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A hybrid atomistic-continuum simulation approach has been implemented to study strain relaxation in
lattice-mismatched Si/Si3N4 nanopixels on a Si�111� substrate. We couple the molecular-dynamics �MD� and
finite-element simulation approaches to provide an atomistic description near the interface and a continuum
description deep into the substrate, increasing the accessible length scales and greatly reducing the computa-
tional cost. The results of the hybrid simulation are validated against full multimillion-atom MD simulations.
We find that strain relaxation in Si/Si3N4 nanopixels may occur through the formation of a network of
interfacial domain boundaries reminiscent of interfacial misfit dislocations. They result from the nucleation of
domains of different interfacial bonding at the free edges and corners of the nanopixel, and subsequent to their
creation they propagate inwards. We follow the motion of the domain boundaries and estimate a propagation
speed of about �2.5�103 m/s. The effects of temperature, nanopixel architecture, and film structure on strain
relaxation are also investigated. We find: �i� elevated temperature increases the interfacial domain nucleation
rates; �ii� a thin compliant Si layer between the film and the substrate plays a beneficial role in partially
suppressing strain relaxation; and �iii� additional control over the interface morphology may be achieved by
varying the film structure.
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I. INTRODUCTION

Semiconductor heteroepitaxy is of great technological
value and promise for the fabrication of interesting electronic
and optoelectronic devices.1 Such devices contain overlayers
and/or buried elements of materials whose lattice constants
are generally different from those of the substrate. These
layers are thus grown in a strained state causing large
stresses that extend throughout the device. Since strain alters
the electronic band structure of the semiconductor materials,
it is possible to exploit the lattice mismatch to fabricate de-
vices with tailored electronic and optical properties.

When a heteroepitaxially grown film exceeds a certain
critical thickness,2–10 the mismatch strain may be relaxed via
two classes of mechanisms, depending on whether or not
they destroy the interface coherence. The coherent mecha-
nisms are typically observed in systems with large �greater
than a couple of percent� mismatch, and include morphologi-
cal instabilities such as ripples and island formation, result-
ing in a three-dimensional �3D� growth-mode.11–14 The inco-
herent mechanisms, on the other hand, are observed in
systems with small mismatch, and involve formation of in-
terfacial defects such as misfit dislocations and/or dislocation
arrays, which, however, do not destroy the planar morphol-
ogy of the film, resulting in a layer-by-layer 2D
growth-mode.6,15–20 In cases of very large mismatch both
classes of mechanisms may become operative. While strain
relaxation processes destroy the uniformity of the strain
fields and thus their beneficial role in some device applica-
tions, they can have a desirable effect in other applications
such as in assisting the self-organization of 3D islands in

order to form regular arrays of quantum dots.11,21 In any
case, the understanding of the relaxation mechanisms and the
conditions under which they become operative is an impor-
tant step towards intelligent control over the growth process
of such lattice-mismatched systems.

Traditional analytical and computational approaches
based on elasticity theory treat the mismatched film-substrate
system as a continuum, decomposing the energy into bulk,
surface, and interface contributions.3–8,12,14,22–27 Such a con-
tinuum description is important in order to capture the effects
of the long-range stress fields that are the driving force of
strain relaxation. If the interface energetics and strain relax-
ation mechanisms are known, these approaches can provide a
valuable description of equilibrium strains and shapes of
such systems. Which mechanism is dominant in a particular
case, however, depends on the atomic structure of the film-
substrate interface and thus can only be determined by an
atomistic description.28–34 A fully atomistic approach, on the
other hand, can only be applied to systems of limited size.
Since it ignores the long-range part of the stress field, a direct
comparison with experiment becomes problematic. This is a
multiscale problem: nucleation and evolution of misfit dislo-
cations takes place inside a limited region around the hetero-
structure interface and should be described by an atomistic
method, while the elastic strain energy that drives this pro-
cess is distributed macroscopically throughout the structure
where a continuum method suffices for its description.

Recently developed multiscale simulation approaches
35–41 utilize the molecular dynamics �MD� and the finite el-
ement �FE� methods for the atomistic and continuum de-
scriptions, respectively. There are two types of atomistic-
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continuum simulation approaches. In one type, formally
formulated by Abraham, Broughton, Bernstein, and
Kaxiras,39 the system is separated in two regions, one de-
scribed by MD and the other by FE, while a hand-shaking
scheme is defined for the FE-MD interface.35,36,39,41 In the
other approach, formulated by Tadmor, Ortiz and Phillips,37

the FE formulation is retained throughout the system, while
MD is used to define the corresponding continuum constitu-
tive relations.37,40

In this paper, we implement the multiscale simulation ap-
proach of the first type, to study the multiscale problem of
strain relaxation. We have applied this approach to study a
Si/Si3N4 nanopixel on a Si�111� substrate, which is poten-
tially important in microelectronics. Recent experiments and
simulations have shown a 2D growth mode for such
systems,31,42,43 however, little is known about the strain re-
laxation mechanisms. The small lattice mismatch��1.25% �
requires large simulation systems in order for the relaxation
mechanisms to become operative. We will use the MD
method in the Si3N4 film and Si/Si3N4 interface region, and
a continuum description �FE� of the Si substrate below the
interface region, for a pixel of lateral size 50�50 nm2. Since
MD can provide complete space-time trajectories of atoms at
finite temperature, we will be able to follow the nucleation
and dynamic evolution of the strain relaxation mechanisms.
By varying initial conditions such as temperature, pixel ar-
chitecture, and film structure, we will be able to draw con-
clusions on ways to control the strain relaxation processes.

The paper is organized as follows. In Sec. II we provide
an introduction to strain relaxation processes and issues of
current research in semiconductor heteroepitaxy, focusing
mainly on systems that exhibit a 2D growth mode. An intro-
duction to existing computational modeling approaches of
such systems as well as to multiscale simulation approaches
is also discussed in this section. In Sec. III we outline, test,
and validate the MD-FE multiscale simulation approach that
we will use for the nanopixel problem. In Sec. IV we provide
a description of the symmetries and energetics of the nan-
opixel system and an outline of the multiscale simulation
strategy, followed by the simulation results, which include
the strain relaxation nucleation and evolution as well as the
effects of temperature, pixel architecture, and film structure.
Finally, in Sec. V we summarize our main conclusions.

II. PRELIMINARIES

One of the first questions formulated in the field of strain
relaxation in heterostructures was the conditions that drive a
coherently strained film to relax via formation of misfit dis-
locations. These misfit dislocations lay on the film-substrate
interface and their Burgers vector is such as to relieve some
of the mismatch strain. Van der Marwe in 1962 �Ref. 2�
estimated a critical film thickness that marks the onset of
such misfit dislocation nucleation. His approach was based
on energy considerations: at the critical film thickness hc the
interfacial energy between the film and the substrate �which
is the energy available for dislocation generation� equals the
mismatch strain energy. Matthews and Blakeslee3 used force
equilibration considerations. Assuming a pre-existing dislo-

cation, there are two opposite forces applied to it: one is the
tension in the dislocation line that depends on the film thick-
ness, and the other is due to the mismatch strain. If the mis-
match force is equal or larger compared to the tensile force,
the formation of the misfit dislocation is favorable, and an
expression for the critical film thickness is derived accord-
ingly. An improved energy condition was later provided by
People and Bean:5 the areal strain energy density due to mis-
match exceeds the self-energy of an isolated dislocation for
films thicker than hc. This produced the best agreement with
experimental results on a GexSi1−x /Si system.4 Further ad-
vancements include the work of Hirth and Feng,8 who cal-
culated the critical layer thickness for misfit and inclined
dislocation stability in strained multilayer structures, and that
of Freund and Nix,7 who generalized the Matthews and
Blakeslee criterion to the case of a compliant �i.e., finite
thickness� substrate, among many others.44,23,9,45 The kinet-
ics of these misfit dislocations has also been studied by a
number of researchers.45–47,27

On the experimental side, Tsao et al.6 studied SixGe1−x
layers grown on Ge and concluded that the stress, which
actually drives dislocation motion, is the difference between
the usual stress due to misfit strain and an “effective” stress
due to dislocation-line tension. Observable strain relief oc-
curs only if this “excess” stress exceeds a critical value,
which, however, depends on temperature. Lee et al.15 used
ballistic electron emission microscopy �BEEM�, atomic force
microscopy �AFM�, transmission electron microscopy
�TEM� and scanning tunneling microscopy �STM� on
InGaAs/GaAs interfaces, and found cross-hatch patterns that
originate from misfit dislocations. Belk et al.16 used STM to
study misfit-dislocation induced lattice distortions of the ep-
ilayer for InAs thin films grown on GaAs�110�. 2D islands
with regular size are observed when two monolayers �MLs�
of InAs are grown. Upon further growth, interfacial misfit
dislocations appear following the coalescence of the 2D is-
lands. The growth mode remains 2D for all coverages.
Yamaguchi et al.17 studied strain relaxation in
InAs/GaAs�111�A heteroepitaxy on the atomic scale by
STM. The coalescence of small islands and the formation of
a dislocation network are identified at the critical layer thick-
ness ��2 MLs�, and no 3D growth is observed for all cov-
erages. The measured density of the misfit dislocations indi-
cates that the strain is not fully relaxed at the critical layer
thickness, but is instead gradually relieved with the addi-
tional growth of InAs. Ohtake and Ozeki10 performed in situ
measurements of strain in the surface-normal direction dur-
ing InAs/GaAs�111�A heteroepitaxy. They found that the
initially grown InAs lattice ��3 MLs�is under compressive
strain in the surface-normal direction as well as in the
surface-parallel direction, contrary to the prediction of elastic
theory. By changing the film composition InxGa1−xAs, they
observed that the strain relaxation in the surface-normal di-
rection hardly depends on the degree of the lattice mismatch,
in marked contrast to the in-plane case. Their conclusion is
that elastic theory can adequately be applied to InAs films
thicker than 20 MLs. Wiesauer and Springholz48 have found
experimentally that misfit dislocation interactions in PbTe on
PbSe�001� can significantly lower the kinetic barriers and
thus increase the rate of relaxation.
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A promising approach to controlling the strain relaxation
mechanisms, and thus the quality of the epitaxial film, relies
on the utilization of compliant substrates. A compliant sub-
strate is mechanically similar to a finite-thickness substrate
unconstrained at its base, so that it can laterally relax in order
to accommodate part of the mismatch strain, inhibiting the
formation of misfit dislocations and other morphological in-
stabilities. Luryi and Suhir49 proposed the use of a patterned
substrate in the form of small seed pads. They showed that
the free space between the pads is used for lateral expansion
that relieves the mismatch strain, and calculated the critical
pad size below which, for a given mismatch, thick films can
be grown without misfit dislocations. Powell, Iyer, and
LeGoues50 proposed and experimented on depositing SiGe
on a thin layer of Si, which in turn is on a SiO2 wafer. The Si
layer slides on the amorphous SiO2 and thus shares the mis-
match strain. As the GeSi film grows thicker, more strain is
accommodated by the Si film, while any plastic deformation
or dislocation formation happens inside the Si film, leaving
the GeSi film relaxed and free of defects. Ejeckam et al.51

employed twist-wafer bonding to help achieve the desired
lattice compliance properties. A large twist angle introduces
a dense square array of screw dislocations between the bulk
substrate and the thin film. Because of them, the film be-
comes very flexible, playing thus the role of the compliant
substrate. The physical origin of the observed compliance in
twist-wafer bonding is still an object of debate.52–54 Another
approach is the use of an intermediate layer between the film
and the substrate. Nakada et al.42 successfully grew high
quality GaN films on Si�111� substrates through the forma-
tion of amorphouslike silicon nitride layers with thickness of
about 1–1.5 nm on the Si surface, while Wang et al.43

achieved the growth of crystalline Si3N4�0001� on Si�111� by
exposing the Si substrate to nitridation gases. These ap-
proaches show that it may be possible to fabricate new op-
toelectronic devices by combining GaN growth techniques
with already well-established silicon device technology.

From the above introduction it is apparent that there are
still great challenges in this technologically important field.
Computational approaches will play a significant role in ad-
vancing our atomistic understanding, by making it possible
to study regions unreachable by analytic theory �realistic fi-
nite sizes and geometries, compliant layers, interface chem-
istry, temperature, etc.�, as well as providing a link between
theoretical approaches and experiment. The remainder of the
section presents a simple energetic consideration of the
strained film problem, existing computational continuum and
atomistic approaches, and previous multiscale simulation ap-
proaches.

A. Continuum elasticity theory

We will formulate here an elementary linear elastic
description55 of the general heterostructure problem. For this,
we consider a simplified one-dimensional model of a film-
substrate system: a finite-thickness isotropic film deposited
on a finite-thickness isotropic substrate, both being infinite in
the other two lateral dimensions. The top of the film and
bottom of the substrate surfaces are assumed free. We denote

the film and substrate thicknesses as hf and hs, their shear
moduli and Poisson’s ratios as � f ,� f and �s ,�s, and their
equilibrium atomic lattice constants as af and as, respec-
tively. We assume that af �as. We will consider two cases:
�i� coherently strained film/substrate system, �ii� fully re-
laxed film-substrate system via formation of interfacial misfit
dislocations.

In the coherently strained case �Fig. 1�a�� film and sub-
strate are under biaxial compressive and tensile strains � f and
�s, respectively, with � f −�s=�m= �as−af� /af. The corre-
sponding biaxial stresses are � f =Mf� f and �s=Ms�s, where
Mi=2�i�1+�i� / �1−�i� for i= f ,s. The total elastic strain en-
ergy per unit area is Vcoherent=Mf� f

2hf +Ms�s
2hs, while the

equilibrium film strain and the equilibrium energy per unit
area are

� f =
�m

1 + Mfhf/Mshs
, Vcoherent =

Mf�m
2 hf

1 + Mfhf/Mshs
. �1�

In the limit of infinitely thick substrate, hs→	, the total
mismatch strain is accommodated solely by the film � f =�m
and the elastic energy becomes Vcoherent=Mf�m

2 hf.
In the fully relaxed case �Fig. 1�b��, a regular array of

interfacial misfit dislocations is introduced at the interface,
eliminating the mismatch strain. Assuming these are edge
dislocations, we may estimate a Burgers vector of magnitude

�b→�=as and so an average interdislocation separation distance
of �d�=as /�m, which yield an average dislocation density of
�N�=2/ �d� �the factor of 2 is for the two perpendicular di-
rections�. We have assumed here that the dislocations are
self-organized into a regular square array, but this may vary
depending on the underlying atomic lattice structure and pos-
sible slip directions. The total potential energy now consists
of the dislocation core energy, the dislocation elastic self-
energy, the dislocation interaction with the free surfaces, and
the dislocation-dislocation interactions. Ignoring the last
part, we have for the potential energy per unit area Vrelaxed
= �N��Velastic+Vcore�+
sf, where Vcore is the interatomic en-
ergy due to the atomic lattice distortion in the dislocation
core and 
sf is the stacking fault energy that may result at the
interface due to the deformation introduced by the disloca-

FIG. 1. �Color online� Schematic of a mismatched film-substrate
system: �a� fully strained and �b� fully relaxed through interfacial
misfit dislocations.
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tion. Both of these terms are atomistic in nature. Velastic de-
scribes the energy of the dislocation’s strain fields including
their interaction with the free surfaces,

Velastic =
�ef f�b→�2

4��1 − �ef f�
�1 − �ef f cos2 ��ln � hfhs

�b� ��hf + hs�
� , �2�

where �ef f and �ef f are the corresponding effective shear
modulus and Poisson’s ratio, which describe a film-substrate
system that is treated as a single effective medium, and � is
the angle between the Burgers vector and the dislocation line
�in our case of edge dislocations �=� /2�.

In a realistic case, the equilibrium is a mixture of the
coherently strained and the fully relaxed cases. Furthermore,
in realistic finite-width cases, the situation is even more com-
plicated. The free-surface energies must enter the equations
explicitly and so the equilibrium now depends on the
surface-to-volume ratios, introducing such effects as bending
or buckling. Corners and edges should also be taken into
account. Depending on the underlying atomic lattice symme-
tries and slip directions, the dislocation’s Burgers vectors and
dislocation lines, as well as their arrangement, may be dif-
ferent. In some cases, they may split into partials, which, for
example, introduce stacking faults at the interface. A con-
tinuum description of such systems, using a numerical tech-
nique such as the finite element method, assumes that all of
the above energies and mechanisms are known. This requires
complete understanding of the materials properties of film
and substrate, as well as their interface atomic structure. If
this is not the case, then the molecular-dynamics method is
required to obtain an atomistic description of the system.

B. Review of computational approaches

Most computational approaches that solve the continuum
elasticity equations use the finite element method. Examples
include the work of Jain et al.22 who calculated the stresses
and strains in mismatched substrates and stripe films of any
thickness and width, Johnson and Freund23 who calculated
the equilibrium shapes of strained islands on a substrate as a
function of mismatch and island volume, and Zhuang et al.,24

who calculated displacements in Si/SiGe quantum wires. A
great advantage of this method is that it enables the simula-
tion of structures of realistic size, providing a direct link with
the experimental data. For example, Pinardi et al.56 and
Zhuang et al.24 used the calculated strains to reproduce pre-
viously measured Raman spectra and x-ray-diffraction pat-
terns respectively, thereby providing a quantitative interpre-
tation of the experimental data. The disadvantage of this
computational approach, however, is its rather limited pre-
dictive capability. Equilibrium bulk and surface material
properties are assumed, despite the fact that these may
change in regions of high deformations.32,18 Continuum elas-
ticity may not even be valid in the case of ultrathin ��3-ML�
films.10 Strain relaxation mechanisms such as nucleation of
misfit dislocations cannot be predicted a priori, and even if
they are known, they are much more suitably described by an
atomistic approach since they are atomistic in nature.

Atomistic simulation approaches utilizing the molecular-
dynamics method circumvent these problems by directly

dealing with the discrete character of the system under study.
Using reliable interatomic potentials, all material properties
such as symmetries, interface interactions, nonlinear and/or
plastic deformation responses are built into the MD scheme.
Zhang and Lagally28 studied the use of foreign atoms at the
interface as means of an alternate strain relaxation mecha-
nism to suppress the 2D-to-3D growth mode transition.
Zepeda-Ruiz et al.18 studied the energetics of misfit disloca-
tion formation as well as the variation of the critical thick-
ness as a function of the substrate’s compliance for
InAs/GaAs heteroepitaxial systems. Yu and Madhukar29

studied the behavior of energetics and atomically resolved
stresses and strains of Ge islands on Si �see also Refs. 33 and
34�, while Cusack et al.30 studied pyramidal InAs dots on
GaAs �see also Ref. 32�. Su et al.57 identified growth limiting
mechanisms in InAs/GaAs dots, thereby interpreting some
recent experimental results,58 and Bachlechner et al.31 found
highly inhomogeneous stress distributions in Si/a−Si3N4
nanopixels. Direct comparisons with experiments were done
by Nosho et al.59 who used STM and MD simulations to
study the surface morphology and interfacial stability in
InAS/GaAS�111�A heteroepitaxy and found good agreement
between simulation and experiment. Simulations of epitaxial
growth were performed by Jacobsen et al.,60 who combined
kinetic Monte Carlo and MD to achieve simulation times of
seconds. They studied energetic beam deposition and found
the energetic conditions for layer-by-layer growth.

The simulation results mentioned above show the great
promise and potential of atomistic approaches. As computer
power increases, larger and more realistic systems can be
simulated to provide insight and in some cases direct inter-
pretation of experimental data. One area, though, that has not
been extensively studied is the actual dynamics of the strain
relaxation mechanisms; the nucleation and dynamical evolu-
tion of the misfit dislocations in systems of realistic size and
temperature. An atomistic description of such a system, how-
ever, is limited due to computational constrains, to the study
of zero-temperature structural relaxation and energetics.
Here we will use a computational scheme that brings to-
gether the atomic resolution needed at the interface, with the
continuum description of larger length scales needed to reach
the experimental sizes, and will study the multiscale problem
of strain relaxation dynamics. In the next subsection, we pro-
vide a brief overview of existing multiscale computational
approaches, one of which we will choose to study our sys-
tem.

C. Review of multiscale computational approaches

One of the first multiscale simulations to couple atomic
and continuum elasticity dynamics is the two-dimensional
embedded atom approach of Mullins et al.,35 who used it to
study the �001� plane crack in 
-iron. The idea is to create a
region surrounding the crack tip where MD is used to pro-
vide the necessary atomic resolution, which is embedded in a
larger macroscopic region described by a continuum ap-
proach. In this larger region the equations of linear elasticity
are solved on a computational grid by using the FE method.
The handshaking between the two regions is done as follows:
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inside the grid cells �elements� that are at the interface of the
two regions, pseudoatoms that interact with the real atoms
via the interatomic potential are embedded. The atomic
forces that are exerted on them are transferred to the grid
points �nodes� of the corresponding elements through use of
interpolation functions. Thus the new deformation state of
the continuum system is directly affected by the atomic in-
teractions. The embedded atoms, in turn, move in lock posi-
tion with the continuum, and so through their interaction
with the real atoms, the information about the new deforma-
tion state is passed back to the MD region. This “handshak-
ing” scheme was an early dynamic coupling of the two
length scales.

An improved coupling scheme was later introduced by
Kohlhoff et al.36 who studied crack propagation in bcc crys-
tals. Instead of just bringing together the FE and atomic re-
gions, the FE grid close to the interface was scaled down to
the atomic size and forced to overlap over a wide “transition
zone,” establishing a one-to-one correspondence between the
atoms and the nodes. This scheme ensured that all atomic
and nodal forces were calculated using a complete set of
neighbors, providing therefore a smoother coupling between
MD and FE. A further improvement was introduced by
Abraham et al.,39 when they defined an explicit Hamiltonian
for the transition zone, in a full three-dimensional application
for fracture in silicon: the hybrid particles close to the hand-
shake surface follow hybrid �i.e., averaged over MD and FE�
dynamics. This ensures a seamless transition between the
two length scales and well-defined energy conserving dy-
namics. Finally, in the coarse-grained molecular-dynamics
method of Rudd and Broughton,40 the constitutive relations
for continuum are improved, by deriving them directly from
the interatomic potential by means of a statistical coarse
graining procedure. For atomic size elements, the atomic and
nodal degrees of freedom are equal in number, and thus we
get the same dynamics, while for large elements we recover
the continuum elasticity equations of motion. This method
constitutes the highest quality coupling of the two length
scales.

A different and very successful multiscale simulation ap-
proach for coupling atomistics with continuum is the quasi-
continuum method of Tadmor et al.37 Here, the FE formula-
tion is retained throughout all space. The potential energy of
each element, however, is not defined through the continuum
elasticity constitutive relations, but rather, through a separate
atomistic calculation using the actual microscopic inter-
atomic potential. Within each element we assign a represen-
tative crystallite of the actual material, deformed according
to the local deformation inside the element. The calculated
microscopic potential energy is assigned as the energy of that
element. In areas of high deformation, the grid is adaptively
refined. Once all energies are calculated, the system is
brought to equilibrium by means of a zero-temperature
energy-minimization process. The advantage of this method
is its ease to simulate complex structure such as dislocations
and defects. It has been successfully used for many studies,
such as the interactions between grain boundaries, disloca-
tions and cracks,61 or nanoindentation,62 etc. There are sev-
eral review articles on the various multiscale issues and
methodologies for a variety of physical problems.63–66

For the problem of strain relaxation, the concurrent cou-
pling of length scales method of Abraham et al.39 is the most
attractive one. The existence of an explicit Hamiltonian for
the entire system ensures energy conservation, which is cru-
cial for a realistic description of dynamics at a finite tempera-
ture. Furthermore, the basic limitation of this method, i.e.,
the handshake between MD and FE is in a fixed region of
space, excluding the possibility for adaptive re-meshing. The
region in which dislocations evolve, and thus must be de-
scribed atomistically, is around the interface and is fixed.
Finally, the computational efficiency of this scheme is very
high. In the next section we describe our implementation of
the concurrent coupling of length scales, which includes a
few modifications from the original methodology in order to
improve the coupling in the handshake region as well as the
overall computational efficiency.

III. METHODOLOGY FOR CONCURRENT COUPLING
OF LENGTH SCALES

Recently, Abraham, Broughton, Bernstein, and Kaxiras39

developed a Hamiltonian formulation of a hybrid simulation
approach that combines large-scale molecular-dynamics
�MD� simulations embedded in a continuum, which is
handled with the finite element �FE� approach based on lin-
ear elasticity. First, the physical system is spatially divided
into FE, MD, and handshake �HS� regions. Within the FE
region, the equations for continuum elastic dynamics are
solved on a FE mesh. To make the transition from the FE to
MD regions seamless, the FE mesh in the HS region is re-
fined down to the atomic scale near the FE-MD interface in
such a way that each FE node coincides with an MD atom,
establishing a one-to-one correspondence between the atoms
and the nodes. These hybrid node-atoms follow hybrid dy-
namics to ensure a smooth transition between the FE and
MD regions. An explicit energy function, or Hamiltonian, for
this HS zone is defined to ensure energy-conserving dynam-
ics. We will follow here their scheme, introducing modifica-
tions in order to improve the quality of the FE-MD coupling.

A. Molecular dynamics method

In MD simulations, the physical system is described by

sets of N atomic positions 	r→i � i=1, . . . ,N
 and velocities

	v→i � i=1, . . . ,N
. We discretize time into discrete intervals �t
and numerically solve Newton’s equations of motion with an

interatomic potential VMD�	r→i
�. In our MD simulations, the
interatomic potential consists of two- and three-body terms,

VMD=��i,j�Vij
�2��r→i ,r

→
j�+��i,j,k�Vijk

�3��r→i ,r
→

j ,r
→

k�. To simulate
Si/Si3N4 systems, the interatomic potential should be able to
describe these very different materials as well as the inter-
face in a seamless fashion. In our model, we have to distin-
guish between Si atoms in the silicon crystal and in silicon
nitride. In addition, the atoms at or near the interface have
different charge transfer and therefore have to be treated dif-
ferently. Based on linear combination of atomic orbitals
�LCAO� electronic structure calculations for the
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Si�111� /Si3N4�0001� interface, we find that the Si/Si3N4

system may be adequately modeled as an eight-component
system, where each of the eight atom types is associated with
a different set of parameters in the interatomic potential. The
different types of atoms are as follows: in the silicon nitride
bulk we have 1 Si atom and 1 N atom. On the silicon nitride
surface we have 1 Si atom and 2 N atoms �one twofold and
one threefold coordinated�. In the silicon bulk we have 1 Si
atom and on the Si surface we have 2 Si atoms �one threefold
and one fourfold coordinated on the top and second atomic
layer, respectively�.70 To model bulk Si, we have chosen the
Stillinger-Weber �SW� potential67 which provides a reason-
able description of crystalline silicon. The potential for bulk
silicon nitride is constructed from two- and three-body
terms.68 The two-body part contains the effects of charge
transfer, electronic polarizability, and steric repulsion, while
the three-body covalent terms represent the effects of bond
bending and stretching. This interatomic potential has been
validated by comparison with experimental properties of
crystalline and amorphous Si3N4.69 For atoms at the inter-
face, the charge transfer, bond lengths, and bond angles are
consistent with the results of the electronic structure
calculations.70

B. Finite element method

Under the action of applied forces, solid bodies undergo
deformations such as changes in shape and volume. For a

given deformation, the position r→ of any point is displaced to

a new position r→�, defining the displacement vector for that

point u→�r→�=r→�−r→. In the limit of linear elasticity �which we

use in this work�, the strain at the point r→ is defined as

�i�r→�=�ui�r→� /�ri and the shear as 
ij�r→�= ��ui�r→� /�rj

+�uj�r→� /�ri�, where i , j=1,2 ,3 denote the three orthogonal
directions. In the absence of tractions and body forces, the
total elastic energy of a solid is given by

HFE = VFE + KFE =
1

2
� 	�
T�E�	�
d� +

1

2
� ��u→̇�2d� ,

�3�

where 	�
T= 	�1 ,�2 ,�3 ,
12,
23,
13
 , �E� is the reduced 6

�6 elastic moduli matrix, �=��r→� is the mass density, and

u→̇=u→̇�r→� is the rate of change of the displacement field. The

stress at a point r→ is 	�
= 	�VFE /��
= �E�	�
, while the re-

storing force opposing the deformation f i�r→�= ��VFE /�ui�r.
In the finite element method71 we discretize the solid into

a grid. The continuous displacement field u→�r→� is defined at
the grid points �nodes� and interpolated within the grid cells

�elements�. We denote the nodal displacements as 	D→



	D→i
 for i=1,N where N is total number of nodes �grid

points�. If we “pull out” from 	D→
 the nodal displacements of
a specific element, we form the elemental displacement vec-

tor 	d→

	d→i
 for i=1,n where n is now the number of nodes
in that element. In a similar way we define the nodal velocity

and acceleration 	D→̇
 , 	D→̈
 and the corresponding elemental

vectors 	d→̇
 , 	d→̈
.
Interpolation within each element is done using an iso-

parametric formulation. This allows us to generate nonrect-
angular elements, which is useful in transitioning from a
coarse to a fine grid. Isoparametric signifies that we use the
same parameters and interpolation scheme for any field that
is interpolated from its nodal values �e.g., displacements, co-
ordinates, etc.�. Isoparametric elements are always defined in
“natural” coordinates �� ,� ,��, where −1�� ,� ,�� +1. We
define the linear interpolation functions �also called shape
functions� Ni�� ,� ,�� �e.g., for an eight-node element they
are Ni�� ,� ,��= 1

8 �1±���1±���1±���, so that any field � can
written as ��� ,� ,��=�i=1

n Ni�� ,� ,���i, where �i are its
nodal values. The shape functions satisfy Ni�� j ,� j ,� j�=�ij

and �i=1
n Ni�� ,� ,��=1.

The interpolation of the elemental displacement vector is

written in compact notation as 	u→
= �N�	d→
. From this we

calculate the strain 	�
= ��real�	u→
= �J�−1��natural��N�	d→


= �B�	d→
 where we defined the Jacobian transformation �J�
=�x�� ,� ,�� /��=�i=1

n Ni,��� ,� ,��xi, where xi are the nodal
coordinates �for more details, see Ref. 71�.

The elastic potential energy is now defined as

VFE =
1

2
�

�

	�
T�E�	�
d� =
1

2 �
l=1

Nelements

	d→
l
T�k�l	d

→
l, �4�

where �k�l=��l
�B�l

T�E�l�B�ld�l is the stiffness matrix of el-
ement l. In a similar manner we calculate the kinetic energy

KFE =
1

2
�

�

��r→��u→̇�r→��2d� =
1

2 �
l=1

Nelements

	d→̇
l
T�m�l	d

→̇
l, �5�

where �m�l=��l
�N�l

T��r→��N�ld�l is the mass matrix of ele-
ment l. For the evaluation of �k�l , �m�l we use the Gauss
quadrature integration rule. Finally, assuming external loads

	R→

	R→i
 for i=1,N at the structure’s nodes, whose work is

−	D→
T	R→
, then in the equivalent global notation the total
energy is written as

E =
1

2
	D→
T�K�	D→
 +

1

2
	D→̇
T�M�	D→̇
 − 	D→
T	R→
 �6�

and the equations of motion

�M�	D→̈
 = − �K�	D→
 + 	R→
 , �7�

where �K�, �M� are the system’s global stiffness and mass
matrix, respectively, formed by the corresponding elemental
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ones �K�↔�l=1
Nelements�k�l and �M�↔�l=1

Nelements�m�l.
The mass matrix �m� is nondiagonal, representing a con-

tinuous mass distribution. In the case of small, atomic-size
elements, however, this turns to be a bad approximation,
since mass is not continuously distributed in space but rather
discretely assigned at the atomic lattice positions. A better
approach is to use the lumped mass approximation, in which
the mass is assigned only to the nodes and thus �M� becomes
diagonal. This is particularly convenient since we avoid the
evaluation of �M�−1. Furthermore, the calculation of the ac-
celeration can then be done element by element, avoiding the
construction of the global �K�. These considerations reduce
the problem’s computational complexity to O�N�.

In our application we will use FE to simulate crystalline
silicon. Since the FE silicon will be ultimately interfaced
with MD silicon, it is imperative to use a consistent descrip-
tion across the two regions. The MD silicon is described by
the Stillinger-Weber �SW� �Ref. 67� interatomic potential,
and thus we choose to use the elastic constants of silicon that
are predicted by the SW potential as opposed to using the
corresponding experimental values. We will thus use the val-
ues 151.5, 76.5, and 56.5 GPa for C11, C12, and C44 respec-
tively.

C. Handshaking of atomistic and continuum regions

The characteristic length scales of the atomistic and con-
tinuum systems are inherently different. The atomistic sys-
tem’s length scale is invariably set by the bond lengths and is
the same throughout the system. The continuum system’s
length scale, on the other hand, is set by the size of the finite
elements used, and it can vary within the system. If we wish
to couple these two systems together, we need to create a
region of space in which their characteristic length scales
will match, i.e., a region in which the finite element grid is
fine grained down to the atomistic dimensions.

To achieve this we use three different basic element
shapes, shown in Fig. 2. Element �c� uses a different inter-
polation scheme �i.e., shape functions� than �a� and �b� do,
being a six-node element instead of an eight-node one. As-
suming the direction towards the MD region is the z direc-
tion, then fine graining is done first in the x and z directions,
then in the y and z directions, and the cycle continues until
we reach the atomic dimensions. In each cycle we reduce
each dimension by a factor of 2. At the edges of the x ,y
directions, the elements wrap around and periodic boundary
conditions are applied.

After reaching the atomistic dimensions, we couple the
FE grid with the MD lattice. The best strategy follows an

idea due to Kohlhoff et al.36 which calls for a finite region in
space in which the MD lattice overlaps with the FE grid in
such way that the MD atomic positions coincide with the FE
nodal positions. To do so, the FE grid in this region is shifted
from cubic into a structure that exactly follows the atomic
lattice. These hybrid atom-node particles constitute the hand-
shake region. The width of the HS region is set by the long-
est cutoff radius of the MD potential. The one-to-one corre-
spondence between atoms and nodes in the HS region does
not break during a dynamic simulation: an atomic trajectory
can be viewed as a displacement around the ideal lattice
position, and conversely, a nodal displacement can be viewed
as a trajectory around the grid point. For this correspondence
to be valid, atoms should move around their equilibrium sites
without diffusing, and local deformations should be small in
order for linear elasticity to hold. For these reasons, the
handshake region must be kept far from regions of large
deformations, such as the region around a crack tip. A com-
plete MD-HS-FE system for Si�111� is shown in Fig. 3.

The next step is to define the dynamics that the hybrid
particles in the HS region will follow. It has been shown by
Abraham et al.39 and Rudd and Broughton40 that it is impor-
tant to define a single conservative Hamiltonian for the entire
system. This ensures that the same symplectic time integrator
can be used throughout the MD-HS-FE system, achieving
energy conservation and numerical stability throughout the

FIG. 2. �Color online� The three element shapes used in fine
graining the FE grid.

FIG. 3. �Color online� Two projections of the 3D MD-HS-FE
grid for Si�111�. For the MD region we use the Stillinger-Weber
potential, which involves nearest-neighbor atoms, and only two
atomic bilayers are needed to be within the HS region.

FIG. 4. �Color online�The averaging scheme for the hybrid
Hamiltonian.
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simulation. The kinetic part of the Hamiltonian is handled
straightforwardly: within the “lumped mass” approximation,
each FE node is assigned a unique mass, which converges to
the actual atomic mass within the HS region. The potential
part, on the other hand, requires careful treatment: the hybrid
particles in the HS region being both atoms and nodes, have
both atomistic and/or continuum interaction terms. We thus
construct the potential part of the Hamiltonian for the HS
region by appropriately averaging the corresponding MD and
FE contributions to each hybrid particle.

We develop an improved averaging procedure which is
depicted in Fig. 4. As noted earlier, the width of the HS
region is set by the longest MD potential cutoff: assume this
is equal to NL atomic layers. Then NL−1 layers of elements
�like e1 and e2 in Fig. 4� will fit in the HS and thus contribute
by a fractional weight to the Hamiltonian. These weights
are shown in the left column of Fig. 4 and correspond to a
linear variation with depth in the HS region. For the MD
contribution, we assign to each atomic layer j a weight wj
= �2�NL− j�−1� /2mNL, where m=2 or 3 depending on
whether we are calculating a two- or three-body MD contri-
bution. Then a two-body interaction between atomic layers j
and j+1 �e.g., b3� will contribute to the Hamiltonian a
weighting factor of wj +wj+1= �NL− j−1� /NL, while b1 which
is within atomic layer j will contribute a weight of 2wj
= �2�NL− j�−1� /2NL. Within the atomic layer j, on the other
hand, the FE contribution is given by the average �j /NL+ �j
+1� /NL� /2. In a similar manner we treat the three-body MD
interactions. For terms between atomic layers j and j+1 we
have two possibilities: two atoms in layer j and one in layer
j+1, or one atom in layer j and two in layer j+1. If we
average these two we also get a weight of �NL− j−1� /NL.
Finally, if any of the atoms of the two- or three-body term is
outside the HS, then that term gets a full weight of 1 if that
atom is in the MD region or zero weight if it is in the FE
region. These weights are summarized in Table I. For our
case of Si�111� the Stillinger-Weber potential that we use has
only nearest-neighbor terms, and thus only two atomic bilay-
ers �i.e., four atomic layers� are needed inside the HS. Then
the average relative weights within bilayer 1 are �3MD
+FE� /4, between bilayers 1 and 2 they are �MD+FE� /2, and
within bilayer 2 they are �MD+3FE� /4 �we give the same
“flavor” to both atomic layers within the bilayer�.

This scheme provides a smooth transition from a full MD
to a full FE description and it was formulated so as to yield
the best matching of the HS elastic constants with those for

the pure MD and FE systems. We can now write the total
Hamiltonian of our system,

H =
1

2�
i

N

mivi
2 +

1

2�
i,j

N

�wi + wj�Vij
�2��r→ij� +

1

6 �
i,j,k

N

�wi + wj

+ wk�Vijk
�3��r→ij,r

→
ik� +

1

2 �
l

Nelements

�
i,j

n�l�

wlu
→

ik
↔

ij
l u→j , �8�

where N, Nelements, and n�l� are the number of total particles,
elements, and nodes in element l, respectively. mi corre-
sponds to particle masses �atoms or nodes are not distinct�,
Vij

�2� and Vijk
�3� are the two- and three-body potential terms used

in MD, and u→l ,k
↔l are the FE displacement vector and stiffness

matrix, respectively, for element l.

D. Implementation of multiscale method on parallel
computers

Parallel computing requires decomposition of the compu-
tation into subtasks and mapping them onto multiple proces-
sors. For FE-MD simulations, a divide-and-conquer strategy
based on both spatial and task decomposition can be used.
The total volume of the MD system is divided into PMD
subsystems of equal volume while the total volume of the FE
system is divided into PFE subsystems of equal volume, as
depicted in Fig. 5. Each subsystem is assigned to a processor
in an array of P processors, where P= PMD+ PFE, and the
data associated with particles of a subsystem are assigned to
the corresponding processor. The data associated with hybrid
atom-node particles of the HS are assigned to the MD pro-
cessors, while the information about the elements in the HS
are kept in the FE processors.

In order to calculate the force on a particle in a subsystem,
the coordinates of the particles in the boundaries of neighbor
subsystems of the same kind �MD or FE� must be “cached”
from the corresponding processors, as well as the coordinates
of the hybrid particles from the MD processors to the corre-
sponding FE processors. The calculated forces on the cached
particles are subsequently returned to the appropriate proces-
sors. After updating the particle positions due to a time-
stepping procedure, some particles may have moved out of
its subsystem. These particles are “migrated” to the proper
neighbor processors. With the spatial decomposition, the
computation scales as N / P while communication scales as
�N / P�2/3 for an N-particle system. The communication over-

TABLE I. Average relative weights of the MD and FE interac-
tion terms inside HS.

Relative weight of MD FE

between layers j−1 and j NL− j

NL

j

NL

within layer j 2�NL− j�−1

2NL

2j+1

2NL

between layers j and j+1 NL− j−1

NL

j+1

NL
FIG. 5. �Color online� Space and task decomposition of the

hybrid atomistics-continuum system for parallel computing.
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head thus becomes less significant when N �typically
106–109 is much larger than P�102–103�, i.e., for coarse-
grained applications. This scheme is also suitable for meta-
computing applications, i.e., when the MD and FE sub-
systems are assigned to two different �geographically
separate� processor arrays.

E. Testing and validation of multiscale method

There are two issues in evaluating the quality of the
FE-MD handshake: �i� static agreement, and �ii� dynamic
coupling. Static agreement means that a fixed deformation in
the MD region will create long-range strain and stress fields
that unavoidably extend through the HS into the FE region.
A good FE-MD handshake will not alter the values of these
fields either inside the HS region or in the FE region from
what they would be, had the system been modeled with full
MD. In dynamic coupling, on the other hand, we deal with
time-dependent deformations, such as displacement or stress
waves. A temporal deformation initiated in the MD region,
will ultimately propagate through the HS into the FE region.
A good FE-MD handshake will not cause artificial reflections
of these waves at the HS. If both criteria are satisfied, then
the scheme has achieved a seamless coupling between the
atomistic and continuum systems.

Testing the static quality of the FE-MD handshake is done
on a smaller version of the system that we will study later: a
Si/Si3N4 nanopixel. We simulate a 25�25�1-nm Si�111�
mesa, covered with a 25�25�5-nm Si3N4 film, on a 50
�50�15-nm Si�111� substrate. The Si3N4 film and the
Si/Si3N4 interface are treated atomistically with MD while
most of the Si substrate is modeled by FE as a continuum.
The results of this hybrid simulation are compared with those

obtained by using a full MD description of an identical sys-
tem. Periodic boundary conditions are applied on the sides of
the substrate, while its bottom is held fixed. We simulate
both crystalline �0001� and amorphous Si3N4 films. In the
case of the crystalline film, the interface remains coherent
and so the resulting stress fields are uniform �parabolic stress
well�. In the case of an amorphous film, the interface is in-
coherent and the stress fields are nonuniform �stress do-
mains�. The origin and the dynamics of these stress patterns
will be the focus of the next section.

For the crystalline Si3N4 case, the comparison between
displacement fields of the full MD and the hybrid FE-MD
simulations is summarized in Fig. 6. The HS region in the
hybrid simulation is only 1 nm below the top of the Si sub-
strate and 2 nm below the Si/Si3N4 interface. The displace-
ments from equilibrium as a function of the depth z from the
top of the pixel are plotted in Fig. 6�a� with symbols and
lines for the MD and hybrid systems, respectively. Of similar
quality is the agreement between the local stress distributions
in the full MD and hybrid FE-MD schemes, shown in Fig.
6�b�. To study the effect of the position of the HS region, we
perform another FE-MD simulation where the HS is placed
3 nm below the top of the Si substrate instead of 1 nm. Re-
sults with two different HS positions are practically identical.
This justifies the use of a HS region close to the interface
resulting in a highly cost-effective hybrid FE-MD system.

In a second simulation we studied the quality of the dy-
namic coupling between MD and FE. The system here con-
sists of a block of silicon, one-third of it modeled with MD
and the remaining two-thirds modeled by FE, and the simu-
lation involves a projectile impact. The silicon block has
dimensions of 11�6�30 nm3 with the HS parallel to the
�111� plane 10 nm below the top Si surface. Periodic bound-
ary conditions are imposed on the sides. The top Si surface in
the MD region is free and the nodes at the bottom Si surface
in the FE region are fixed. The projectile impact at the top Si
surface in the MD region created small-amplitude waves in
the silicon crystal that propagated through the HS into the FE
region without reflection, demonstrating seamless dynamic
handshaking between MD and FE.

IV. STRAIN RELAXATION DYNAMICS IN Si/Si3N4

NANOPIXELS

Here we apply our multiscale MD-FE simulation ap-
proach to investigate possible strain relaxation mechanisms
in Si/Si3N4 nanopixels. This system has been shown to grow

FIG. 6. Excellent agreement between the full MD �symbols� and
the hybrid FE-MD �lines� schemes is found: �a� Displacements
from equilibrium and �b� stresses as a function of the depth �along
z� from the top of the nanopixel. The directions denoted here are

x : �2̄11�; y : �01̄1�; z : �111�. Displacements and stresses are plotted
on a vertical line that passes through x=0, y=d /4, and x=0, y=0
respectively, where d=25 nm is the pixel width and its center is at
x=y=0. The handshake region �dashed lines� is about 1 nm below
the top of the Si substrate, or, about 2 nm below the Si/Si3N4

interface �dotted line�.

FIG. 7. �Color online� The simulated Si/Si3N4 nanopixel.
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with a 2D growth mode.31,42,43 Therefore we will assume a
flat Si3N4 film of a fixed thickness. The simulated system is
depicted in Fig. 7. A 50�50-nm2 and 8-nm-thick Si3N4 film
resides on a 50�50-nm2 and 1-nm-thick Si�111� mesa,
which in turn sits on a larger 80�80-nm2 and 35-nm-thick
Si�111� substrate. A simple application of the classical
Matthews and Blakeslee formula for the critical thickness
gives an estimate of hc�2 nm. The edges of the Si mesa are
free to relax laterally, thus providing the beneficial effects of
a compliant substrate. At the sides of the Si substrate we
apply periodic boundary conditions while its bottom is held
fixed. Two different structures of the Si3N4 film are
studied—a crystalline 
-phase Si3N4�0001� structure as well
as an amorphous Si3N4 structure. Within our multiscale
simulation implementation, the Si3N4 film, the Si mesa, and
the top 1 nm portion of the Si substrate, which includes the
free surface, are modeled with MD, while the remaining part
of the substrate is modeled with the FE method. The hand-
shake region is thus just 2 nm below the Si/Si3N4 interface.

The lattice constant of Si3N4 is larger than that of Si by
1.25%. We start the simulation with a scaled SW potential
that produces a larger lattice constant for the Si mesa and
substrate by 1.25%, thus initializing an unstrained pseudo-

Si/Si3N4 system. The system is slowly brought to equilib-
rium at 300 K in 24 ps. Temperature is controlled using
Langevin dynamics throughout the whole system �MD, HS,
and FE�. The mismatch is introduced in the next 24 ps by
gradually scaling the SW potential back to its original pa-
rameters while maintaining the temperature at 300 K. We
subsequently remove the temperature control and let the sys-
tem relax for an additional 24 ps, after which we quench the
system back to zero temperature. During this process we
monitor the interface structure and follow the strain relax-
ation dynamics. In all cases, the interface structure is found
to be stable at the end of the simulation.

In the following, we study the atomic structure, the sym-
metries and the energetics of the Si�111� /Si3N4�0001� inter-
face. We then present our simulation results for the
Si�111� /Si3N4�0001� system shown in Fig. 7. Finally we
present results obtained by varying the temperature, the com-
pliant Si mesa, as well as the structure of the Si3N4 film.

A. Coherent Si„111… /Si3N4„0001… interface structure

The structure of a coherent Si�111� /Si3N4�0001� interface
is shown at two different projections in Fig. 8, which is a

FIG. 8. �Color� Two different projections of the
Si�111� /Si3N4�0001� interface. Silicon atoms are shown in black
and nitrogen atoms in blue. In the �111� projection �right plot� we
show the silicon atoms of the Si3N4 film in brown and plot only the
two atomic layers across the interface for clarity of presentation.

FIG. 9. �Color� Stacking fault energy diagram for the Si/Si3N4

interface.

FIG. 10. �Color� Two different projections of the D2

Si�111� /Si3N4�0001� interface structure.

FIG. 11. �Color� The proposed interface structure for the relaxed
Si/Si3N4 interface. Here the initial coherent interface is assumed to
be a “red” state, which is denoted by the yellow dot in the middle
triangle.
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local energy minimum configuration obtained by LCAO
calculations.70 The important interfacial bonding is between
the unsaturated nitrogen and silicon atoms in the bottom
Si3N4 and top Si layers, respectively, at a bond length of
1.75 Å. The SiuSi neighbor distance across the interface is
around 2.7 Å. If the two layers are at infinite separation, the
total surface energy is 486 meV/Å2; when the surfaces are
brought together, it is 430 meV/Å2. We can thus estimate an
“interface energy” of EINT=−56 meV/Å2.

Important information about the energetics of strain relax-
ation can be obtained by plotting the energy change due to a
relative slip across the interface between Si and Si3N4, i.e.,
the stacking fault energy diagram �in practice in this unit-cell
calculation the two parts of the interface just slide with re-
spect to each other�. A unit cell of the interface in the �2̄11�
and �01̄1� directions �denoted as the x and y directions, re-
spectively, in what follows� is used, and 5 unit cells for each
of Si and Si3N4 in the �111� direction �denoted as the z di-
rection�. In order to have a coherent interface, the Si lattice is
expanded by 1.25% to match the Si3N4 lattice constant
�without scaling the SW potential�. Periodic boundary con-
ditions are applied in the x and y directions, while both sur-
faces in the z direction are let free to relax �atoms are al-
lowed to relax only in the z direction, i.e., possible surface
reconstructions are not taken into account�. The convergence
of the results is confirmed by increasing the number of cells
in the z direction. Figure 9 shows the stacking-fault energy
for relative slips of the Si/Si3N4 interface along the x and y
directions. The zero-slip case, which corresponds to the in-
terface structure of Fig. 8, is denoted by D1. We note that
there is a second local energy minimum interface structure,
at the relative slip denoted by D2. The arrow denoting a

D1→D2 slip lays along the �1̄21̄� direction and is b=cxx̂ /6
+cyŷ /2, where cx and cy are the two lateral lattice constants
of the Si�111� orthorhombic unit cell. Using the strain-
relaxed, zero-temperature values cx=6.6515 Å and cy
=3.8403 Å we find �b�=2.2172 Å. The interface structure D2
is actually lower in energy than D1 by �3 meV/Å2, and they
are separated by an energy barrier of �10 meV/Å2. This is
considerably lower than the energy barrier encountered dur-
ing a D1→D1 slip ��25 meV/Å2�. The D1→D2 and
D2→D1 slips are thus expected to be the dominant modes of
strain relaxation in this system.

In Fig. 10 we plot the same two projections as in Fig. 8 of
the interface structure at D2. Each nitrogen atom in the bot-
tom layer of the Si3N4 film has three silicon atoms as neigh-
bors across the interface at an enlarged separation distance of
about 2.5 Å. At the same time, the silicon atoms in the bot-
tom layer of the Si3N4 film are neighbors of one silicon atom
across the interface at a separation distance of 2.4 Å, which
is �1.25% larger than the SiuSi bond length in diamond
silicon. In the rest of this work, we will use the number of Si
neighbors to each nitrogen atom across the interface to de-
termine the interface structure.

Assuming that successive D1→D2 and D2→D1 slips re-
lax the mismatch strain, we show the resulting interface
structure in Fig. 11: It is a triangular superlattice of interfa-
cial domains D1 and D2. Blue color denotes D1 state, and red
D2. The red and blue arrows denote D1→D2 and D2→D1

slips, respectively, along the �2̄11� directions, while the
green lines denote the corresponding interfacial domain

boundaries, which are along the �01̄1� symmetry directions.
These interfacial domain boundaries are reminiscent of misfit
dislocations, and thus we expect them to have similar prop-
erties.

The interfacial domain boundary structure of Fig. 11 is the
equivalent of a complete network of partial dislocations, ly-

ing along the �01̄1� directions and arranged in a triangular
lattice. This is different from a network of full dislocations

that would lie along the �2̄11� directions, with their Burgers

vector along the �01̄1� directions and arranged into a honey-
comb lattice. Such a case has been observed17 and studied18

for the InAs/GaAs�111� interface. In that system, strain is
relaxed predominantly through D1→D1 slips. However, it is
found that at every other vertex of the honeycomb lattice,
where three dislocation lines meet, the strain becomes exces-
sive, forcing the full dislocations to split into partials, form-
ing a small triangular region around the vertex.

B. Strain relaxation in the Si„111… /Si3N4„0001… interface

We followed the simulation schedule described at the be-
ginning of this section for the system depicted in Fig. 7.
During the simulation we monitor the interface structure, i.e.,
the instantaneous separation between nitrogen and silicon at-
oms across the interface as well as the average number of
substrate silicon atoms that are close neighbors of nitrogen
atoms in the film. We find that the interface remains coherent
in the presence of the mismatch and temperature control
�Langevin� until the end of the second part of the simulation
�at 48 ps�. This is because the Langevin dynamics suppresses
coherent motion and thus the relaxation of the interface.
Large compressive and tensile stresses ��1 GPa� appear in
the film and substrate, respectively, due to the mismatch. It is
not until the third part of the simulation, where we remove
the temperature control, that the strain relaxation mecha-
nisms become operative. The NuSi and SiuSi separation
distance distribution across the interface is plotted in Fig. 12
at two time instances, just before we release the temperature
control �48 ps� and just before we start quenching the system
back to zero temperature �72 ps�. We note that the entire

FIG. 12. �a� NuSi and �b� SiuSi distance distribution across
the interface, before �initial� and after �final� the strain relaxation.
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interface, except for a small part, has slipped into a D2 inter-
face configuration.

In order to understand the dynamic evolution of this tran-
sition, we color code in Fig. 13 the average number of sub-
strate silicon atoms that are close neighbors of nitrogen at-
oms in the film, or the “average number of NuSi
neighbors” across the interface, at four time instances: 6, 12,
18, and 24 ps after the temperature control was removed.
Averaging was done in voxels of size 1�1 nm2. We note
that the new interfacial domains nucleate at the free corners

�highest energy points� and the corresponding interfacial do-
main boundaries move inwards through successive slips at
an estimated speed of �2.5±0.5 km/s. For comparison, the
Rayleigh speeds in Si and Si3N4 are about 3.25 and
6.4 km/s, respectively. In the final frame, two nearly parallel

interfacial domain boundaries along the �2̄11� direction are
settled in the middle of the interface, separated by a narrow
D1 interface domain. The width of this narrow domain is
determined by the balance of two forces: one forcing the D2
domain to expand since it is lower in energy than D1, and
another forcing the two domain boundaries apart from each

FIG. 13. �Color� Dynamics of strain relaxation: interface struc-
ture at �a� 6 ps, �b� 12 ps, �c� 18 ps, and �d� 24 ps after the tem-
perature control is removed and strain relaxation initiates. Blue
color denotes D1 interface state and red denotes D2. White corre-
sponds to the interfacial domain boundaries.

FIG. 14. �Color� Relative slip between the film and substrate.
The two inset graphs have the x and y components of the slip
color-coded throughout the interface.

FIG. 15. �Color� Vertical interface modulation at �a� 6 ps, �b�
12 ps, �c� 18 ps, and �d� 24 ps. Deep modulations correspond to the
interfacial domain boundaries. The vertical length scale is magni-
fied by a factor of 100 and truncated at 2.0 Å for better
visualization.

FIG. 16. �Color� Residual stresses on a plane just below the top
of the silicon substrate.
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other in order to maximize the strain relaxation effect. We
further note that the domain boundary line is not along the
expected lines from Fig. 11. The reason for this discrepancy
is that the actual length scale of the relaxed interface has not
been reached, i.e., this is an artifact of the finite size of the
pixel. As we will later see, when we change the initial con-
ditions in order to induce more domains �and thus more do-
main boundaries�, this is no longer the case.

In order to verify the slip directions and magnitudes pro-
posed earlier, we plot in Fig. 14 the distribution of relative
slips between film and substrate. In the two inset figures we
color-code the relative slips in the x and y directions. The
upper part has slipped by b1= x̂cx /6+ ŷcy /2 while the lower
part has slipped by b2= x̂cx /6− ŷcy /2. The third possible slip
b3=−x̂cx /3 did not become operative. The angle between the
slip vector and the domain boundary line is 60°, which in
dislocation terminology corresponds to 3/4 edge and 1/4
screw flavors.

When an elastic solid is biaxially compressed, it expands
along the third dimension due to the Poisson effect. In our
case of a finite-size film, it also bends to partially relieve
some of the applied strain. When interfacial domain bound-
aries are present, the strain is released, or even reversed lo-
cally, thereby introducing a corresponding modulation of the
interface and film morphology. Such modulations are char-
acteristic of misfit dislocations and have been studied by
STM measurements in semiconductor heteroepitaxial
systems.16,17 Figure 15 shows the interface’s vertical modu-

lation at the same four time instances as in Fig. 13. The
maximum vertical displacement in �a� and �b� reaches 2.7 Å,
but it is truncated for better visualization. We note that the
interface modulation closely follows the domain boundaries.
At the end of the simulation, the maximum vertical displace-
ment is significantly smaller than its initial value, indicating
substantial strain relief. This demonstrates the beneficial role
of the domain boundaries in strain relaxation.

After the system is quenched down to zero temperature,
the remaining issue is the nature of residual stresses. In Fig.
16 we plot the hydrostatic pressure on a plane parallel to the
interface just below the top of the silicon substrate. We see

FIG. 17. �Color� Average NuSi neighbors for the system in
Fig. 7 at a temperature of T=600 K. Frame �b� is taken 15 ps after
frame �a�.

FIG. 18. �Color� Average NuSi neighbors for the system in
Fig. 7 at a temperature of T=600 K for two different initial condi-
tions: �a� a coherent D1 interface and �b� a coherent D2 interface.
The scale of the domains formed is the same in both cases.

FIG. 19. �Color� Interface configuration for the amorphous
Si3N4 film case. First and second rows are at 1 and 10 ps, respec-
tively, after we start introducing the mismatch in the second part of
the simulation schedule, while the third row is at the end of the
simulation. First �second� column corresponds to an initial interface
prepared in a D1 �D2� configuration. Yellow lines mark the corre-
sponding domain boundaries.

FIG. 20. �Color� Residual stresses for the relaxed systems
shown in Figs. 19�a.3� and 19�b.3�.
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that high compressive stresses appear directly below the do-
main boundaries, while stresses remain tensile below the co-
herent parts of the interface. There is no difference between
the stresses below the D1 or D2 interface region. The effect
of the strain relaxation is also seen in part of the substrate
around the pixel: along the y direction the residual stresses
have diminished, while along the x direction they remain
compressive. It is worth noting that our test simulation on the
25�25 nm2 system, as well as previous simulations on a
34�53 nm2 system,31 did not reveal any strain relaxation
mechanism, i.e., the interface remained coherent throughout
the simulation. The current system size is just enough to
force the coherent-to-semicoherent interface transition, and
therefore a larger system size or different initial conditions
are needed to probe further relaxation. The latter is the sub-
ject of the next section.

C. Controlling the domain size in the Si/Si3N4 interface

Nucleation of new interfacial domains and domain bound-
ary propagation rates depend on the energetics of the particu-
lar problem. For example, for a given film thickness, the
larger the lateral size of the interface, the larger the mismatch
strain energy that drives the formation of new interfacial do-
mains. For a given system size we may control the strain
relaxation mechanisms, and thus the interface domain struc-
ture, by directly controlling the energetics of the domain
boundaries. Three different approaches are discussed below:
temperature, compliance, and film structure.

In Fig. 17 we plot the interface structure at two time in-
stances for the same system as before but at a higher tem-
perature T=600 K. We expect that the elevated temperature
will provide the additional energy required for the nucleation
of more interfacial domains. Indeed, while the domain
boundary motion initially proceeds similarly to the T
=300 K case �initial stages are exactly as in Figs. 13�a� and
13�b��, a third interfacial domain boundary appears just be-
fore the other two reach the interface edge, forcing them
back to the center. The domain boundary lines are now closer
to those in Fig. 11.

The next approach deals with the thin compliant Si�111�
layer between the film and the substrate. Compliant sub-
strates are an important subject of current research because
they are able to accommodate much of the mismatch strain.
In our case, it provides the lateral space for the film to par-
tially relax,49 thus lowering the total mismatch strain energy
and suppressing the strain relaxation process. Removing the
thin Si�111� compliant layer will increase the mismatch
strain energy and thus enhance the strain relaxation pro-
cesses, i.e., it will increase the number of interfacial domains
in the interface. We performed this simulation at a tempera-
ture of T=600 K for two different initial conditions: �a� a
coherent D1 interface, and �b� a coherent D2 interface. Re-
sults are shown in Fig. 18. Both initial conditions yield the
same result: more domains are formed and the corresponding
domain boundaries lie closer to those of Fig. 11. On the
average, there is more coverage by the D2 interfacial state,
which is expected since it is slightly lower in energy than D1.
This is also the reason why the domain boundary lines are

not straight but rather curved. As mentioned earlier, it is the
balance of two forces that determine the interfacial domain
boundary structure: one forcing the maximum D2 interface
coverage, and the other forcing the domain boundaries in a
spread configuration. Comparing with the previous results,
however, the latter force seems to be dominant: the mismatch
strain energy to be relieved is much greater when the com-
pliant layer is removed. These results demonstrate the ben-
eficial role of a thin compliant layer between the film and the
substrate in suppressing or delaying the coherent-to-
semicoherent interface transition.

Our final approach is concerned with the structure of the
Si3N4 film. In particular, we consider the amorphous
a-Si3N4 film, which was prepared from a c-Si3N4�0001�
block by heating it to 6000 K and subsequently cooling it,
while keeping the atoms in the bottom monolayer fixed at
their crystalline positions. This ensures that the lattice mis-
match of 1.25% between Si�111� and c-Si3N4�0001� as well
as the coherency at the interface are retained in our simula-
tion. The energetics of interfacial domain nucleation and do-
main boundary propagation, however, change. The stacking
fault energy diagram of Fig. 9 and the corresponding energy
barriers are substantially flatter, easing the generation and
propagation of domain boundaries. The energy difference be-
tween D1 and D2 is also much smaller. Given these condi-
tions, we expect the interface structure to be much closer to
the relaxed interface structure of Fig. 11. The Si�111� mesa
and substrate remain the same as before, while the simula-
tion temperature is T=300 K.

Figure 19 shows our simulation results for the amorphous
film. The first �second� column corresponds to a system ini-
tialized in a coherent D1 �D2� interface configuration. The
yellow lines mark the corresponding domain boundaries for
clarity of presentation, since there is much more noise in the
case of an amorphous film than in the crystalline film. The
first two rows of frames are taken at two time instances in the
second part of the simulation, 1 and 10 ps after introducing
the mismatch. We note that interfacial domain nucleation and
domain boundary propagation occur even though the tem-
perature control is still on. This is an indication of a flatter
stacking fault energy surface, and thus easier for domain
boundary nucleation and propagation, as mentioned earlier.
The third row of frames is at the end of the third part of the
simulation, where the whole structure is fully relaxed.

The interfacial domain boundaries are indeed arranged in

a perfect triangular network lying along the Si �01̄1� symme-

try directions with the corresponding slips along the Si �2̄11�
symmetry directions. In dislocation terminology, these do-
main boundaries are of edge type. As the lattice mismatch is
gradually introduced, new interfacial domains nucleate at the
free edges and corners of the interface and the corresponding
domain boundaries move inwards without ever diverting
from the triangular arrangement. We also note that there is no
significant difference in area coverage between interface
structure D1 and D2, indicating that their energy difference is
now insignificant.

The residual stresses in the Si substrate just below the
interface, shown in Fig. 20, consist of a uniform tensile back-
ground on top of which there is a triangular lattice of com-
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pressive stress domains. These domains are just below the
vertices of the interfacial domain boundary network, where
three domain boundaries meet resulting in highly compres-
sive stresses. Along the domain boundaries we also see small
compressive stresses. Within each interface domain there are
uniform tensile stresses, indicating that the interface above
them is still coherently matched. Overall, however, these
stress values are smaller than the corresponding stresses in
the case of a crystalline film. The size of these domains is in
accordance with the simple estimate L��b� /�m=17.75 nm
leading to the conclusion that the mismatch strain in this case
is fully relaxed. By using a film of graded structure, we
should be able to achieve any intermediate degree of relax-
ation and thus fully control the interfacial structure.

V. CONCLUSIONS

We have used a multiscale simulation approach to gain
physical insight into the strain relaxation mechanisms in
Si/Si3N4 nanopixels. Our findings may be summarized as
follows:

�i� A possible mechanism for strain relaxation involves
the formation of a network of interfacial domain boundaries.
These are the equivalent of interfacial partial misfit disloca-
tions, as they have the same symmetries and strain relief
properties.

�ii� These domain boundaries appear due the nucleation
of interfacial domains at the edges and corners of the mesa
structure, and subsequently propagate inwards. A rough esti-
mate of the propagation speed is �2.5 km/s. The effect of
temperature is to increase the nucleation rate.

�iii� The equilibrium shape and arrangement of the do-
main boundary network is determined by the balance of two
opposing forces, one trying to minimize the interfacial bond-

ing energy and another trying to maximize the strain energy
being released.

�iv� The existence of a thin compliant Si layer between
the film and the substrate provides the necessary lateral space
for partial strain relaxation, thus suppressing the interfacial
domain nucleation rate.

�v� Changing the structure of the film changes the energy
terrain for the domain boundaries and thus their equilibrium
configuration. In the amorphous film, strain is fully relaxed
by a complete network of perfect partial domain boundaries,
arranged in a perfect triangular lattice.

�vi� High residual stresses appear along the domain
boundary lines and especially at the vertices where two or
more lines meet.

The multiscale simulation approach has proven to be an
excellent tool for the study of strain relaxation mechanisms
in strained heteroepitaxial systems. By using the appropriate
methodology for each part of the system, we were able to
follow complex atomistic processes at finite temperature
within systems of realistic sizes and shapes. Here we have
combined the predictive power of an atomistic approach with
the large length scale accessibility of a continuum method,
necessary for direct comparison and interpretation of experi-
mental data. This methodology is expected to prove very
useful in future applications on similar multiscale problems
such as strain relaxation in other heteroepitaxial systems,
nanoindentation of thin films, high-speed impact on thin film
coatings, etc.
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