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a b s t r a c t

We have implemented a quantummolecular dynamics simulation incorporating nonadiabatic electronic
transitions onmassively parallel computers to study photoexcitation dynamics of electrons and ions. The
nonadiabatic quantum molecular dynamics (NAQMD) simulation is based on Casida’s linear response
time-dependent density functional theory to describe electronic excited states and Tully’s fewest-
switches surface hopping approach to describe nonadiabatic electron–ion dynamics. To enable large
NAQMD simulations, a series of techniques are employed for efficiently calculating long-range exact
exchange correction and excited-state forces. The simulation program is parallelized using hybrid spatial
and band decomposition, and is tested for various materials.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Molecular dynamics involving electronic transitions is impor-
tant in various processes such as photoexcitation dynamics of elec-
trons and ions [1]. In nonadiabatic quantum molecular dynamics
(NAQMD) simulation [2–8] based on the fewest-switches surface-
hopping (FSSH) approach [9,10], electrons at each time instance
occupy one of the excited eigenstates corresponding to the atomic
configuration at the same time instance, and transitions between
the excited states are made stochastically according to the tran-
sition probability determined by non-adiabatic coupling (NAC).
The NAC between excited states is described by a density matrix,
and its time evolution is calculated using time-dependent density
functional theory (TDDFT) [11–16]. Here, ionic motions follow the
classical Newtonianmechanics, where interatomic forces are com-
puted quantum mechanically based on the Hellmann–Feynman
theorem [1].

In order to includemany-body effects in NAQMD, electronic ex-
cited states are described as a linear combination of electron–hole
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pairs within the linear-response TDDFT (LR-TDDFT) [4,5,17–19]. In
LR-TDDFT, electronic excitation energies are calculated from the
poles of an electron–hole pair response function. This amounts to
solving an eigenvalue problem,wheremany-body effects are intro-
duced through couplingmatrix elements consisting of the random-
phase-approximation (RPA) and exchange–correlation (xc) terms,
with the latter represented by the xc functional. Retaining only
the RPA term amounts to summing ring diagrams in perturbative
expansion of the response function, which accounts for collective
electron dynamics such as plasmons [20]. Static local xc function-
als such as the generalized gradient approximation (GGA) [21] do
not change the situation drastically. TDDFT simulations with local
xc functionals have been used to study dynamic correlation effects
such as plasmon-assisted resonant tunneling [22,23].

In LR-TDDFT, electronic excited states are often expanded in
terms of ground-state Kohn–Sham (KS) orbitals [24] in density
functional theory (DFT) [25,26] as a basis set. Using a local
xc functional such as GGA in this procedure leads to several
known problems. First, electronic band gaps of semiconductors
and insulators are underestimated. This problem may be rectified
by introducing the self-energy within the GW approximation [27],
or through self-interaction correction (SIC) [28] within DFT.
TDDFT simulations with SIC [29] have accurately reproduced
exact current–voltage characteristics of quantum dot diodes [30].
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The second problem is that any local xc functional fails to describe
a charge-transfer (CT) excited state at large molecular separation,
e.g., in a dimer of electron donor and acceptor molecules in
vacuum [31]. Here, the correct long-range CT is described by
the nonlocal Hartree–Fock (HF) exchange potential [31]. This is
understandable, since the binding of an electron–hole pair (or
exciton) is described by summing ladder diagrams in perturbative
expansion, instead of the ring diagrams in RPA, and the two types
of diagrams are interrelated through the exchange operation, i.e.
swapping the labels of electronic orbitals [20]. This problem can
be remedied bymany-body approaches such as the Bethe–Salpeter
equation (BSE) [32], or within LR-TDDFT using range-separated
hybrid xc functionals that incorporate long-range exact exchange
correction [33,34].

Though the generalized KS scheme [24,35] based on hybrid
exact-exchange functionals thus resolves the known deficiency
of LR-TDDFT using local GGA-type KS schemes, it incurs orders-
of-magnitude larger computational costs due to the required
exchange integrals between electronic-orbital pairs. Recently, a
number of approaches have been proposed to speed up this
computation, including a compact representation of the exchange
operator [36] and hardware acceleration of exchange integrals
using graphics processing units [37]. However, NAQMD simulation
using hybrid functionals and large basis sets (e.g. the plane-
wave basis set) remains a challenge for systems involving over
100 atoms. This is a serious drawback, since many applications
(e.g. molecular design of electron donor/acceptor interfaces for
efficient solar cells) require many hundreds of atoms to represent
molecular orientations and interfacial morphologies [38]. Here,
such large NAQMD simulations are enabled by employing a
recently proposednon-self-consistent (NSC) approximation [39] to
hybrid functionals.

Another major computational cost in the LR-TDDFT based
NAQMD simulation is associated with the calculation of inter-
atomic forces, when the electrons are in an excited state. Vari-
ous computational approaches have been proposed to speed up
excited-state force calculations [40,41], but those for NAQMD sim-
ulations involving hundreds of atoms are still prohibitive. Here,
we adopt a NSC excited-state force calculation method based on
a modified Harris–Foulkes approach [42–44], which achieves an
asymptotic O(N) speedup compared with the conventional finite-
differencingmethod for anN-electron systemwhile retaining sim-
ilar accuracy, thereby enabling largeNAQMDsimulations involving
over 500 atoms and many long-time trajectories [7].

We have implemented LR-TDDFT based NAQMD simulations
on massively parallel computers using hybrid spatial and band
decomposition. To enable large NAQMD simulations using the
plane-wave basis set, NSC approximations mentioned above are
employed for calculating long-range exact exchange correction
and excited-state forces. This paper presents the simulation
methods along with its validation for various materials. The rest
of the paper is organized as follows. The next section describes the
simulation methods. Simulation results are presented in Section 3,
while Section 4 contains a summary.

2. Simulation methods

2.1. Electronic ground states

As a basis set for representing electronic excited states in LR-
TDDFT, we use ground-state KS orbitals [24] within DFT [25,26].
To do so, we first obtain adiabatic electronic ground states us-
ing the projector-augmented-wave method [45,46], which is an
all-electron electronic-structure-calculation method within the
frozen-core approximation in the framework of DFT. The GGA [21]
is used for the xc energy with nonlinear core corrections [47].

The electronic pseudo-wave functions and the pseudo-charge den-
sity are expanded by plane waves. The energy functional is mini-
mized with respect to KS orbitals by an iterative method [48,49].

In DFT, the total energy EKS of an N-electron system is written
in atomic units as

EKS =
∑

s
fs〈ψs|

(
−1

2
∇2 + V̂ion

)
|ψs〉

+ 1
2

∫∫
drdr′

ρ(r)ρ(r ′)
|r − r′| + Exc [ρ] , (1)

where ψs and fs are the s-th one-electron KS orbital and its
occupation number, respectively,∇2 is the Laplacian operator, V̂ion
is the electron–ion potential, and the electron density ρ(r) is given
by

ρ(r) =
∑

s
fs |ψs(r)|2 . (2)

The second and third terms in the right-hand side of Eq. (1) are the
Hartree energy and the xc energy functional, respectively.

Minimization of EKS with respect to a set of KS orbitals, {ψs},
under orthonormalization constraints,
〈ψs|ψt〉 = δs,t , (3)
leads to the KS equations:

ĤKS |ψs〉 ≡
(

−1
2
∇2 + V̂ion + V̂H + V̂xc

)
|ψs〉 = εs |ψs〉 , (4)

where εs is the KS eigenvalue for the s-th orbital. The Hartree
potential V̂H and the xc potential V̂xc, respectively, are given by

V̂H(r) =
∫

dr′
ρ(r ′)

|r − r′| , (5)

V̂xc(r) = δExc
δρ(r)

. (6)

The electronic ground state is determined self-consistently, i.e.,
the electron density is obtained iteratively until the input density
ρin(r), which is used to calculate the electronic potential, V̂ in =
V̂ion + V̂ in

H + V̂ in
xc , becomes equal to the output density ρout(r)

calculated from Eq. (2) using the KS orbitals, {ψs(r)}, obtained by
solving the KS equations, Eq. (4).

Next, we include the long-range exchange correction (LC)
through a range-separated hybrid exact exchange functional [34],
starting from the self-consistent GGA KS orbitals explained above.
In a range-separated functional, the Coulomb-repulsion operator
1/r12 is divided into short-range and long-range parts using the
error function:
1
r12

= 1 − erf(µr12)
r12

+ erf(µr12)
r12

, (7)

where r12 = |r1 − r2| is the distance between two electrons at r1
and r2, andµ is a range-separationparameter. The range-separated
xc energy functional is then given by

E ′
xc = Ec,GGA + ESR

x,GGA + ELR
x,HF, (8)

where Ec,GGA is the GGA correlation energy functional, ESR
x,GGA is the

short-range part of the GGA exchange energy functional, and ELR
x,HF

is the long-range part of the HF exchange integral (i.e., using the
second term in Eq. (7) as the Coulomb-repulsion operator).

In the NSC approximation by Zhang et al. [39], long-range
corrected Hamiltonian matrix elements are constructed from the
self-consistent GGA KS orbitals as
H ′

st = δstεt − 〈ψs| V LR
x,GGA [ρ(r)] |ψt〉

−
∑

i∈{occupied}

[
ψ∗

s ψi |erf(µr)/r| ψ∗
i ψt

]
, (9)
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where V LR
x,GGA(r) = δELR

x,GGA/δρ(r), with ELR
x,GGA the long-range part

of the GGA exchange energy functional, and the Coulomb-like
integral is defined as

[f |h(r)| g] ≡
∫∫

drdr′f (r)h(|r − r′|)g(r′). (10)

We diagonalize the Hamiltonian matrix, Eq. (9), as
∑

t
H ′

stUtu = Usuε
′
u, (11)

to obtain long-range corrected KS (LC–KS) energies ε′
s and orbitals,

ψ ′
s(r) =

∑

t
ψt(r)Uts. (12)

In the NSC approximation, the compute-intensive exchange
integrals in the last term of Eq. (9) are computed only once, thereby
significantly reducing the excessive computational cost of the self-
consistent range-separated hybrid exact exchange scheme. Here,
the long-range interaction is computed using the reciprocal-space
formalism of Martyna and Tuckerman [50] to avoid the interaction
with electrons in the periodically-repeated image cells.

2.2. Electronic excitations

We describe electronic excited states as a linear combination
of electron–hole pairs within Casida’s LR-TDDFT [4,5,17–19], using
the ground-state LC–KS orbitals as a basis set. In LR-TDDFT,
electronic excitation energies are calculated from the poles of an
electron–hole pair response function. This amounts to solving a
non-Hermitian eigenvalue problem [17],
(

A B
B∗ A∗

) (
XI
YI

)
= ωI

(
1 0
0 −1

) (
XI
YI

)
, (13)

where the eigenvalue ωI is the I-th excitation energy, with the
corresponding eigenvectors XI and YI . In Eq. (13), the elements of
the A and Bmatrices are given by

Aaiσ ,bjτ = δa,bδi,jδσ ,τ

(
ε′
aσ − ε′

iσ
)
+ Kaiσ ,bjτ , (14)

Baiσ ,bjτ = Kaiσ ,jbτ , (15)
where the indices i, j and a, b are used for occupied and virtual
orbitals, respectively, σ , τ are spin variables, and ε′

iσ is the i-th
LC–KS orbital energy with spin σ . For a range-separated xc
functional [33,34], the coupling matrix elements in Eqs. (14) and
(15) are given by
Kaiσ ,bjτ = [ψ ′∗

aσ ψ ′
iσ |1/r|ψ ′∗

jτ ψ ′
bτ ]

− δσ ,τ [ψ ′∗
aσ ψ ′

bτ |erf(µr)/r|ψ ′∗
jτ ψ ′

iσ ]

+
∫

dr
∫

dr′ψ ′∗
aσ (r)ψ ′

iσ (r)

× δ2(Exc,GGA − ELR
x,GGA)

δρσ (r)δρτ (r′)
ψ ′∗

jτ (r′)ψ ′
bτ (r

′), (16)

where Exc,GGA is the xc functional within GGA and ρσ (r) is the
electron density with spin σ . The size of the A, B and K matrices
in Eqs. (14)–(16) is NoNu ×NoNu, where No and Nu respectively are
the numbers of occupied and unoccupied LC–KS orbitals used to
represent excited states.

According to the assignment ansatz by Casida [17], the many-
body wave function of the I-th excited state is given by [39,51]

|ΦI〉 =
∑

i∈{occupied}

∑

a∈{unoccupied}

∑

σ

XI,aiσ + YI,aiσ√
ωI

ĉ+
aσ ĉiσ |Φ0〉 , (17)

where |Φ0〉 is the Slater determinant of the occupied LC–KS
orbitals, and ĉ+

sσ and ĉsσ are the creation and annihilation operators
acting on the s-th LC–KS orbital of spin σ .

2.3. Molecular dynamics

Molecular dynamics (MD) simulations are carried out in the
canonical ensemble using the Nosé–Hoover thermostat tech-
nique [52,53]. The equations of motion are integrated numerically
using an explicit reversible integrator [54]. In the MD simulations,
interatomic forces are computed quantum mechanically based on
the Hellmann–Feynman theorem [1]. For an excited electronic
state, we use a NSC method to evaluate accurate forces at a mod-
erate computational cost. This method is an extension of the Har-
ris–Foulkes approach adopted by Ref. [44] in a different context.

Here, the NSC Harris–Foulkes energy ENSC is defined as [42–44]

ENSC =
∑

s
fs

〈ψs| ĤKS |ψs〉
〈ψs|ψs〉

− Edc, (18)

where Edc represents double-counting terms related to the Hartree
and xc energies:

Edc = −1
2

∫
drρ(r)VH(r) + Exc [ρ] −

∫
drρ(r)Vxc(r). (19)

When the electron density achieves self-consistency, ENSC coin-
cides with the KS energy EKS. In practical calculations, the self-
consistency is judged whether the difference between ρin(r) and
ρout(r) is within a given tolerance. Even when the self-consistency
is not satisfied, ENSC deviates from the self-consistent energy only
by an amount of second order in the deviation of ρin(r) from the
self-consistent density ρ(r), while EKS deviates by an amount of
first order.

The force Fk acting on the k-th atom is derived from ENSC in
Eq. (18) as

Fk = − ∂

∂Rk

(

ENSC +
∑

l<m

zlzm
|Rl − Rm|

)

= FHellmann–Feynman
k + FNSCk , (20)

where Rk and zk are the position and the valence, respectively, of
the k-th atom. In Eq. (20), the NSC force FNSCk is given by

FNSCk =
∫∫

drdr′
δρ(r′)
|r − r′|

{
− ∂

∂Rk
ρin(r)

}

+
∫

drδρ(r)
{
− ∂

∂Rk
Vxc(r)

}
, (21)

where δρ(r) = ρout(r) − ρin(r). If the electron density is obtained
self-consistently, there is no contribution from FNSCk since δρ(r)
= 0.

Let us rewrite the I-th excited stateΦI , Eq. (17), in the LR-TDDFT
method [4,5,17–19] as

ΦI =
∑

iaσ

CI,aiσ ĉ+
aσ ĉiσ Φ0 ≡

∑

iaσ

CI,aiσ Φaiσ , (22)

whereΦaiσ is the Slater determinant obtained by replacing the i-th
orbital by the a-th orbital inΦ0. The excitation energyωI is formally
written as

ωI = 〈ΦI | ĤN |ΦI〉 , (23)

where ĤN is the Hamiltonian of the N-electron system. Atomic
forces in the excited state are usually calculated by finite
differencing, in which atoms are slightly displaced and forces are
calculated from the corresponding energy difference. For a system
consisting of Natom atoms, this finite-difference approach requires
3Natom self-consistent calculations to account for displacements
along the three Cartesian directions of all atoms. This prohibitive
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computational cost has thus far precluded LR-TDDFT based
NAQMD simulations involving hundreds of atoms.

To reduce the computational cost of calculating excited-state
forces, we first employ a diagonal approximation defined as

Fk = − ∂

∂Rk

(

ωI +
∑

l<m

zlzm
|Rl − Rm|

)

∼ − ∂

∂Rk

(
∑

iaσ

∣∣CI,aiσ
∣∣2 〈Φaiσ | ĤN |Φaiσ 〉

+
∑

l<m

zlzm
|Rl − Rm|

)

. (24)

In the spirit of the NSC force, we evaluate the first term of Eq. (24)
using the LC–KS orbitals ψ ′

s and their occupation numbers f aiσs in
Φaiσ as

− ∂

∂Rk
〈Φaiσ | ĤN |Φaiσ 〉

= − ∂

∂Rk

{
∑

s
f aiσs

〈
ψ ′

s

∣∣ ĤKS
∣∣ψ ′

s
〉

〈
ψ ′

s|ψ ′
s
〉 − Edc

}

= FHellmann–Feynman
k + FNSC,aiσ

k . (25)
Here, we have used

ρ ′
aiσ (r) =

∑

s
f aiσs

∣∣ψ ′
s(r)

∣∣2 (26)

as ρout(r), and the ground-state electron density as ρin(r) to
evaluate FNSC,aiσk .

In addition to the use of ρ ′
aiσ (r) as ρout(r) in the NSC excited-

force calculation, we propose a modified approach based on a
mixing scheme for the electron density, which often improves the
convergence of self-consistent iterations in electronic-structure
calculations. Here, we employ a mixing scheme for Fourier
components ρ(G) of ρ(r) proposed by Kerker [55]:

ρ̃ ′
aiσ (G) = ρin(G) + AG2

G2 + B
[
ρ ′
aiσ (G) − ρin(G)

]
, (27)

where A and B are parameters to be optimized. Our NSC excited-
force calculation based on a modified Harris–Foulkes approach
uses Eqs. (24) and (25), where ρ̃ ′

aiσ (G) in Eq. (27) is used as ρout,
along with the electron density of the ground state as ρin(r), to
evaluate the value of FNSC,aiσk using Eq. (21).

A recent paper has pointed out a problem associated with
the excited-state force calculation based on the Casida ansatz
in Eq. (17) [41]. Namely, certain symmetric properties are not
preserved in the calculated forces. For example, Haruyama et al.
have reported a violation of Newton’s third law for the excited-
state forces in a heteronuclear diatomic molecule calculated using
the many-body wave function based on the Casida ansatz [41].
To rectify this problem for a crystalline material, the forces
have to be corrected to satisfy the crystal symmetries. For a
disordered material or a heteronuclear diatomic molecule, at least
the following correction must be made:

Fck = Fk − F̄ = Fk − 1
Natom

Natom∑

k=1

Fk, (28)

so as to conserve the total momentum. To conserve the total
angular momentum, the torque must be made zero as well.

2.4. Nonadiabatic electron–ion dynamics

In NAQMD simulations with electronic transitions using Tully’s
FSSHmethod [9,10] alongwith the LC–KS representation of TDDFT,

we calculate the time evolution of the density matrix with a fixed
atomic configuration between consecutiveMD steps. The elements
of the densitymatrix determine the switching probability between
the adiabatic states. These equations are derived by expanding
the electronic state Ψ (t) at time t in terms of the electronic
excited states ΦJ(R(t)) in LR-TDDFT corresponding to the atomic
configuration R(t) at time t:

|Ψ (t)〉 =
∑

J

C (I)
J (t)

∣∣ΦJ(R(t))
〉
, C (I)

J (0) = δI,J . (29)

The time evolution of the expansion coefficients C (I)
J (t) is governed

by

d
dt

C (I)
J (t) = −

∑

k

(
iωKδJK + DJK

)
C (I)
k (t), (30)

where the NAC elements are defined as [4,5]

DJK =
〈
ΦJ

∣∣ ∂

∂t
|ΦK 〉 . (31)

The NAC elements are calculated from a pair of excited-state wave
functions at consecutive time steps in an adiabatic QMD simulation
by finite differencing. The use of the many-body wave function,
Eq. (17), in Eq. (31) has been shown to be exact between
ground and singly excited states, as well as between any pair
of excited states when the Tamm–Dancoff approximation is
used [51]. Various approaches have been proposed to improve
FSSH for describing coupled electron–ion dynamics involving
nonadiabatic electronic processes [56–58]. These approaches
incorporate, e.g., quantumuncertainty [58] for better accuracy, and
are recommended when implementing new NAQMD codes.

2.5. Parallel implementation

The NAQMD simulation has been implemented on massively
parallel computers [49] by a hybrid approach combining band
decomposition (i.e., assigning the calculations of different KS
orbitals to different processors) and spatial decomposition (i.e.,
distributing real-space or reciprocal-space grid points among
processors). The iterative band-by-band minimization is carried
out by the band decomposition, where the eigenenergy of
each band is minimized in each processor independently from
the others under an approximate orthonormal condition. The
electron density is also calculated by the band decomposition.
On the other hand, the Gram–Schmidt orthonormalization of the
KS orbitals is executed in the reciprocal-space decomposition
scheme, where the Fourier components of the wave functions are
distributed among multiple processors. To switch between these
two schemes, all-to-all communications are required. In addition,
global communication is necessary to calculate the scalar products
between the wave functions. The program is implemented using
the message passing interface (MPI) library [59] for interprocessor
communications.

3. Simulation results

3.1. Energy-band alignment

The NSC approach to range-separated hybrid exact-exchange
functionals has been validated for various molecules including
N2, CO, C6H6, and H2CO [39]. To test the approach for a larger
system, we calculate the alignment of electronic energy levels for a
quaterthiophene (QT) molecule (CH3-(C14H16S2)2-CH3) on a zinc-
oxide (ZnO) (101̄0) surface (containing 240 Zn and 240 O atoms),
where the total QT/ZnO system contains 552 atoms (see the inset
in Fig. 1). Periodic boundary conditions are applied to all Cartesian
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Fig. 1. Electronic densities of states Dα(E) for the ground state of the QT/ZnO
system, where the red and blue curves are for α = ZnO and QT, respectively.
The inset shows the simulated system, where the red, gray, cyan, yellow and white
spheres represent O, Zn, C, S and H atoms, respectively. The dashed line in the inset
defines the boundary between the QT and ZnO spatial regions.

directions for the simulation supercell of dimensions 28.07 ×
15.56 × 21 Å3. The electronic pseudo-wave functions and the
pseudo-charge density are expanded by plane waves with cutoff
energies of 30 and 250 Ry, respectively. This material combination
is used in hybrid organic/inorganic solar cells, for which their band
alignment is essential [60].

The energy levels for the minimum-energy atomic configura-
tion are shown in Fig. 1, which shows partial electronic densities of
states (DOS) Dα(E) projected onto the wave functions of the atoms
in the α-th molecular subsystems (α = ZnO or QT), where the en-
ergy ismeasured relative to the Fermi energy. The highest occupied
molecular orbital (HOMO) at −0.95 eV spreads only within QT, re-
flected in a peak ofDQT (E), and its wave function is nearly identical
to the HOMO of isolated QT [7]. On the other hand, the lowest un-
occupied molecular orbital (LUMO) at 1.04 eV resides only within
ZnO, and the corresponding peak is in DZnO(E). The lowest unoc-
cupied orbitals with the largest wave-function amplitudes within
QT is LUMO + 4 (1.93 eV), which thus represents the LUMO of QT
or LUMO(QT). Here, we denote them-th lowest unoccupied orbital
but one as LUMO + m. The highest occupied molecular orbital but
two (i.e., HOMO− 2) at −2.11 eV is a ZnO state with no mixture of
QT orbitals. We therefore call HOMO−2 to be the HOMO of ZnO or
HOMO(ZnO). The calculation correctly describes the known stag-
gered band alignment between QT and ZnO. The calculated energy
gap between HOMO(QT) and LUMO(QT) is 2.88 eV, which agrees
reasonably with the observed value of 3.16 eV for QT [61]. Also,
the calculated energy gap betweenHOMO(ZnO) and LUMO(ZnO) is
3.15 eV, which also agrees reasonably with the experimental value
of 3.4 eV [62].

3.2. Charge-transfer excitation energy

The CT excitation energy calculated using the NSC approach
to range-separated hybrid exact-exchange functionals has been
validated for a C2H4–C2F4 dimer [39]. Here, we estimate the effect
of different xc functionals in describing CT excited states between
rubrene and C60 molecules [8]. The simulation supercell size is
18×18×24 Å3 with periodic boundary conditions in all directions,
where the electronic pseudo-wave functions and the pseudo-
charge density are expanded by plane waves with cutoff energies
of 30 and 250 Ry, respectively.

Fig. 2 plots the CT excitation energy calculated by Casida’s LR-
TDDFT as a function of the distance r between rubrene and C60
molecules [8]. (Here, r = 0 signifies the distance for theminimum-
energy configuration.) The diamond and square symbols re-
spectively show the excitation energies with and without the

Fig. 2. Charge-transfer excitation energy as a function of the rubrene–C60 distance.
The diamond and square symbols indicate the excitation energies with andwithout
long-range exact exchange correction (LC), respectively. (Here, the energy is
measured relative to that without LC at r = 0.) The inset shows the simulated
rubrene and C60 molecules, where the cyan and yellow spheres represent C and
H atoms, respectively.

long-range exact exchange correction (LC) described in Section 2.1.
The result with LC exhibits the correct asymptotic −1/r behav-
ior [31]. Describing CT excited states correctly at an interface be-
tween an electron donor, rubrene, and a C60 acceptor is essential
for molecular design of interfacial structures for efficient organic
solar cells composed of these materials [38].

3.3. Excited-state forces

We validate the excited-state NSC force Fk in Eqs. (24) and
(25) for a S8 molecule, which forms a crown-shaped ring [63].
An fcc supercell of lattice constant 18 Å is used. The plane-wave
cutoff energies are 20 and 120 Ry for the electronic pseudo-
wave functions and the pseudo-charge density, respectively. For
the lowest triplet excited state, a self-consistent solution is easily
obtained, since it is the ‘‘ground state’’ of that spin configuration,
while it is computationally highly demanding to obtain it for
other excited states. For comparison between the excited-state
NSC forces Fk with the forces FSCFk obtained self-consistently, we
define a quantity,

∆ = 1 −
〈

Fk • FSCFk

FSCFk • FSCFk

〉
, (32)

where the bracket denotes the average over all atoms, and ∆
becomes zero if Fk is equal to FSCFk for all atoms k. Taking an
atomic configuration from a trajectory obtained by an adiabatic
MD simulation at 300 K, we calculate the energy and forces for
the lowest triplet excited state self-consistently. We obtain ∆ =
−0.3 ± 0.2 if the forces in the ground state are used as Fk. When
the excited-state forces are calculated by Eqs. (24) and (25) using
ρ ′
aiσ (r) as ρout(r), a larger value of∆ = 0.85±0.4 is obtained.With

our modified Harris–Foulkes approach, the ∆ value is reduced
significantly: The smallest value of ∆ = 0.005 ± 0.08 is obtained
when A = 0.9 and B = 0.6 (bohr−2) are used in Eq. (27).

To investigate time-dependent properties of the excited state,
we carry out a MD simulation using the self-consistent excited-
state forces. Time evolution of the self-consistent excitation energy
is shown by the solid line in Fig. 3. One of the S–S bonds
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Fig. 3. Time evolution of the excitation energy of the lowest triplet state of a S8
molecule. The solid line indicates the results using the self-consistent forces (SC).
The solid and open circles show the results using the NSC atomic forces obtained by
Eqs. (24) and (25) with and without the density mixing (DM) of Eq. (27) (NSC-DM
and NSC-noDM), respectively.

Fig. 4. Time evolution of the bond length in the lowest triplet state of a S8 molecule.
The solid line indicates the results using the self-consistent forces (SC). The solid
and open circles show the results using the NSC atomic forces obtained by Eqs. (22)
and (23) with and without the density mixing (DM) of Eq. (25) (NSC-DM and NSC-
noDM), respectively.

is broken, reflecting the anti-bonding character of the excited
state, and the excitation energy decreases, accompanying this
structural relaxation. As a comparison, additional MD simulations
are performed by using the NSC atomic forces. The solid and open
circles show the results using the NSC atomic forces obtained
by Eqs. (24) and (25) with and without the density mixing of
Eq. (27), respectively. Without density mixing, the excitation
energy decreases rapidly with time, which is obviously caused
by the fact that the atomic forces between S atoms are incorrect.
On the other hand, temporal change of the excitation energy is
correctly reproduced by the NSC forces when the density mixing is
used.

Fig. 4 shows the time evolution of the length of the S–S bond,
which is broken by the excitation. As shown by the open circles,
the bond length becomes shorter in the beginning, and elongates
eventually, when the density mixing is not used. In this case,
the decrease of the excitation energy originates from the shape
deformation rather than from the elongation of one of the S–S
bonds. With density mixing, the correct structural relaxation is
reproduced as shown by the solid circles in Fig. 4. Since the
linear-response theory becomes inapplicable in the case of lower

Fig. 5. (a) Adiabatic potential energy E(r) for N2 molecule as a function of atomic
distance r . The solid, dashed and dotted lines correspond to the ground, first-
singlet-excited and second-singlet-excited states, respectively. (b) Atomic forces
F(r) for N2 molecule. The solid, dashed and dotted lines show F(r) obtained by
the numerical derivatives of E(r) of the ground, first-singlet-excited and second-
singlet-excited states, respectively. The open circles show the Hellmann–Feynman
forces in the ground state. The solid circles and diamonds show the NSC excited-
state forces.

excitation energies, some deviation from the solid line is seen for
t > 60 fs.

To demonstrate the applicability of the NSC excited-state force
calculation to broader materials, we calculate the atomic forces
in the excited states of N2 and CO molecules as in previous
studies [40,41]. For these calculations, a cubic supercell of length
12 Å is used. Cutoff energies of 45 and 300 Ry are used to
expand the electronic pseudo-wave functions and the pseudo-
charge density, respectively. The calculated equilibrium bond
lengths are 1.11 and 1.14 Å for N2 and CO, respectively, which
are in good agreement with the respective experimental values,
1.10 and 1.09 Å. The vertical excitation energies from the ground
state are also in reasonable agreementwith experiments. Note that
the numerical values are slightly different from those in Ref. [41],
because a different functional is used for the exchange–correlation
energy.

Fig. 5(a) shows the adiabatic potential energies of the first- and
second-singlet-excited states, 1Πg and 1Σ−

u , as well as the ground
state, X1Σ+

g , of a N2 molecule. From the numerical derivatives
of these potential-energy surfaces, ‘‘true’’ excited-state forces are
obtained as shown by the lines in Fig. 5(b). The NSC excited-state
forces are computed using the density mixing with A = 0.9 and
B = 0.6 (bohr−2). Although these parameters are not optimized
for the N2 molecule, the results are quite good for the first singlet-
excited state (solid circles in Fig. 5(b)). Also, the forces in the
second-singlet state are reproduced reasonably well by the NSC
calculation (solid diamonds in Fig. 5(b)).

Fig. 6(a) shows the adiabatic potential energies of the ground
(X1Σ+) and first-singlet-excited (A1Π ) states of a CO molecule.
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Fig. 6. (a) Adiabatic potential energy E(r) for CO molecule as a function of atomic
distance r . The solid and dashed lines correspond to the ground and first-singlet-
excited states, respectively. (b) Atomic forces F(r) for CO molecule. The solid
and dashed lines show F(r) obtained by the numerical derivatives of E(r) of the
ground and first-singlet-excited states, respectively. The open circles show the
Hellmann–Feynman forces in the ground state. The solid circles and squares show
the NSC excited-state forces acting on C and O atoms, respectively. The direction of
the forces on O atom is inverted. The open squares show the corrected excited-state
NSC force.

The numerical derivatives of these potential-energy surfaces are
shown by the lines in Fig. 6(b). Again, the density mixing with A =
0.9 and B = 0.6 (bohr−2) is used to calculate the NSC excited-state
forces. As shown by the solid squares and circles in Fig. 6(b), the
NSC excited-state forces acting on the O and C atoms are different
from each other. This is a manifestation of the problem associated
with the excited-state force calculation based on the Casida ansatz
as discussed in Section 2.3. It should be noted that amore elaborate
calculation without the NSC approximation exhibits the same
problem [41]. As shown by the open squares and the dashed line
in Fig. 6(b), the r dependence of Fck with the proposed correction in
Eq. (28) is in good agreementwith that of the numerical derivatives
of the potential-energy surface. The results shown here indicate
that our method is practically capable of obtaining the excited-
state forces.

OurNAQMDschemeusing the excited-stateNSC forces involves
two main calculations: One is the self-consistent DFT calculation
to obtain the ground-state KS orbitals {ψs}, and the other is the
LR-TDDFT calculation to obtain the excitation energy ωI and the
coefficients CI,aiσ . The amount of computation of the former is the
same as that in adiabatic QMD simulation. In the latter, most of
the computing time is spent for the calculation of the elements
of the coupling matrix in the Casida equation. The computational
complexity of each element is equivalent to calculating VH(r)
one time plus Vxc(r) twice, when the exchange–correlation part
is evaluated in a finite-difference scheme [18]. The number of
the matrix elements is the square of 2NholeNelectron, where Nhole

Fig. 7. Averaged time evolution of the existence probabilities Rα(t) of the pseudo-
electron in subsystems α. The solid and dotted lines indicate α = ZnO and QT,
respectively.

and Nelectron are the numbers of hole and electron orbitals to be
considered, respectively (the factor 2 comes from spin). In the
present calculation for the S8 molecule, one hole and two electron
orbitals are taken into account, and the number of elements
becomes 16 (=4×4), while the number of the KS orbitals is 40 for
each spin. The computing time increases about 30% in the present
NAQMD simulation compared with the adiabatic simulations. For
larger systems, the number of the elements as well as that of the
KS orbitals will become larger. However, the coupling between
hole–electron pairs is limited in many cases, and therefore, the
number of terms in the sum in Eq. (22) will remain small. If this
is the case, calculation for most of the elements can be avoided,
and the computing timewill be comparable to that of adiabaticMD
simulation.

3.4. Charge-transfer rates

As an example of NAQMD simulations, we study photoexcited
CT from QT to ZnO at the QT/ZnO interface studied in Section 3.1
(see Fig. 1) [7]. Each NAQMD simulation starts with an electronic
excited state that corresponds to the excitation of an electron
from HOMO(QT) to LUMO(QT) for a given configuration sampled
from adiabatic MD trajectory. In order to estimate the CT rate, we
integrate the quasi-electron charge density at the QT side to obtain
the probability RQT (i.e., above the dashed line in the inset of Fig. 1,
which separates the QT and ZnO spatial regions). Similarly, we
calculate RZnO at the ZnO side (note that RZnO + RQT = 1) during
the entire electron-transfer process up to ∼100 fs. Fig. 7 plots
an ensemble average over 50 such NAQMD simulations starting
from 50 configurations uniformly sampled from an adiabatic MD
trajectory. The averaged Rα(t) indicates that rapid CT completes
within 70 fs. The corresponding CT rate is 0.014 fs−1.

4. Summary

We have implemented quantum molecular dynamics simu-
lation incorporating nonadiabatic electronic transitions on mas-
sively parallel computers to study photoexcitation dynamics of
many electrons and ions. The nonadiabatic quantum molecular
dynamics simulation is based on Casida’s linear response time-
dependent density functional theory to describe electronic ex-
cited states and Tully’s fewest-switches surface hopping approach
to describe nonadiabatic electron–ion dynamics. To enable large
NAQMD simulations using the plane-wave basis set, NSC ap-
proximations have been employed for calculating long-range ex-
act exchange correction and excited-state forces. The simulation
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program has been parallelized using hybrid spatial and band de-
composition, which has been used for large NAQMD simulations
involving over 500 atoms [7].
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