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Abstract. A scalable parallel visualization algorithm has been designed to visualize large 
datasets that are spatially decomposed onto processors of a massively parallel computer. The 
ParaViz algorithm, which is based on hybrid sort-first/sort-last parallel visualization, employs 
distributed visibility ordering to implement a scalable hierarchical depth buffer. A visibility 
rank is computed for each processor depending on its relative position from the viewpoint. 
After each processor rasterizes its own primitives, individually rendered sub-images are hier-
archically reduced to a final image using their visibility ranks. This technique allows on-the-
fly visualization of parallel simulation data without data migration. The algorithm has been 
tested on 8–1,024 processors for molecular-dynamics simulation data. In a weak-scaling test 
consisting of 64,000 spherical objects (atoms) per processor, the image integration time of the 
ParaViz algorithm is 40–50% less than that of the conventional global Z-buffer approach. A 
strong-scaling test involving 16,777,216 atoms achieves a parallel efficiency of 0.98 on 1,024 
processors. 
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1  Introduction 

Computer visualization is an important tool for data analysis and presentation in computational 
sciences, where it is used to effectively extract and convey information contained in large datasets. 
However, continued growth in computing power has led to ever-larger scientific datasets that 
conventional single-processor visualization cannot support. Consequently, various parallel-rendering 
schemes have been proposed to decompose the visualization load onto multiple processors [1]. 
Software solutions utilize task parallelism [2] or data parallelism, which include sort-first, sort-
middle, and sort-last schemes for spatial distribution of data [3]. Sort-first schemes redistribute 
raw primitives during geometry processing; sort-middle schemes redistribute screen-space primi-
tives between geometry processing and rasterization; and sort-last solutions redistribute pixels 
during rasterization. Corresponding hardware solutions utilize distributed- or shared-memory 
systems to replace single graphics workstations. Open-source parallel visualization toolkits (such 
as VTK [4, 5]) and parallel scientific visualization applications (such as ParaView [6] and Data-
View [7]) are also available. VTK [4, 5] is a multi-platform parallel class library that uses a higher 
level of abstraction than OpenGL to render complex systems on cluster computers. ParaView [6] 
is a versatile parallel renderer and viewer implemented with the message passing interface (MPI) 
for various types of distributed systems. DataView [7] performs interactive rendering of large-
scale scientific data using a client-server model implemented on a PC cluster. 

A number of parallel rendering algorithms have been designed to utilize clusters containing 
graphics processing units (GPUs). Samanta et al. [8] proposed a hybrid sort-first and sort-last 
approach to render polygons on GPUs, which assigns each processor a partition of objects and a 
partition of image space. Liang et al. [9] used dynamic data distribution on a Sepia cluster to sup-
port interactive investigation of fine structures in large particle datasets. Magallón et al. [10] pro-
posed a commodity off the shelf (COTS) sort-last solution for inexpensive distributed volume 
rendering. This approach was extended by Strenger et al. [11] to include wavelet compression and 
depth-sorted blending based on volume brick footprints to minimize blending operations. How-
ever, as the majority of existing multi-teraflops and future petaflops computers lack GPUs in the 
computing nodes, it is essential to use their central processing units (CPUs) for both computing 
and visualization. Mitra and Chiueh [12] have explored this idea by implementing a parallel ver-
sion of the Mesa graphics library to handle communication and image composition on large com-
putational clusters. 

All parallel visualization algorithms require a data decomposition/sub-image compositing 
scheme [1]. For example, the image-space decomposition scheme distributes primitives using their 
screen coordinates and directly patches sub-images into a final image. Alternatively, object-space 
decomposition distributes primitives using their spatial world coordinates, and thus it requires 
depth comparison of sub-images for compositing. For large-scale simulation data, which are often 
spatially decomposed with a unique region assigned to each processor, object-space decomposi-
tion is more efficient, since sub-image sorting is much less time consuming than redistributing 
large datasets. Parallel visualization exploiting spatial decomposition has been implemented in 
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2  ParaViz Algorithm 

2.1  Basic Methodology 

The fundamental challenge in visualizing a spatially decomposed dataset on a parallel computer is 
the hidden-surface problem, that is, the task to determine which primitives are visible and which 
are obscured. The traditional hidden-surface algorithms, summarized by Sutherland et al. [18] 
decades ago, have proved efficient for moderate-sized data stored in a single computer. However, 
the standard solution of maintaining a single depth buffer for the entire system, though simple, 
does not scale well to large numbers of processors. Additionally, it requires the depth buffer size 
to increase with the system size in order to maintain adequate precision. 

Our approach exploits the features of spatial decomposition and uses a visibility ordering of 
processors instead of a global Z-buffer, allowing for substantial savings in integration time. Visi-
bility ordering of objects was pioneered by Schumacker et al. and reviewed in [18] and Newell et 
al. [19], and has been employed and extended in a number of visualization algorithms [20-23]. By 
definition, visibility ordering is a topological ordering of objects with planar interfaces for correct 
hidden-surface elimination. The ordering sequence depends on the viewpoint position. We extend 
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GeoFEM [13], a large-scale finite element analysis platform that uses the Earth Simulator to visu-
alize volumetric data, and in SLIC [14], a sort-last algorithm that classifies rendered pixels and 
creates a compositing schedule for each processor.  

Multiple techniques have been used for performing depth comparisons during integration. Mitra 
and Chiueh [12], Samanta et al. [8], and Li et al. [15] used a global Z-buffer, while others such as 
Chen et al. [13], Bethel et al. [16], and Strengert et al. [11] used a similar approach with larger granu-
larity, assigning depth buffer values to groups of primitives. These global Z-buffer implementations 
can become a critical bottleneck when visualizing large systems on high-end parallel computers, e.g., 
a quantum-mechanical simulation involving 1.04 trillion grid points or a molecular dynamics (MD) 
simulation of 134 billion atoms on 131,072 BlueGene/L processors [17]. In this paper, we propose 
an algorithm named ParaViz, which is scalable on high-end parallel computers as well as on future 
multi-petaflops computing platforms. The algorithm requires no migration of data, which would 
be extremely expensive on various emerging architectures such as cell-processor systems. Fur-
thermore, the algorithm enables concurrent visualization and computation with a hierarchical 
depth buffer based on visibility ordering and a hybrid sort-first/sort-last scheme.  

The main contributions of this paper are an efficient algorithm for large-scale parallel visualiza-
tion of spatially decomposed datasets, and its simple implementation that is faster than the conven-
tional Z-buffer implementation and exhibits excellent scalability. The rest of the paper is organ-
ized as follows. Section 2 describes the ParaViz algorithm, and numerical results are presented in 
Section 3. Conclusions and future directions are contained in Section 4. 



this concept to implement visibility ordering of parallel processors in a spatially decomposed sys-
tem. Assuming two adjacent processors with a planar interface (common in spatial decomposition 
for parallel computing), one processor is “in front”, i.e., on the same side of the interface with the 
viewpoint. Primitives contained in the front processor may occlude those in the other, but not vice 
versa. If the viewpoint happens to be on the interface, either processor can be defined as frontal. 
By definition, any total ordering assigning a smaller visibility rank to the front processor in each 
adjacent pair is a visibility ordering [21], where a processor may occlude one with a larger rank, 
but not one with a smaller or equal rank (see the theorem below). With a processor visibility or-
dering, one can easily sort sub-images generated by individual processors in depth. However, in 
practice, it is costly and impractical to compute visibility ordering through pair-wise comparisons. 
Instead, we exploit features of common spatial decomposition and have each processor compute 
its own visibility order independently. 

Theorem: 
In a visibility ordering, a processor cannot occlude one with a smaller or equal visibility rank. 
Proof: 
Let P1 and P2 be two adjacent processors with a planar interface in a visibility ordering, where 

P1 is on the same side with the viewpoint and has a smaller visibility rank than P2. Suppose that 
P2 occludes P1, which implies a line of sight starting from the viewpoint and passing through P2 
into P1. Therefore, the line must pass through P2 before it crosses the interface. This contradicts 
that P2 is on the other side of the interface from the viewpoint; therefore, P2 cannot occlude P1. 
Due to transitive nature of both occlusion relation and inequality relation in a total ordering, the 
occlusion relation applies to any pair of processors with visibility rank inequality and thus it com-
pletes the proof.  

After computing its own visibility rank, each processor proceeds to render primitives in its as-
signed region using universal visualization parameters (such as view angle and frustum planes). 
The spatial localization of primitives makes ParaViz partially sort-first. Subsequently, the indi-
vidually rendered sub-images are assigned the visibility rank of their native processors and inte-
grated in a hierarchical fashion. At each step, the opaque pixels of the front sub-image (lower 
visibility rank) are superimposed on the back sub-image to generate the new sub-image, whose 
visibility rank is set to the lower of the two. This process is repeated recursively until all sub-
images are reduced to a final image that contains the entire rendered system. This makes ParaViz 
partially sort-last, since pixels must be sorted in image composition. Overall, ParaViz is a hybrid 
sort-first and sort-last approach, allowing us to capitalize on spatial decomposition without main-
taining a costly global Z-buffer. 

The present algorithm has a lower time complexity than the traditional Z-buffer approach. In 
order to render N primitives on P processors, each processor on average renders N/P primitives. 
Since the traditional Z-buffer approach needs logN bits to store the depth information correctly for 
the global system, the computational cost for each processor to sort the primitives is O((N/P)logN). 
The ensuing hierarchical communication consists of logP levels, and O(logN) bits must be com-
municated at each level. On the other hand, ParaViz only requires log(N/P) bits to maintain a local 
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Z-buffer. Its computational cost for sorting primitives is O((N/P)log(N/P)). In image integration, 
only a single value of depth information, the visibility rank, is communicated, reducing communi-
cation cost to O(logP). The resulting time complexity of the ParaViz algorithm is O((N/P)log(N/P) 
+logP), which is significantly lower than the O((N/P)logN+logPlogN) complexity of the Z-buffer 
approach.  

2.2  Implementation 

Our implementation of ParaViz is written in the C language, with the message passing interface 
(MPI) library [24] for interprocessor communication. It also uses the Mesa [25] implementation of 
OpenGL for software rendering, which enables it to run on clusters that are not equipped with 
GPUs. Although ParaViz works for any system decomposed into a 3D parallelepiped mesh, the 
implementation presented below is for a regular orthogonal 3D mesh — a common decomposition 
scheme in parallel computing. 

Each processor first computes its visibility rank as shown in Table 1. 

Table 1. Visibility-rank algorithm 

Algorithm visibility_rank 
Input: 

local processor position indices zi (i ∈ {1, 2, 3} for the x, y, and z directions) 
viewpoint coordinates Xi 
cell dimensions Li 

Output 
visibility rank R 

Steps: 
for i = 1 to 3 

Di ← ⎢zi – ⎣Xi / Li⎦⎟ 
end for 

3

1
i

i

R D
=

←∑  

 

In the general case with a parallelepiped mesh, each processor calculates the global processor 
coordinates (integers) of the viewpoint, using the viewpoint location and metadata regarding the 
spatial decomposition (see Fig. 1). If the viewpoint lies outside the system, one or more indices 
will be negative. The rank is calculated by summing the absolute differences between the view-
point’s integer coordinates and the processor’s integer coordinates in each dimension. Because 
such an ordering is a topological ordering (thus a total ordering) and consistent with the occlusion 
relation for neighboring pairs, it is a visibility ordering. In our implementation, processors of 
lower visibility ranks are in front of those of higher ranks. While multiple processors can have the 
same visibility rank, they are guaranteed to have no overlap from the viewer’s perspective and 
therefore no conflict when integrating. 
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Fig. 1. (a) A 2-dimensional illustration, in which each processor determines the integer coordinates (brack-
eted) of the viewer’s position using the viewer’s location and the spatial decomposition parameters. 
Its own integer coordinates (i.e., global indices; bracketed) are already known from the system setup 
(b) In each dimension, the integer distance between the viewer and the processor is calculated and 
summed to obtain the processor’s visibility rank (variable d in the figure, the total integer distance 
from the viewpoint). In this example lower visibility ranks correspond to front processors (filled with 
lighter shade) 

Subsequently, each processor renders its own primitives into a memory buffer of the size with 
the final image. We use back-face culling to speed up the rendering process, and future versions of 
ParaViz will include probabilistic occlusion culling and other advanced optimizations [26]. 

After the individual primitives are rendered, the buffers from each processor are integrated us-
ing a hierarchical scheme. Reduction is done first in the x dimension, then y and z, compressing 
the 3D system first onto a plane of processors, then a rcolumn, and finally a single processor that 
produces the final image. In each dimension, the reduction process follows a hierarchical scheme 
illustrated in Fig. 2, which works for an arbitrary number of processors in each dimension (see 
Table 2). For every communicating pair, the lower indexed processor merges two sub-images, 
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using visibility ranks for pixel sorting (see Table 3). To reduce integration time, we identify the 
first and last non-empty pixels in each sub-image buffer (a 1D array in memory). Only those pix-
els within the range are sent and integrated, avoiding communication and comparison of empty 
margin pixels.  

Table 2. Image reduction algorithm 

 Algorithm image_reduction  
Input: 
  local processor position indices zi (i ∈ {1, 2, 3} for the x, y, and z directions) 
  number of processors in ith dimension Pi (i ∈ {1, 2, 3}) 
  sub-images and visibility ranks from individual processors 
Output: 
  globally-reduced total image 
Steps: 
  done ← 0  
  for i = 1 to 3 
    n ← 1 
      while 2n <= Pi  do 
        if done = 0 
          if the nth bit of zi is 0 
            qi ← zi + 2n−1 
            if qi < Pi 
              receive sub-image and visibility rank from qi 
              integrate the two image buffers 
            end if 
          else 
            qi ← zi − 2n−1 
            send its sub-image buffer and visibility rank to qi 
            done ← 1 
          end if 
        end if 
        n ← n + 1 
      end while 
    end for 
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Fig. 2. Illustration of the hierarchical communication scheme for eight processors in 1D. For each of n = 
logP steps, processors with ID mod 2n = 0 receive the sub-image from the processor whose ID differs 
only in the nth bit. The communication scheme also works for an arbitrary number of processors in 
each dimension 

Table 3. Buffer integration algorithm 

 Algorithm buffer_integration 
Input: 
  visibility rank of local buffer Rlocal 
  visibility rank of received buffer Rreceived  
Output: 
  integrated image 
Steps: 
  determine the union of pixel bounding ranges of two sub-images 
  if Rlocal < Rreceived 
    for all pixels in the union range 
      if the pixel in the local sub-image is empty 
        replace it by the corresponding pixel in the received sub-image 
      end if 
    end for 
  else 
    for all pixels in the union range 
      if the pixel in the received sub-image is non-empty 
        replace the corresponding pixel in the local sub-image 
      end if 
    end for 
  end if 
  Rlocal ← min(Rlocal, Rreceived) 
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Upon completion of the integration stage, the combined image buffer resides on the head proc-
essor (processor with index 0 in all three dimensions). This image could then be written to disk or 
transferred through a network to display on a client machine. 

3  Results 

We test the ParaViz algorithm on a Linux cluster consisting of 256 nodes, each with two dual-core 
Opteron 2GHz processors and 4GB RAM (totaling 1,024 cores and 1TB RAM). We compare the 
performance of ParaViz to that of a conventional global Z-buffer implementation for a molecular 
dynamics (MD) simulation dataset consisting of millions of atoms. Both ParaViz and the global Z-
buffer implementation use the same software rendering code, which renders each atom as a sphere. 

We first perform weak-scaling tests, in which the number of spherical objects (atoms) per proc-
essor is fixed as 64,000 while varying the number of processors P from 8 to 1,024. Figure 3 shows 
that ParaViz is 40−50 percent faster than the global Z-buffer implementation in sub-image integra-
tion. The dips in the integration time curve at 128 and 1,024 processors are due to viewpoint repo-
sition for a fixed horizontal viewing angle. When the system expands in the horizontal direction, 
the viewpoint is moved away from the system. This causes fewer pixels to be rendered by each 
processor and less data sent and processed during integration. To keep the system as close to cubic 
as possible, the number of processors is doubled each step in a cyclic order of width, depth and 
then height. From 64 to 128 (and from 512 to 1,024) the number of processor is doubled in the 
horizontal direction (width), therefore the viewpoint is repositioned and integration time decreases 
correspondingly. Expansion in other dimensions does not result in a viewpoint shift; thus the inte-
gration time increases due to more communication. 

Since ParaViz uses the same rendering code as the Z-buffer implementation, they have similar 
rendering time, which can be reduced using advanced techniques such as occlusion culling. How-
ever, this paper focuses on reducing the integration time—the bottleneck to achieve scalable visu-
alization on a large number of processors. The results presented in this section show that the 
ParaViz algorithm is significantly faster than the global Z-buffer implementation in integration 
time for intermediate to large numbers of processors. For small numbers of processors, on the 
other hand, the advantage of ParaViz is less significant. The speed difference is expected to in-
crease for larger numbers of processors, e.g., on the 131,072-processor IBM BlueGene/L men-
tioned previously. This can be deduced from the two algorithms’ different parallel computational 
complexities shown in the previous section. In addition, on each processor, ParaViz uses fewer 
bits for pixel depth than the global Z-buffer implementation, because it only maintains depth 
metadata within individual subspaces. This allows for improved depth resolution with the same 
memory resources, a negligible advantage for small systems but significant for systems with large 
numbers of pixels. For both implementations, the integration time increases with the number of 
processors due to increased communication. However, the rendering time decreases, because each 
processor renders fewer pixels as the number of processors increases. 
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Fig. 3. The integration (a) and rendering (b) times of the global Z-buffer approach and ParaViz on 8–1,024 
processors for 64,000 atoms per processor. The integration time of ParaViz is consistently shorter by 
40–50% 

Next, we perform strong-scaling tests, in which ParaViz is used to visualize a MD simulation 
dataset of 16,777,216 atoms using 8 to 1,024 processors (see Fig. 4). As the number of processors 

Fig. 4. Strong-scaling results for the rendering (circles) and integration (squares) times of ParaViz for an MD
simulation data consisting of N = 16,777,216 atoms on P = 8–1,024 processors. Rendering time is
roughly proportional to N/P, and the integration time increases moderately with P 
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increases, the rendering time decreases in proportion to the number of atoms being rendered per 
processor (∝ N/P). Integration time, in contrast, slowly increases proportionally to logP due to 
increased communication. Figure 4 thus demonstrates the tradeoff between decreasing rendering 
time and increasing integration time as a function of the number of processors. Since the rendering 
time is dominant, the overall effect of parallelism is a monotonically decreasing computing time 
up to at least 1,024 processors. 

To quantify the algorithm’s efficiency, the speed is defined as the inverse of visualization wall 
clock time. The speedup is the speed on P processors divided by the speed on one processor, and 
normalized such that the speedup on eight processors is 8. We also define the parallel efficiency as 
the speedup divided by the number of processors. Figure 5 shows the strong-scaling speedup of 
ParaViz for the same dataset as in Fig. 4 (i.e., 16,777,216 atoms on 8 to 1,024 processors). The 
strong-scaling parallel efficiency obtained from Fig. 5 is 0.98 on 1,024 processors, which is close 
to the ideal value of 1.0, signifying the excellent scalability of our algorithm. 

 
Fig. 5. The strong-scaling speedup of the ParaViz algorithm (circles) compared to the ideal speedup (dashed 

line) for an MD dataset consisting of 16,777,216 atoms on 8–1,024 processors 

ParaViz has been used extensively to visualize large MD simulations of material processes such 
as hypervelocity impact [27], fracture [28], and indentation [29]. A nanocrystalline alumina (n-
Al2O3) system containing 40 million atoms is visualized using ParaViz on 1,024 processors (Figs. 
6a and 6b).  An α-alumina single crystal of 540 million atoms under hypervelocity impact is visu-
alized on as many processors (Fig. 6c). 
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Fig. 6. (a) Nanophase ceramic material consisting of 512 crystalline alumina (Al2O3) nano-particles (totaling 

40 million atoms) visualized with ParaViz, where each nano-particle is distinguished by color. The 
system is viewed along a diagonal of the y-z plane (the x axis lies in the horizontal direction)  
(b) A close-up image of the boxed region in (a)  
(c) An alumina substrate consisting of 540 million atoms under hypervelocity impact at 18km/s. The 
atoms are color-coded based on pressure values 
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4  Conclusion 

For massive datasets generated by scientific computing, visualization has become highly challeng-
ing. To utilize high performance computing clusters for real-time rendering of spatially decom-
posed computational data, we have designed and implemented ParaViz, a hybrid sort-first/sort-last 
visualization algorithm with a scalable hierarchical depth buffer. Using viewpoint-dependent visi-
bility ordering of processors to sort sub-images during integrated rasterization, we gain a speedup 
of 40−50% over the traditional global Z-buffer implementation. ParaViz also scales well with 
large numbers of processors and supports real-time visualization. Although our work has been 
focused on visualizing molecular-dynamics simulation data, the proposed scheme can be applied 
in other fields of research with intensive visualization requirements. 

In our current implementation using Mesa, the majority of execution time is spent in the indi-
vidual rendering pipeline. By applying advanced rendering techniques such as occlusion culling, 
we expect to substantially reduce the execution time. As the number of processors grows, the load 
imbalance increases since the processors closer to the viewer span a larger view angle than those 
farther away. Thus a load-balancing scheme will reduce the idle time of processors with less in-
tensive rendering demands. We are also extending ParaViz to handle parallel volume rendering. 
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