Convergence of the electron density in the self-consistent iterations for an amorphous CdSe system (32,768 atoms in a
of side length, 182.656 a.u.).ρi(r) is the electron density atith iteration,ρ0 is the average electron density, 0.0215 a.u., and the brackets d
the average over the grid in the entire system. The domain and buffer sizes are 11.416 and 5.708 a.u., respectively. (Right) Conv
the electron density in the self-consistent iterations for an amorphous CdSe system (512 atoms in a cubic cell of side length, 45.664
domain and buffer sizes are the same as in the left panel.

Fig. 8. Total (solid curve) and potential (dashed curve) energies in the atomic unit as a function of time in a molecular-dynamics sim
liquid Rb at 1400 K (432 atoms in a cubic cell of side length, 65.696 a.u.). The domain and buffer sizes are 16.424 and 8.212 a.u., re

right panel shows the same quantity for a 512-atom amorphous CdSe system in a cubic cell of length, 45
The convergence for the 32,768-atom system is slightly slower than for the 512-atom system. However,
vergence rate of the EDC-DFT algorithm is sufficiently high to allow practical electronic-structure calculatio
disordered 104-atom systems.

To test the applicability of the EDC-DFT algorithm for first principles MD simulations,Fig. 8 shows the tota
and potential energies as a function of time in an MD simulation of liquid Rb at 1400 K. The system conta
atoms in a cubic cell of length, 65.696 a.u. The domain and buffer sizes are 16.424 and 8.212 a.u., resp
The time discretization unit is�t = 4 fs. The total energy is conserved within 2× 10−4 a.u. per atom for 500 MD
time steps. The figure demonstrates the applicability of the EDC-DFT algorithm for large-scale first princip
simulations on parallel computers.

Finally, we test the scalability of the parallel EDC-DFT algorithm.Fig. 9 shows the wall-clock time per sel
consistent iteration with scaled workloads—512P atom CdSe system onP processors of an Intel Xeon-bas
Linux cluster. By increasing the number of atoms linearly with the number of processors, the wall-cloc
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Fig. 9. Wall-clock (circles) and communication (squares) times per self-consistent iteration of the parallel EDC-DFT algorithm, wit
workloads—512P atom CdSe system onP processors(P = 1, . . . ,128) on an Intel Xeon-based Linux cluster.

increases little, indicating an excellent scalability. To quantify the parallel efficiency, we first define the sp
the EDC-DFT algorithm as a product of the total number of atoms and the number of self-consistent ite
executed per second. The constant-grain speedup is given by the ratio between the speed ofP processors and tha
of one processor. The constant-grain efficiency is the constant-grain speedup divided byP . For a 65,536-atom CdS
system, the parallel efficiency is 0.985 on 128 Intel Xeon processors.Fig. 9 also shows the communication tim
per self-consistent iterations as a function ofP . The communication overhead increases little for larger numbe
processors, and is negligible compared with the computational time.

5. Summary

We have developed a linear-scaling algorithm to perform large-scale first principles MD simulations, in
interatomic forces are computed quantum mechanically in the framework of the DFT. The embedded divi
conquer algorithm computes the electronic structure in O(N) time and includes non-additive contribution to t
kinetic energy. Electronic wave functions are represented on a real-space grid, which is augmented wit
multigrids to accelerate the convergence of iterative solutions and adaptive fine grids around atoms to ac
calculate ionic pseudopotentials. Spatial decomposition is employed to implement the hierarchical-grid ED
algorithm on massively parallel computers. A converged solution is obtained for a 32,768-atom amorphou
system on 512 IBM Power 4 processors, demonstrating the applicability of the EDC-DFT algorithm for
scale electronic structure calculations with irregular atomic distributions. The total energy is well conserved
MD simulations of liquid Rb, showing the applicability of this algorithm for first principles MD simulatio
The parallel EDC-DFT algorithm exhibits an excellent scalability: parallel efficiency is 0.985 on 128 Intel
processors for a 65,536-atom CdSe system. Such O(N) algorithms are indispensable for application softw
to keep up with the Moore’s law of computer hardware, i.e. compute power of a processor doubles e
months.



F. Shimojo et al. / Computer Physics Communications 167 (2005) 151–164 163

awa
rs under

ux clus-
vanced

and Engi-
Acknowledgements

This work was partially supported by AFOSR–DURINT, ARO–MURI, DARPA–PROM, DOE, NSF, and Ok
Foundation. Numerical tests were performed at Department of Defense’s Major Shared Resource Cente
Challenge and CHSSI projects, and at the University of Southern California using the 1976-processor Lin
ter at the Research Computing Facility and the 432-processor Linux clusters at the Collaboratory for Ad
Computing and Simulations.

References

[1] F.F. Abraham, R. Walkup, H.J. Gao, et al., Proc. Natl Acad. Sci. USA 99 (2002) 5777.
[2] T.C. Germann, P.S. Lomdahl, IEEE Comput. Sci. Engrg. 1 (2) (1999) 10.
[3] A. Nakano, R.K. Kalia, P. Vashishta, et al., Sci. Programming 10 (2002) 263.
[4] R. Car, M. Parrinello, Phys. Rev. Lett. 55 (1985) 2471.
[5] J.-L. Fattebert, F. Gygi, Comput. Phys. Comm. 162 (2004) 24.
[6] P. Hohenberg, W. Kohn, Phys. Rev. 136 (1964) B864.
[7] W. Kohn, L.J. Sham, Phys. Rev. 140 (1965) A1133.
[8] W. Kohn, P. Vashishta, in: N.H. March, S. Lundqvist (Eds.), Inhomogeneous Electron Gas, Plenum, 1983, p. 79.
[9] D.W. Brenner, D.H. Robertson, M.L. Elert, et al., Phys. Rev. Lett. 70 (1993) 2174.

[10] A. Strachan, A.C.T. van Duin, D. Chakraborty, et al., Phys. Rev. Lett. 91 (2003) 098301.
[11] S. Ogata, F. Shimojo, R.K. Kalia, et al., J. Appl. Phys. 95 (2004) 5316.
[12] A.C.T. van Duin, S. Dasgupta, F. Lorant, et al., J. Phys. Chem. A 105 (2001) 9396.
[13] A.K. Rappe, W.A. Goddard, J. Phys. Chem. A 95 (1991) 3358.
[14] F.H. Streitz, J.W. Mintmire, Phys. Rev. B 50 (1994) 11996.
[15] S.W. Rick, S.J. Stuart, B.J. Berne, J. Chem. Phys. 101 (1994) 6141.
[16] A. Nakano, Comput. Phys. Comm. 104 (1997) 59.
[17] T. Campbell, R.K. Kalia, A. Nakano, et al., Phys. Rev. Lett. 82 (1999) 4866.
[18] J. Tersoff, Phys. Rev. B 37 (1988) 6991.
[19] D.W. Brenner, Phys. Stat. Sol. (b) 217 (2000) 23.
[20] H. Kikuchi, R.K. Kalia, A. Nakano, et al., in: Proc. Supercomputing ’02, IEEE, 2002.
[21] S. Ogata, E. Lidorikis, F. Shimojo, et al., Comput. Phys. Comm. 138 (2001) 143.
[22] S. Ogata, F. Shimojo, R.K. Kalia, et al., Comput. Phys. Comm. 149 (2002) 30.
[23] W. Yang, Phys. Rev. Lett. 66 (1991) 1438.
[24] W. Yang, T.-S. Lee, J. Chem. Phys. 103 (1995) 5674.
[25] S.L. Dixon, K.M. Merz, J. Chem. Phys. 107 (1997) 879.
[26] W. Kohn, Phys. Rev. Lett. 76 (1996) 3168.
[27] S. Goedecker, Rev. Mod. Phys. 71 (1999) 1085.
[28] F. Shimojo, T.J. Campbell, R.K. Kalia, et al., Future Generation Comput. Syst. 17 (2000) 279.
[29] F. Shimojo, R.K. Kalia, A. Nakano, et al., Comput. Phys. Comm. 140 (2001) 303.
[30] T. Wesolowsk, A. Warshel, J. Phys. Chem. 98 (1994) 5183.
[31] N. Govind, Y.A. Wang, E.A. Carter, J. Chem. Phys. 110 (1999) 7677.
[32] J.R. Chelikowsky, N. Troullier, K. Wu, et al., Phys. Rev. B 50 (1994) 11355.
[33] J.R. Chelikowsky, Y. Saad, S. Ögüt, et al., Phys. Stat. Sol. (b) 217 (2000) 173.
[34] E.L. Briggs, D.J. Sullivan, J. Bernholc, Phys. Rev. B 54 (1996) 14362.
[35] J.-L. Fattebert, J. Bernholc, Phys. Rev. B 62 (2000) 1713.
[36] T.L. Beck, Rev. Mod. Phys. 72 (2000) 1041.
[37] T. Ono, K. Hirose, Phys. Rev. Lett. 82 (1999) 5016.
[38] L. Kleinman, D.M. Bylander, Phys. Rev. Lett. 48 (1982) 1425.
[39] N. Troullier, J.L. Martins, Phys. Rev. B 43 (1991) 8861.
[40] R.D. Kingsmith, M.C. Payne, J.S. Lin, Phys. Rev. B 44 (1991) 13063.
[41] J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865.
[42] D.E. Keyes, Y. Saad, D.G. Truhlar, Domain-Based Parallelism and Problem Decomposition Methods in Computational Science

neering, SIAM, Philadelphia, 1995.
[43] L. Greengard, V. Rokhlin, J. Comput. Phys. 73 (1987) 325.



164 F. Shimojo et al. / Computer Physics Communications 167 (2005) 151–164

, 1992.
[44] A. Nakano, R.K. Kalia, P. Vashishta, Comput. Phys. Comm. 83 (1994) 197.
[45] S. Ogata, T.J. Campbell, R.K. Kalia, et al., Comput. Phys. Comm. 153 (2003) 445.
[46] T. Darden, D. York, L. Pederson, J. Chem. Phys. 98 (1993) 10089.
[47] R.K. Kalia, S.W. de Leeuw, A. Nakano, et al., Comput. Phys. Comm. 74 (1993) 316.
[48] M.C. Payne, M.P. Teter, D.C. Allan, et al., Rev. Mod. Phys. 64 (1992) 1045.
[49] W.H. Press, S.A. Teukolsky, W.T. Vetterling, et al., Numerical Recipes, second ed., Cambridge University Press, Cambridge, UK
[50] P. Pulay, Chem. Phys. Lett. 73 (1980) 393.
[51] A. Nakano, P. Vashishta, R.K. Kalia, Comput. Phys. Comm. 83 (1994) 181.
[52] J.P. Rino, I. Ebbsjo, P.S. Branicio, et al., Phys. Rev. B 70 (2004) 045207.


	Embedded divide-and-conquer algorithm on hierarchical real-space grids: parallel molecular dynamics simulation  based on linear-scaling density functional theory
	Introduction
	Embedded divide-and-conquer density-functional-theory algorithm on hierarchical real-space grids
	Divide-and-conquer density-functional-theory algorithm
	Embedded-cluster scheme for non-additive kinetic energy correction
	Hierarchical real-space grids

	Parallelization
	Numerical results
	Summary
	Acknowledgements
	References


