

AN MPI PERFORMANCE MONITORING INTERFACE

FOR CELL BASED COMPUTE NODES

HIKMET DURSUN,1,2 KEVIN J. BARKER,1 DARREN J. KERBYSON, 1 SCOTT PAKIN1

1Performance and Architecture Laboratory (PAL), Los Alamos National Laboratory

 Los Alamos, New Mexico 87545, USA

RICHARD SEYMOUR,2 RAJIV K. KALIA,2 AIICHIRO NAKANO,2 PRIYA VASHISHTA2
2Collaboratory for Advanced Computing and Simulations, Department of Computer Science

University of Southern California, Los Angeles, California 90089-0242, USA

ABSTRACT

In this paper, we present a methodology for profiling parallel applications executing on the family

of architectures commonly referred as the “Cell” processor. Specifically, we examine Cell-centric

MPI programs on hybrid clusters containing multiple Opteron and IBM PowerXCell 8i processors

per node such as those used in the petascale Roadrunner system. We analyze the performance of

our approach on a PlayStation3 console based on Cell Broadband Engine—the CBE—as well as

an IBM BladeCenter QS22 based on PowerXCell 8i. Our implementation incurs less than 0.5%

overhead and 0.3 µs per profiler call for a typical molecular dynamics code on the Cell BE while

efficiently utilizing the limited local store of the Cell’s SPE cores. Our worst-case overhead

analysis on the PowerXCell 8i costs 3.2 µs per profiler call while using only two 5 KiB buffers.

We demonstrate the use of our profiler on a cluster of hybrid nodes running a suite of scientific

applications. Our analyses of inter-SPE communication (across the entire cluster) and function call

patterns provide valuable information that can be used to optimize application performance.

Keywords: Application performance, profiling, cell processor

1. Introduction

Application developers at the forefront of high-performance computing (HPC) have been

investigating the use of hybrid architectures to improve application performance. Hybrid

architectures attempt to improve application performance by combining conventional,

general-purpose CPUs with any of a variety of more specialized processors such as

GPUs, FPGAs, and Cells. The complexity stemming from hybrid architectures make

understanding and reasoning about application performance difficult without appropriate

tool support.

In this paper, we present a profiling library that can trace not only intra-Cell direct

memory access (DMA) events but also inter-Cell message passing. Our implementation

is efficient in terms of resource consumption (only 12 KiB of SPE local store memory is

required) and has an overhead of less than 0.3 µs per profiler call for a typical scientific

application executing on the Cell BE.

We employ a reverse acceleration programming model in which the hybrid cluster

architecture is presented to the programmer as a logical cluster of Cell SPE processors by

using the Cell Messaging Layer (CML) [1]. CML significantly reduces the effort needed

to port applications to Cell clusters and has been used to port several scientific

applications (e.g., the Sweep3D deterministic particle-transport kernel) to Los Alamos

National Laboratory’s petascale Roadrunner supercomputer (comprising 6,120 dual-core

Opterons plus 12,240 PowerXCell 8i processors). CML provides a subset of the functions

and semantics of the MPI standard [2] including point-to-point communication,

broadcasts, barriers, and global reductions.

The Cell processor’s complex architecture—eight synergistic processing elements

(SPEs) managed by a single power processor element (PPE)—makes profiling tools

essential for performance optimization. Traditional tools merely monitor performance

events on PPEs, which provide less than 6% of PowerXCell 8i flops performance and are

usually used for solely controlling SPE processes instead of computing. The IBM Cell

Software Development Kit (SDK) [3] includes a Cell performance-debugging tool (PDT)

that helps analyze the performance of a single Cell board (up to two Cell processors) with

two PPEs that share the main memory, run under the same Linux operating system, and

share up to 16 SPEs. PDT can trace only a specific set of SDK library functions such as

SPE activation, DMA transfers, synchronization, signaling, and user-defined events.

Because PDT involves the slow PPE on the critical path of tracing, the PPE can easily

become a performance bottleneck and may even influence application performance.

Another tool for analyzing Cell performance is Vampir [4], which Nagel et al. used to

visualize intra-Cell events such as mailbox communication and DMA transfers [5].

The key difference between our work and the works mentioned above is that we

perform cluster-level analysis for MPI programs running on compute nodes featuring a

hybrid architecture comprising AMD Opterons/PowerXCell 8i processors and

PlayStation3 (PS3) commercial gaming consoles featuring Cell BE processors. The

underlying message-passing model of CML, which treats an entire cluster of

Opterons+Cells (or PS3s) as a homogenous collection of SPEs, has a central importance

to our cluster-wide analysis. In addition to monitoring the same types of intra-Cell events

as existing Cell profilers, our implementation can log inter-Cell, inter-blade, and inter-

node communication. We have tested our implementation on up to 256 SPEs, although

there is nothing limiting us from scaling up to thousands or even tens of thousands of

SPEs.

Two parallel scientific applications—lattice Boltzmann (LB) flow simulation and

atomistic molecular dynamics (MD) simulation—are used to test the profiler on the PS3

and hybrid Opteron+Cell Roadrunner architecture using CML. Two sample uses of the

profiler are also demonstrated: communication analysis and call-stack analysis.

The organization of the rest of this paper is as follows: Section 2 provides information

about the Cell architecture, the Cell Messaging Layer, and our experimental testbed.

Section 3 discusses the software design and implementation of our profiler software.

Section 4 analyzes profiler performance using microbenchmarks and some sample

applications. Finally, we summarize our study in Section 5.

2. Architectural Background and Testbed

In this section we describe the architecture of the Cell Broadband Engine and

PowerXCell 8i that provides the bulk of the performance of our target cluster and the

focus of our profiler study. We then briefly summarize the overall architecture of our

testbed. Finally, we describe the Cell Messaging Layer, which is an enabling technology

for exploiting hybrid (or completely cell based) clusters and therefore a key insertion

point for profiler events.

2.1. Cell Broadband Engine and IBM PowerXCell 8i

Cell BE has a heterogeneous architecture incorporating a power processor element (PPE)

and eight synergetic processing elements (SPEs) on the same chip. SPEs are connected

via an element interconnect bus (EIB), which supports a peak bandwidth of 204.8 GB/s

for intra-chip data transfers among the PPE, SPEs, the memory, and the I/O interface

controllers [6]. A single Cell BE has a peak single-precision performance of 217.6

Gflops/s for which it took attention of the high performance computing community in the

recent years [7], whereas its double-precision peak is limited to 21 Gflops/s.

The IBM PowerXCell 8i (also referred as the Cell extended Double-Precision, Cell-

eDP) is the latest implementation of the Cell BE featuring 108.8 Gflops/s on double-

precision operations. It drives the fastest supercomputer at the time of this writing,

Roadrunner at Los Alamos [8]. Each SPE of PowerXCell 8i contains a 3.2 GHz

synergetic processing unit (SPU) core, 256 KB of a private, program-managed local store

(LS) in place of a cache, and a memory flow controller (MFC) that provides DMA access

to main memory. The SPE uses its LS for efficient instruction and data access, but it also

has full access (via DMA) to the coherent shared memory, including the memory-mapped

I/O space.

 To make efficient use of the EIB and to interleave computation and data transfer, the

PPE and 8 SPEs are equipped with a DMA engine. Since an SPE’s load/store instructions

can access only its private LS, each SPE depends exclusively on DMA operations to

transfer data to and from the main memory and other SPEs’ local memories. The use of

DMAs as a central means of intra-chip data transfer maximizes asynchrony and

concurrency in data processing inside a Cell processor [9].

2.2. Testbed

The PS3 features an identical Cell BE to the ones in IBM BladeCenter QS20. Recently

the gaming console has been used as a low-cost computing platform by scientists [10].

However, one of the SPEs is disabled in PS3s for chip yield reasons and another SPE is

reserved for use by GameOS operating system which acts as a hypervisor, and virtualizes

the system resources. Out of 256 MB Rambus Extreme Data Rate (XDR) memory on

PS3, only 200 MB is accessible to Linux OS and applications. Even though PS3s are not

crafted for high performance cluster computing [11], they offer a valuable testing

platform for tools targeting Cell based architectures. In this paper we use a PS3 console

to quantify the overhead that our profiling library incurs.

 Our second testing platform comprises 8 nodes, called tri-blades, where each tri-blade

has two IBM QS22 Cell blades and one IBM LS21 AMD Opteron blade. The QS22

contains two PowerXCell 8i processors running at 3.2 GHz and each with an associated 4

GB of DDR2 memory. The LS21 blade includes two dual-core Opteron cores clocked at

1.8 GHz. Each tri-blade has a single connection to a Mellanox 4x DDR InfiniBand

network. Typically, the Opterons handle mundane processing (e.g., file system I/O) while

mathematically intensive elements are directed to the Cell processors. Each tri-blade in

our testbed is architecturally identical to the tri-blades used in Roadrunner.

2.3. Cell Messaging Layer

CML is an implementation of common MPI functions for SPE-to-SPE communication in

Cell-based clusters. The programming model underlying the CML is that applications run

entirely on the SPEs. The SPE-centric model of CML assigns unique MPI ranks to each

SPE assigned to an application. By means of using PPE (and possibly conventional CPUs

like Opterons if they exist in the cluster) primarily for shuttling messages to SPEs in

other blades (or PS3s) instead of computation, the abstraction provided by CML allows

each SPE to communicate with other SPEs regardless of whether the SPEs are in the

same socket, the same blade, the same node, or different nodes. On a cluster of Cells,

CML implements a mechanism for forwarding data from a SPE to its PPE then across a

network to a remote PPE and finally to the target SPE. The PPE needs to be involved

because a SPE cannot interact directly with I/O-bus devices such as network interface

cards (NICs). In addition to handling communication operations, PPE, also initializes

CML, starts SPE programs and waits until all SPEs invoke MPI_Finalize(), and finally

shuts down the CML. Therefore both SPE/PPE programs need definitions of CML

functions and should be linked with CML libraries, whereas SPE program can run an

existing MPI application with only minor modifications that are necessary due to

architectural requirements of the Cell. In effect, we have ported our scientific applications

relatively easily to both of our testing platforms.

CML also provides Programmer’s Message Passing Interface (PMPI) functions [12]

which have a one-to-one correspondence to MPI calls. This interface enables any calls

made to the MPI functions, by the SPEs, to be intercepted and thus recorded. Section 3.2

discusses the use of PMPI calls within our profiler.

CML also offers a remote procedure call (RPC) mechanism through which SPEs can

invoke a function on the PPE (PPEs can subsequently call a function on the

accompanying host CPU if it exists) and receive any results. This capability is

particularly useful for our profiler, where local SPEs need to call a PPE malloc() to

allocate space in PPE memory to hold the entire list of recorded events.

3. Software Design Details

Our implementation of the tracing library targets clusters of Cell processors. Each PPE

within a Cell processor is responsible for synchronizing the program run on its SPEs.

CML enables the total number of SPEs, as seen by an application, to scale: from a single

processor containing eight SPEs to clusters of PS3s [10], or to Roadrunner that contains

97,920 SPE cores. The remainder of this section outlines the design and implementation

of the profiler including its memory use, and events that are profiled.

3.1. Data Structures

The buffers that are used in the profiler implementation, along with the double-buffering

operation of the buffers in the LS, is shown in Fig. 1. This is discussed further in Section

3.2.

Fig. 1. Operation of the profiler double-buffering implementation.

A cyclical pattern is used in Fig. 1 to illustrate the allocation of buffers in LS. They

switch roles repeatedly—while one is being used to record newly created events, the

other is being dumped to PPE main memory. In comparison, the PPE memory layout is

linear, where each small section, or event page, corresponds to the size of a single buffer

in LS.

Table 1 summarizes the structure of profile events and of event pages that hold a

number of events. It is crucial that the events and the buffers are allocated to fit the 16-

byte boundary required for DMA transactions. ALIGNED16 is a short-hand notation for

the __attribute__((aligned (16))) attribute, which specifies to the compiler to allocate the

data structure to be 16 byte aligned. It is also important that 16 byte aligned profile data is

structured the same both on SPE and PPE memories.

The enumerator lists the type of events our implementation can currently monitor. We

record calls to the profiler start/stop functions, SPE function entry/exit (E, X), calls to the

MPI functions implemented in CML (MPI_SEND, MPI_RECV, MPI_ALLREDUCE,

MPI_REDUCE, MPI_BARRIER, MPI_BCAST) and various DMA put/get transactions

which are issued by functions spu_mfcdma32() and spu_mfcdma64() defined in libspe2—

the standard SPE library included in the IBM Cell/B.E. SDK. We have limited our

implementation to cover only relevant DMA transaction types to our test applications.

Table 1. Definitions of the data structures.

#define PAGE_SIZE 64
#define ALIGNED16 __attribute__((aligned
(16)))

Table 1. Cont!d.

 typedef enum { PROFILE_START,
PROFILE_STOP, E, X, MPI_SEND, MPI_RECV,
MPI_ALLREDUCE, MPI_REDUCE, MPI_BARRIER,
MPI_BCAST, MFC_PUT, MFC_PUT64, MFC_GET64,
MFC_PUT32, MFC_GET32} event_type_t;

typedef struct {

 double time_stamp;
double duration;
event_type_t type;
unsigned long long enx;
unsigned long long exx;
short output_flag;
int data[8] ALIGNED16;
 }ALIGNED16 event_record_t;

typedef struct page_tag {
struct page_tag* next_page;
event_record_t events[PAGE_SIZE];
 }ALIGNED16 event_page_t;

In addition to recording the type of event, event_record_t also records a time stamp

and the duration of an event, address of the called SPE function and its caller (enx ,exx),

an output flag to indicate that an event has happened and data array which includes

destination/source, send/receive size and send/receive counts for MPI events. Effective

addresses (enx, exx) are stored as an unsigned long long on both the SPE and PPE, so that

they can be treated in a unified fashion no matter if the PPE code is compiled for 32-bit

or 64-bit execution. One event record uses 80 bytes in memory.

A single buffer, or event page, is defined by event_page_t. The size of a page was set

to be 64 in our testing (using 5,120 bytes). A pointer to the next page to use is a part of

event_page_t in case the current page fills up. Contrary to the SPE, which has two event

pages, the PPE allocates a far greater number of event pages. For our analysis on the

PowerXCell 8i based hybrid cluster, the PPE allocates 10,000 event pages per SPE giving

a total PPE memory footprint of 400 MiB (=8!10,000!64!80). However, in our PS3

benchmarks we had to limit the PPE memory allocation to less than 200 MB due to 20

times less PPE addressable memory in PS3. In fact, we have observed that as long as

enough PPE memory is reserved, the performance of the profiler is not affected.

3.2. Implementation

CML based applications first start on the PPEs, which subsequently launch code on the

SPEs. When the profiler is enabled, an instrumented SPE program, once launched,

immediately invokes an allocation function on the PPE, using the CML’s RPC

mechanism, for event pages in main memory. Each SPE is returned the base address of

the reserved memory via the same RPC mechanism. Before a SPE proceeds with actual

application execution, it allocates two event buffers in its LS. However, this allocation is

much smaller than its counterpart in main memory due to the limited size of the LS. In

our tests the profiler statically allocates only two small event buffers of size 5,120 bytes,

which holds up to 64 events, in SPE memory. Apart from the 10 KiB required for the two

buffers, the profiler code requires less than an additional 2 KiB in LS but is dependent on

the actual number of CML functions used by an application. This is ~30,000 times

smaller than the memory used by our profiler in the main memory of the PPE of a

PowerXCell 8i.

 Profiler initialization is followed by the execution of the actual MPI application.

Throughout the application run, the instrumented functions are called to record events.

The instrumented operations, as provided by the profiler, create event logs. For instance,

an SPE-to-SPE message-passing request invokes the corresponding instrumented MPI

communication operation, which populates the event data structure with the relevant

information, e.g., type, source/target, size of the message, and secondly calls the

corresponding PMPI routine, which is implemented by CML, to send the actual message.

The profiler library provides similar instrumented functions to profile other events

including DMA operations and SPE function call activities.

SPE LS memory is limited to 256 KB. If it were to be filled with trace data, it would

inhibit the execution of the SPE code. In order to circumvent this possibility, we use a

double-buffering approach [13] to log trace events. Instead of continuously pushing

events to a dynamically increasing allocation in LS, SPU writes profile event logs as they

appear to one of the two small buffers allocated during profiler initialization. Once the

buffer being used is full, previous buffer-dump operation is checked for completion (Step

1 in Fig. 1), by using mfc_write_tag_mask and mfc_read_tag_status_al, in order to avoid

overwriting data being transferred. If the preceding dump has been completed, a non-

blocking DMA (mfc_put) is issued to transfer the buffer to main memory (Step 2 in Fig.

1). Each SPE sends the data to a privately reserved address, which it determines by using

the memory base address received through the RPC mechanism during initialization, its

local rank and number of previous dumps it has performed up to then. The SPE also

switches the trace buffers and uses the available buffer to record new events (Step 3 in

Fig. 1). Meanwhile, the SPE execution continues without interruption as a non-blocking

DMA is used. Once the second buffer is filled, the SPE switches buffers again and

continues with recording events to the first buffer as it issues a DMA transfer (mfc_put)

to dump the second buffer to the end of the preceding dump in the main memory (Step 4

in Fig. 1). If the speed of event generation is faster than the time taken to transfer a single

LS buffer to main memory then the application execution will pause. In such a case the

size of the LS buffers can be increased but clearly at a reduction in the size of the LS

store available to the application.

The double-buffering implementation not only overlaps data dumping with program

execution, but also gives the capability of logging in excess of 10
4
 times more events than

the LS could have stored by using just two small buffers, and leaves more LS available

for program and data in each SPE.

Upon the termination of tracing, the SPE program dumps the last buffer, regardless of

how full it is, to main memory. Once all of the SPEs terminate the PPE writes the profile

data from main memory to several files, one per SPE, which contains the events that are

ordered in terms of their time of occurrence. The output files can be post-processed for

numerous performance analysis studies.

4. Results

In this section, we first provide detailed analysis of the overhead incurred by the profiling

activity on a single Cell BE processor of the PS3. Secondly, we compare the overhead on

a single PowerXCell 8i to that on Cell BE and finally delineate cluster-wide use of the

profiler.

Three applications were chosen to both quantify the overheads of the profiler use and

also to illustrate its usefulness. The first application is Sweep3D, which solves a single-

group time-dependent discrete ordinates neutron-transport problem. It processes a regular

three-dimensional data grid, which is partitioned onto a logical two-dimensional

processor array. Its computation consists of a succession of 3D wave fronts (sweeps), in

which each processor receives boundary data from upstream neighbors, performs a

computation on its local sub-grid, and produces boundaries for downstream neighbors.

All communications use MPI to transfer boundary data to neighboring processors.

The second application is molecular-dynamics (MD) [14]. The MD simulation

follows the time evolution of the positions of N atoms by solving coupled ordinary

differential equations. For parallelization, the MD code uses a 3-D spatial domain that is

partitioned in all three dimensions into P sub-grids of equal volume. Each step in the

simulation requires the processing of the local sub-grid as well as boundary exchanges in

each of 6 neighboring directions (i.e. the lower and higher neighbor subsystems in the x,

y and z directions).

The third application is a lattice Boltzmann (LB) method for fluid flow simulations.

The cellular-automata like application represents fluid by a density function on of the

grid points on a regular 3D lattice [10]. LB exhibits the same 3D communication pattern

as for MD where each time step involves DF updates and inter-sub-grid density

migrations.

4.1. Performance Overhead Analysis

In effect, the performance overhead of the profiler is dependent on the application as the

mixture of communication and computation operations vary from code to code. Therefore

in this subsection we use an overhead metric by considering a worst-case scenario by

using a kernel application containing only communication calls and no computation.

Additionally, by executing the kernel on a single Cell processor we ensure that only fast

on-chip communications over the EIB are used. The kernel application simply contains

the communication pattern of the Sweep3D application thus resulting in a maximum rate

of event generation. We provide the results first on Cell BE and second on PowerXCell 8i

in the remainder of this subsection.

4.1.1. Cell BE

In order to quantify the profiling overhead we have performed a suite of tests on the Cell

BE of the PS3, which represents typical node of our target cluster.

An equal number of MPI send and receive calls, using a fixed size of 600 doubles

(4,800 bytes), for the 6 functional SPEs on the single Cell BE of the PS3 were used for

the results shown in Fig. 2. Fig. 2(a) shows the average overhead for each profiler call as

a function of the number of events and Fig. 2(b) shows the slowdown when varying the

number of events (the x-axis shows the logarithm of the number of events). It can be seen

that the average time required to record a single event is less than 6.3 µs. This

corresponds to a slowdown of a factor of 6.8 for large numbers of events as shown in Fig.

2(b).

 (a) Average cost per profiler call (b) Slowdown due to the profiler

Fig. 2. Performance overheads of the profiler (6 SPE run on a single Cell BE).

In order to quantify the effect of message size on profiling overhead, we have

performed benchmarks on the Cell BE, and the results are shown in Fig. 3. Here, we fix

the event count at 36,000, which is the point where saturation starts in Fig. 2(b), and keep

the buffer size at 5 KiB while varying the sizes of the sent/received messages.

 (a) Average cost per profiler call (b) Slowdown due to the profiler

 Fig. 3. Performance overheads of the profiler for varying message sizes (6 SPE run on a single Cell BE).

Fig. 3(a) shows that the smallest per profiler call overhead is less than 5.6 µs for 12.5

KiB sized messages, whereas Fig. 3(b) shows 4! slowdown factor. In comparison to Fig.

2, which used 4,800-bytes messages, profiler shows a better performance for 12.5 KiB

messages. This can be attributed to the fact that larger transfers take longer time to

complete, which is overlapped by keeping record of profile events, thereby reducing the

profiler overhead.

 (a) Slowdown in worst-case kernel (b) Slowdown in MD application

 Fig. 4. Performance overhead of the profiler for varying SPE buffer sizes on the Cell BE.

In Fig. 4, we study the effect of changing the sizes of the double buffers reserved for

profile events at SPEs of the Cell BE processor. In Fig. 4(a), we fix the event count at the

saturation point of Fig. 2(b), i.e. 36,000, the message size at 12.5 KiB and vary the buffer

size. It is observed that increasing the buffer size decreases the slowdown factor to as low

as 3.7. As the buffer size at SPE increases, it takes less DMA transfers to PPE to dump

the filled buffers, thereby increasing the performance of the profiler. However, it should

be noted that there is a trade off between increasing the buffer size to achieve better

profiler performance and the application performance itself because of the limited local

store of SPEs. In selecting the buffer size, the memory requirements of application for its

instructions and data should also be considered.

In order to quantify the profiling overhead for a typical scientific application, we port

our parallel molecular-dynamics (MD) code [14] to PS3 using CML for handling MPI

operations. Fig. 4(b) shows the overhead incurred by profiling of the message passing

events of the MD application on a single PS3. The MD application implements a

velocity-Verlet scheme, and calls several small functions at each time step for calculating

atomic positions and velocities besides communication functions. Therefore, in Fig. 4(b),

we turn off the function entry/exit tracing feature of the profiler in order to analyze MPI

calls only, which are mainly for exchanging boundary-atom information. The results are

the averages over a 100-time step simulation. Similar to Fig. 4(a), increasing the buffer

size decreases profiling overhead. However, it should be noted that the y-axis of Fig. 4(b)

is in percentages, i.e., profiler overhead is less than 0.5% for 10 KiB buffers. In effect,

the cost of a single profiler call is less than 0.3 µs when 10 KiB buffers are used. The

MPI messages in the benchmark shown in Fig. 4(b) are on-chip communications and use

the EIB of the Cell processor, which is much faster in comparison to current high

performance computing interconnects. Therefore in a cluster-wide analysis of an MPI-

centric scientific application, the overhead incurred by logging MPI events will be

extremely low.

4.1.2. PowerXCell 8i

Here, we compare the overhead of the profiler on PowerXCell 8i to that on Cell BE

before we proceed with PowerXCell 8i based cluster-wide experiments in the next

subsection.

The overhead evaluation benchmark we described in the experiment of Fig. 2 is

repeated on 8 SPEs of a single PowerXCell 8i processor, and the results are shown in Fig.

5. Fig. 5(a) shows that the average time required to record a single event is less than 3.2

µs and slowdown factor rises up to 4.2 for larger numbers of events as shown in Fig.

5(b). Recall however that intra-cell communications take full advantage of the EIB which

has a total bandwidth of 204.8 GB/s. Intra-cell communications using CML actually

achieve a bandwidth of ~23 GB/s and latency of ~0.3 µs as shown in Table 2. And hence

a SPE-to-SPE message of size 4,800 bytes takes less than 1 µs within a single Cell.

 (a) Average cost per profiler call (b) Slowdown due to the profiler

 Fig. 5. Performance overheads of the profiler (8 SPE run on a single PowerXCell 8i).

It should be noted that the x-axis is linear in Fig. 5 as opposed to the logarithmic scale

in Fig. 2. This is because the saturation of slowdown factor happens faster in comparison

to Cell BE benchmark. The drop down in the average cost per profiler call and the

slowdown factor in Fig. 5 in comparison to Fig. 2 can be explained by the fact that the

Linux kernel in Cell BE of PS3 is running on top of a hypervisor which uses one SPE and

also the EIB. On the PS3, the SPUs are hidden behind the hypervisor and every access

happens in cooperation with the hypervisor. As a result writing to the local store or

shuttling messages results in writing into kernel memory that represents the local store,

which affects I/O of a given process and incurs additional overhead.

For a typical application running on a cluster of Cells, or on a hybrid processor

configuration like Roadrunner, SPE-to-SPE communications can be significantly more

costly than the ones considered in the worst-case discussed above. For instance, on

Roadrunner, communications between SPEs on different nodes have a latency of over

11.7 µs at small message bandwidth of 161 MB/s. Therefore, in practice, the profiling

overhead is much lower due to the increasing cost of communications as demonstrated in

Fig. 4(b).

4.2. Cluster-wide Profiling

In this subsection we illustrate the usefulness of our profiling implementation for LB,

MD and Sweep3D applications. We perform our tests on 8 nodes (32 SPEs per node) of a

Roadrunner-like PowerXCell 8i based cluster.

4.2.1. Communication analysis

The information that is generated by the profiler is analyzed off-line. One log-file is

generated for each SPE used by the application. Fig. 6 shows an example of the SPE-to-

SPE communication pattern of the original Sweep3D code.

Fig. 6. Communication pattern of the original Sweep3D.

In Fig. 6, a larger square surrounded by thick lines and denoted by a node number,

which contains 4!4 small squares, represents a tri-blade in the cluster. Each smaller

square represents one Cell processor with 8 SPEs. The vertical and horizontal axes

represent the sender and receiver SPE MPI ranks, and a colored pixel on the graph

indicates a pair of communicating SPEs. The pixels are color coded to distinguish intra-

node (blue) and inter-node (red) communications respectively.

The decomposition of Sweep3D’s global grid onto a logical 2-D processor array can

be seen in Fig. 6. Each processor communicates with its neighbor in the logical x and y

directions. For a 256 processor run, the 2-D processor array consists of 16!16 SPE

processors. Each processor communicates with its x neighbors (±1) as illustrated by the

two sub-diagonals, and with its y neighbors (±16) indicated by the outermost two off-

diagonals. Message passing for the two x neighbors is performed on the same chip

through high-bandwidth (25.6 GB/s) EIB; whereas communication with the y neighbors

corresponds to 1 message passing to another SPE residing within the same node but on

the other Opteron and performed over PCIe via DaCS; and 1 message passing to an SPE

on another node which adds InfiniBand in the path. These different inter-SPE

communications incur different latency and bandwidth costs as shown in Table 2, which

shows both the latency and bandwidth measured by ping-pong communication tests for

CML.

Table 2. CML point-to-point performance.

Configuration Latency Bandwidth

Same Cell 0.272 µs 22,994.2 MB/s

Same node 0.825 µs 4,281.3 MB/s

Different nodes 11.771 µs 161.2 MB/s

The high latency of inter-node communication in comparison to intra-cell

communication stems from the involvement of PPEs and Opterons in the former. To

achieve higher performance, parallel algorithms should be designed to exploit the low

latency and high bandwidth of EIB connecting intra-cell SPEs and avoid inter-node

communication wherever possible. Fig. 7 shows the communication pattern of a modified

version of Sweep3D, which performs much of the message passing activity over the EIB.

Fig. 7. Communication pattern of the modified Sweep3D.

In the modified version of Sweep3D, one SPE of each Cell acts as a root and

exclusively handles inter-node message passing by gathering messages from the other

SPEs on the same chip and sending it to the root on the destination Cell. This reduces the

number of inter-cell messages significantly and promises an increase in performance.

Fig. 8 shows the communication pattern of MD for 256 SPE run. The logical

arrangement of processors is in an 8!8!4 processor array. Each SPE performs two intra-

cell communications with x neighbors. Communications to y neighbors is comparably

slower with half of the SPEs requiring inter-node communications. For example, in the

first node, SPEs 1–8 and SPEs 25–32 have one of their y neighbors in the next node,

while for SPEs 9-24 the communications to y neighbors only involves intra-node

communications. For all SPEs, message passing with z neighbors is inter-node

communication with a high communication cost. This suggests a possible optimization,

to increase the number of communications over the EIB, as with Sweep3D.

Fig. 8. Communication pattern of MD.

The volume of messages in MD is fairly regular. However, for applications where

message send/receive activities and message sizes vary, heavier communication paths

should be paid more attention. This is demonstrated with another application—LBM.

LBM and MD have the same 3D communication pattern, however for LBM, some

message passing events are an order-of-magnitude smaller than the others. Therefore, in

Fig. 9, instead of plotting all communications, we have drawn only heavier

communications.

Fig. 9. Heavy communications of LB.

Fig. 9 has equal numbers of blue and red dots, indicating that 50% of message passing

activity is inter-node. The other half of the communication is intra-node, of which 1/3

happens among SPEs on different Cells of the node. Therefore, only 1/3 of heavier

communication is taking advantage of the fast EIB. This suggests that LBM suffers a

larger communication cost in comparison with MD and that there is more room for

optimization through the rearrangement of messages.

As a matter of fact, event data structure as described in Section 3.1 has enough data to

provide finer details on message passing events. For example inter-SPE and/or SPE-to-

PPE communications can be analyzed in finer detail. Function use, duration, type of

message passing activity, size of the message, type of data being sent (and/or received),

count of a certain data type, and source/destination, can be analyzed to provide more

insight into the program flow. As we can extract point-to-point communication matrix

from an application execution, it is also possible to automatically identify the

communication pattern by measuring the degree of match between point-to-point

communication matrix and predefined communication templates for regularly occurring

communication patterns in scientific applications [15].

4.2.2. Call-stack analysis

The profiler library can also keep track of function entry and exits. This sub-subsection

illustrates the use of this functionality by a call-stack analysis as another use of our

profiler.

Fig. 10 shows the function call graph for the execution at the first SPE of a 256-SPE

run for LB code. Instrumentation for 10 iterations is visualized and only a portion of call

graph is provided for the clarity of presentation. The node shown as the root is the main

function, which calls collision, streaming and communication functions once during

every iteration. The nodes for these 3 functions include the source file name and the

source code line information, which are looked up from a symbol table during post-

processing. The node, which calls the MPI_SEND/MPI_RECEIVE implementation of

CML, represent calls to the communication functions. Its children nodes show

source/destination and data count of the message in parenthesis. The edges of the graph

are marked with the number of times a particular event is observed. For instance, the

node MPI_SEND(0,56,132) represents SPE 0 sends a message to SPE 56 of 132 bytes

and it has occurred 10 times during the profiling.

Fig. 10. Function call graph for LB.

The instrumentation is also done for functions expanded inline in other functions. The

profiling calls indicate where the inline function is entered and exited. This requires that

addressable versions of such functions must be available. A function may be given the

attribute no_instrument_function, in which case this instrumentation will not be done.

This can be used, for example, for high priority interrupt routines, and any function from

which the profiling functions cannot safely be called, for example signal handlers.

The function call graph provides insight into program execution on a particular SPE

on a cluster contributing to optimizations at the SPE level. In Fig. 10, we have weighted

the edges with function call numbers. Instead, operation completion time could be used

as an alternative for weighting as the profiler keeps durations of events as well. A call

graph can be used to identify bottlenecks of performance at the SPE level and shed a light

on required algorithm modifications for improvement.

5. Conclusions

We have developed a low-memory-footprint (12 KiB of local store), minimally intrusive

profiling library for parallel applications running on clusters of Cell processors. Our

library overlaps computations and DMA transfers to reduce application perturbation and

efficiently utilizes the small amount of SPE local store available on Cell processors.

We have analyzed the performance of our profiler on the Cell BE processor of a

PlayStation3 and explored profiler performance for varying design and application

specific parameters, such as buffer and message size. We have used our profiler library to

analyze the performance of parallel scientific applications that run across multiple Cell

processors, Cell blades, and cluster nodes. Inter-blade communication analysis for

Sweep3D has shown how communication structure can affect application performance.

We have ported two additional applications, LB and MD, to a hybrid Opteron+Cell

cluster, and our profiler data suggests possible optimization opportunities. In order to

demonstrate other uses of our library, we have analyzed the function-call pattern of a

single SPE’s program flow and used that to determine performance bottlenecks on the

level of a SPE core.

While our study demonstrates high-speed, low-memory-overhead profiling for

clusters augmented with Cell processors, it is certainly possible to optimize the profiler to

further reduce its profiling cost and memory footprint. For example, the various types of

profile events have different memory requirements (e.g., call-stack address records use

only 16 bytes out of the 80 bytes allocated for the general event type). Therefore,

restructuring the data types to be event-specific and adding compile-time options to

customize the desired performance report may result in lower intrusion to program flow

and reduce the post-processing effort for profile data.

Acknowledgements

This work was funded in part by the Advanced Simulation and Computing program of

the Department of Energy, ARO, Chevron—CiSoft, DOE, DTRA, and NSF. Numerical

tests were implemented using the AMD Opteron/IBM PowerXCell 8i cluster at the Los

Alamos National Laboratory and Playstation3 cluster at the Collaboratory for Advanced

Computing and Simulations, University of Southern California. Los Alamos National

Laboratory is operated by Los Alamos National Security LLC for the US Department of

Energy under contract DE-AC52-06NA25396.

References

[1] S. Pakin, Receiver-initiated Message Passing over RDMA Networks, in Proceedings of the

22
nd

 IEEE International Parallel and Distributed Processing Symposium (IPDPS 2008),

Miami, Florida, April 2008.

[2] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra, MPI: The Complete

Reference, volume 1, The MPI Core. The MIT Press, Cambridge, Massachusetts, 2
nd

 edition,

September 1998.

[3] IBM, Software Development Kit for Multicore Acceleration Version 3.0: Programmer's

Guide.

[4] H. Brunst and W. E. Nagel, Scalable Performance Analysis of Parallel Systems: Concepts and

Experiences, in Proceedings of the Parallel Computing Conference (ParCo 2003), Dresden,

Germany, September 2003, pp. 737-744.

[5] D. Hackenberg, H. Brunst, and W. E. Nagel, Event Tracing and Visualization for Cell

Broadband Engine Systems, in Proceedings of 14th International Euro-Par Conference

(Euro-Par 2008), Las Palmas de Gran Canaria, Spain, August 2008, pp. 172-181.

[6] Chen, R. Raghavan, J. N. Dale, and E. Iwata, Cell Broadband Engine Architecture and its First

Implementation: A Performance View, IBM Journal of Research and Development,

September 2007, 51(5):559-572.

[7] G. Michael, G. Fred, and F. P. Jan, High Performance Computing with the Cell Broadband

Engine, in Scientific Programming, 2009, vol. 17, pp. 1-2.

[8] K. J. Barker, K. Davis, A. Hoisie, D. J. Kerbyson, M. Lang, S. Pakin, and J. C. Sancho,

Entering the Petaflop Era: The Architecture and Performance and Roadrunner, in Proceedings

of IEEE/ACM SC08, Austin, Texas, November 2008.

[9] M. Gschwind, H. P. Hofstee, B. Flachs, M. Hopkins, Y. Watanabe, and T. Yamazaki,

Synergistic Processing in Cell's Multicore Architecture, IEEE Micro, March 2006, 26(2):10-

24.

[10] K. Nomura, S. W. de Leeuw, R. K. Kalia, A. Nakano, L. Peng, R. Seymour, L. H. Yang, and

P. Vashishta, Parallel Lattice Boltzmann Flow Simulation on a Low-cost Playstation 3 Cluster,

International Journal of Computer Science, 2008.

[11] A. Buttari, J. Dongarra, and J. Kurzak, Limitations of the PlayStation 3 for high performance

cluster computing, University of Tennessee Computer Science, Tech. rep. 2007.

[12] S. Mintchev, and V. Getov, PMPI: High-Level Message Passing in Fortran77 and C, in

Proceedings of the International Conference and Exhibition on High-Performance Computing

and Networking (HPCN 1997), volume 1225 of Lecture Notes in Computer Science, Springer,

1997, pp. 603-614.

[13] J. C. Sancho, and D. J. Kerbyson, Analysis of Double Buffering on two Different Multicore

Architectures: Quad-core Opteron and the Cell-BE, in Proceedings of the 22
nd

 IEEE

International Parallel and Distributed Processing Symposium (IPDPS 2008), Miami, Florida,

April 2008.

[14] A. Nakano, R. K. Kalia, K. Nomura, A. Sharma, P. Vashishta, F. Shimojo, A. C. T. van Duin,

W. A. Goddard, R. Biswas, D. Srivastava, and L. H. Yang, De Novo Ultrascale Atomistic

Simulations On High-End Parallel Supercomputers, International Journal of High

Performance Computing Applications, 2008, 22(1):113-128.

[15] D. J. Kerbyson, K. J. Barker, Automatic Identification of Application Communication Patterns

via Template, 18th International Conference on Parallel and Distributed Computing Systems

(ISCA PDCS 2005), Las Vegas, Nevada, September 2005, pp. 114-121.

