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Multiobjective genetic training and uncertainty quantification
of reactive force fields
Ankit Mishra1,2, Sungwook Hong 1,2, Pankaj Rajak1,2, Chunyang Sheng1,2, Ken-ichi Nomura1,2, Rajiv K. Kalia1,2,3,4,
Aiichiro Nakano 1,2,3,4,5 and Priya Vashishta1,2,3,4

The ReaxFF reactive force-field approach has significantly extended the applicability of reactive molecular dynamics simulations to
a wide range of material properties and processes. ReaxFF parameters are commonly trained to fit a predefined set of quantum-
mechanical data, but it remains uncertain how accurately the quantities of interest are described when applied to complex
chemical reactions. Here, we present a dynamic approach based on multiobjective genetic algorithm for the training of ReaxFF
parameters and uncertainty quantification of simulated quantities of interest. ReaxFF parameters are trained by directly fitting
reactive molecular dynamics trajectories against quantum molecular dynamics trajectories on the fly, where the Pareto optimal
front for the multiple quantities of interest provides an ensemble of ReaxFF models for uncertainty quantification. Our in situ
multiobjective genetic algorithm workflow achieves scalability by eliminating the file I/O bottleneck using interprocess
communications. The in situ multiobjective genetic algorithm workflow has been applied to high-temperature sulfidation of MoO3

by H2S precursor, which is an essential reaction step for chemical vapor deposition synthesis of MoS2 layers. Our work suggests a
new reactive molecular dynamics simulation approach for far-from-equilibrium chemical processes, which quantitatively
reproduces quantum molecular dynamics simulations while providing error bars.
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INTRODUCTION
The reactive molecular dynamics (RMD) method has enabled
large-scale simulations of chemical events in complex materials
involving multimillion atoms.1,2 In particular, RMD simulations
based on first principles-informed reactive force fields (ReaxFF)3

describe chemical reactions (i.e., bond breakage and formation)
through a bond-order/distance relationship that reflects each
atom’s coordination change. ReaxFF–RMD simulations describe
full dynamics of chemical events at the atomic level with
significantly reduced computational cost compared with
quantum-mechanics (QM) calculations.4 ReaxFF consists of a
number of empirical force-field parameters in its functional form,
which are optimized mainly against a QM-based training set using
a single-parameter parabolic search scheme.5 In addition to such a
well-established optimization technique, several ReaxFF optimiza-
tion frameworks have been developed recently using multi-
objective genetic algorithms (MOGA) and other evolutionary
optimization methods.6,7 QM data points in a training set include
not only energies of small clusters (e.g., full bond dissociation,
angle distortion and torsion energies) and reaction energies/
barriers for key chemical reactions, but also bulk properties of
crystal systems (e.g., equations of state, bulk modulus and
cohesive energies).8,9 As a result, ReaxFF has shown its ability to
successively study chemical, physical and mechanical properties
of a wide range of complex materials such as hydrocarbon,10 high
energy materials11 and metal/transition-metal systems.12,13

Despite these successes, the transferability of ReaxFF to highly
non-equilibrium processes such as high-temperature reactions
remains to be established. This is because the QM data points
used in force-field optimization are mainly static quantities like
ground/intermediate/transition-state structures and energies. For
more accurate RMD simulations of far-from-equilibrium reaction
dynamics, we here propose a dynamic approach, where ReaxFF
parameters are calibrated by directly fitting RMD trajectories
against quantum molecular dynamics (QMD)14–17 trajectories on
the fly. This dynamic approach is implemented using MOGA to
optimize the ReaxFF model in terms of multiple quantities of
interest (QoI). MOGA uses a non-dominated sorting algorithm18,19

to sort out a population of ReaxFF models into different sets called
Pareto optimal fronts, such that every set contains models non-
dominated by each other in terms of accuracy of the QoI. Further
information regarding the implementation of this algorithm is
provided in the Methods section and Supplementary Information.
While significantly extending the applicability of ReaxFF to a

wider range of reactions and processes, the above dynamic
approach poses a challenge in estimating uncertainties in the
force-field parameters and propagating them to those in model
predictions. Such uncertainty quantification (UQ) has become
central to most computational sciences.20 In particular, Bayesian-
ensemble approaches have been applied successfully to UQ of
force-field parameters21,22 in molecular dynamics (MD) simulations
and the exchange-correlation functional in density functional
theory (DFT) for QMD simulations.23,24 These approaches are
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typically employed within the conventional training of model
parameters so as to minimize a weighted sum of errors against
given ground-truth values in a training set. While multiobjective
training like MOGA makes the application of standard Bayesian-
ensemble UQ nontrivial, it also brings in a natural ensemble for
UQ, i.e., Pareto optimal front. In this paper, we introduce a MOGA-
based UQ approach for RMD, in which model uncertainties are
estimated using an ensemble of Pareto-optimal ReaxFF models.
Recent years have shown an increase in datacentric approaches

to design of new materials and force fields. Machine learning
methods in particular have been significant in identification of
defects25 and designing of new composite26 and polymeric
materials.27,28 The utility of these methods have been greatly
enhanced by the availability of open source databases, associated
useful frameworks29,30, and their contributed importance to in-situ
data analysis. Considering the high-throughput nature of these
workflows involving in-situ data analysis, we propose a scalable
workflow which eliminates the file I/O bottleneck using inter-
process communications. We have previously implemented a
MOGA workflow based on file-based communications between
RMD, QMD and genetic-algorithm (GA) computations. However,
the file-based approach was not scalable for high-throughput
workflows involving hundreds of concurrent RMD simulations. In
this paper, we utilize the above mentioned scalable in situ MOGA

(iMOGA) workflow that eliminates the file I/O bottleneck but with
minimal modification of the original parallel RMD code.31 We
employ the iMOGA workflow to refine the ReaxFF description of
Mo/O/S/H elements. Specifically, our focus is computational
synthesis of layered transition metal dichalcogenide (TMDC)
materials by chemical vapor deposition (CVD). We aim to optimize
the ReaxFF description for sulfidation of MoO3 flakes using H2S
precursors, which is an elementary reaction step for CVD growth
of MoS2 layers at high temperatures.32,33

RESULTS
In this section, we describe the optimization of ReaxFF parameters
using iMOGA.

Multiobjective genetic algorithm for optimizing ReaxFF
parameters
As a specific example, we studied high-temperature sulfidation of
MoO3 flakes with H2S precursors during CVD synthesis of MoS2
monolayers.34 The goal was to train ReaxFF parameters against
QMD simulations. For ReaxFF training, both QMD and RMD
simulations were performed using a 128 atom MoO3–H2S system,
with exactly the same simulation schedule. The simulation
schedule and other details are described in the Methods section.
Figure 1a, b shows the initial (at time 0.0 ps) and final (4.2 ps)
configurations of QMD simulations, respectively. In the QMD
simulations, it was observed that H transfers occur from H2S
molecules to O-termination sites on MoO3 flakes, leading to H2O
and Mo–S bond formation. It is essential that the time evolution of
those key reaction events by the QMD simulations be quantita-
tively reproduced by RMD simulations. For this purpose, reaction
dynamics were investigated by estimating the numbers of H–S,
Mo–O and Mo–S bonds as a function of time during the QMD
simulations. We then compared these QoI with those in the RMD
simulations.
As shown in Fig. 2, RMD simulations using the initial force-field

parameters for Mo/O/S/H elements (previously published by Hong
et al.35 and recently extended to H2O/H2S systems) qualitatively
describe the overall trends in the numbers of H–S bonds (Fig. 2a),
Mo–S bonds (Fig. 2c) and Mo–O bonds (Fig. 2e). However, the
RMD results still exhibit significant quantitative differences from
the QMD results. To improve the accuracy of RMD simulations, we
have used the iMOGA workflow to reoptimize ReaxFF parameters
on the fly during RMD simulations. In this approach, we first
compared the time series of the H–S, Mo–O and Mo–S bond
populations in RMD simulations with the ground-truth QMD
results (blue lines in Fig. 2). We then reoptimized four ReaxFF
parameters using the iMOGA workflow: H–S, Mo–O and Mo–S
sigma-bond dissociation energies, Dσ

e , as well as H–S van der
Waals dissociation energy, Dvdw. Details of these ReaxFF para-
meters are described by Chenoweth et al.10 These four parameters
primarily affect bond strengths of H–S, Mo–O and Mo–S
interactions, which in turn dictate key reaction events during
sulfidation of MoO3 flakes using H2S precursors.
In this specific example, each “gene” in GA is a quadruplet of

real numbers (a general gene would be an n-tuple composed of n
of the ReaxFF parameters). For MOGA training, we used the NSGA-
II approach18,19,36 with blended crossover37 and random mutation
of ReaxFF parameters.19 The cost functions are the squared
differences between QMD and RMD results on the H–S, Mo–O and
Mo–S time series. The mutation and crossover probabilities were
set as 0.1 and 0.9, respectively, and the population size was set to
128. Mutation and crossover operations on ReaxFF parameters
were combined with the roulette wheel selection operator to train
the parameters to better fit the ground-truth QMD values. Further
implementation details of the algorithm are discussed in the
Methods section.

Fig. 1 Snapshots for a initial and b final configurations during QMD
simulation to study sulfidation of MoO3 flakes using H2S precursors.
White, yellow, cyan, and red spheres represent H, S, Mo, and O
atoms, respectively
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The algorithm converged to the Pareto optimal front within 140
generations, after which no further improvement was observed
until 260th generations. Figure 3 shows the convergence of the
Pareto optimal front in the population of ReaxFF models over
various generations. Figure 2b, d, f compares the time evolution of
the numbers of bonds between the ground-truth QMD and final
RMD results (i.e., with reoptimized force-field parameters) in the
260th generation. After the MOGA training, the RMD results
quantitatively agree with the QMD results based on the ratio plots
of H–S, Mo–S, and Mo–O bonds in Fig. 2g–i.
As shown in Fig. 2, MOGA reoptimization of ReaxFF parameters

has significantly improved the RMD description of key reaction
behaviors that are essential for CVD synthesis. Supplementary Fig.
S1 shows that the re-optimization has not degraded the
agreement between ReaxFF and QM calculations that were
included in the original (static) training dataset.
While the new iMOGA workflow has eliminated the I/O

bottleneck in a previous MOGA workflow,31 the remaining
bottleneck is the sequential execution of the GA procedure. This
may be circumvented by incorporating a divide-and-conquer GA
algorithm38 into our iMOGA workflow, which can result in an
additional improvement of 40–70% (Fig. S2).

Uncertainty quantification of calculated quantities of interest
The MOGA method provides us with a local Pareto optimal
solution set in every generation, which converges towards the
global Pareto optimal set. Since the solutions (or ReaxFF models)
in the global Pareto optimal set are non-dominated with respect
to each other, all the models in the global Pareto optimal front are
equally acceptable. We employ the non-dominated set to quantify
the errors in RMD simulation results. In Fig. 4, the blue bands show
the standard deviations for the calculated numbers of bonds
within an ensemble of RMD simulations corresponding to the
global Pareto optimal set involving 12 ReaxFF models. It should be
noted that the error bar can be estimated for any quantity by
using the same Pareto optimal ensemble of ReaxFF models. While
we have used QMD simulation as the ground-truth, its accuracy in
fact depends on the approximate density functional used in DFT
calculation.39 For absorption energies, for example, typical
uncertainty among various functionals is estimated to be around
3.2 kcal/mol.24

DISCUSSION
In addition to ReaxFF-RMD simulations, the iMOGA workflow
provides a viable approach for training and UQ of general force-

Fig. 2 Time evolution of the numbers of H–S a, b, Mo–S c, d and Mo–O e, f bonds, where the blue and red lines show the ground-truth QMD
and RMD results, respectively. The RMD results with the initial ReaxFF parameters are shown in a, c, and e, whereas those with the reoptimized
ReaxFF parameters by MOGA training are shown in b, d, and f. g–i show the ratio of the number of bonds—for the optimal (Noptimal

ReaxFF ) and initial
(Ninitial

ReaxFF ) force fields—to the ground-truth QMD value (NQMD). The optimal force-field result is closer to 1 as compared to the initial force-field
result, notably around 4 ps in h and 2 ps in i, demonstrating the improved accuracy by the force-field optimization
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field parameters with minimal modifications of any existing
molecular-dynamics code. Our previous 786,432-process RMD
simulation on 786,432 Blue Gene/Q cores2 forced us to employ
collective I/O by grouping data from 192 MPI ranks into one file, so
that the number of total files was reduced to 4096.40 While such
code modification was possible in the case of a monolithic in-
house application, many scientific-computing tasks are formulated

as a complex workflow, in which a number of legacy applications
are glued together using a scientific-workflow system like
Pegasus,41 while communicating with each other via file I/O. As
the scale of these simulation and data-analytics components
continue to increase, in situ analysis42,43 of simulation data (rather
than file-based post-processing) such as iMOGA will become
progressively more important.

Fig. 3 Evolution of the Pareto optimal front solution (red) in a 10th generation, b 50th generation and c 260th generation, compared with the
local Pareto optimal solution in 1st generation (blue). The solution converges to the global Pareto optimal solution in 260 generations as
shown in c. Each of the Mo–O, H–S and Mo–S bond errors is calculated as

PNframes
i¼1 ðBondCountRMD i½ � � BondCountQMD½i�Þ2 , where

BondCountRMD[i] and BondCountQMD[i] are the number of bonds in the ith time frame estimated using RMD and QMD simulations, respectively
(N frames is the total number of time frames). Convergence is quantified in d, e and f, where the sum of errors (divided by 10,000) is plotted for
all the points in each generation. The dashed blue lines show the average error in the first generation, whereas the dashed red lines show the
average error in 10th, 50th and 260th generations, respectively. Lowering of the dashed red lines with successive generations shows
convergence of the proposed scheme
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METHODS
Molecular dynamics simulations
As discussed above, we used the same simulation schedule for the RMD
and QMD simulations, starting with the same initial positions and velocities
of atoms at a temperature of 900 K. We first ran MD simulation in the
canonical (or NVT) ensemble at 900 K for 1.2 ps. Subsequently, the system
was heated first to 3500 K in 0.3 ps, then to 4500 K in 3.7 ps. The equations
of motion were integrated numerically with a unit time step of 0.3 fs. The
numbers of H–S, Mo–O and Mo–S bonds were sampled every 12 fs at
900 K, and every 6 fs at 3500 K and 4500 K. The numbers of bonds were
calculated as a function of time for the RMD and QMD simulations, and
their deviation was used as cost functions to train the ReaxFF parameters
using MOGA as discussed below.

Multiobjective genetic algorithm
The goal of MOGA is to find a set of solutions (or genes) that are not
dominated by any other solution, i.e., no other solution is better than it in
all objectives. At each generation, all solutions are ranked according to the
non-domination level, i.e., the number of objectives for which the solution
is not dominated. Members at the same level dominate each other in at
least one objective, and all members at level k are dominated by all
solutions at levels k-2, k-3, …, 1. To sort the current solutions into different
non-domination levels, we first find all solutions that are not dominated by
any other solution in at least one objective. We place these solutions in
level 1. Subsequently, we apply the same procedure for the remaining
solutions that have not been sorted yet and place them in level 2. The
procedure is applied recursively until all solutions are ranked (pseudo code
for the sorting is discussed in supplementary information). The fitness of
the solution is chosen to be a decreasing function of the non-domination
level thus calculated (pseudocode for ranking is provided in supplemen-
tary information). The MOGA algorithm repeats rounds of generations to
iteratively push the gene population towards a set of non-dominated
solutions, i.e., Pareto front.

Scalable parallel in situ MOGA (iMOGA) workflow
In the original MOGA workflow in Fig. 5a, GA procedures and a population
of RMD-simulation processes communicated by writing and reading files.
The workflow, implemented as a combination of Python and distributed
shell scripts, perform the following procedures: Given an input set of N
parameter n-tuples (corresponding to a population of N genes), the
procedure first creates N force-field parameter files. These parameter files
are read by N concurrent RMD simulations, one for each gene, where each

RMD simulation is a message passing interface (MPI) process.1,2 Each RMD
process simulates the MoO3–H2S system using the assigned variant of
ReaxFF parameters, and outputs three bond time-series files containing,
respectively, the numbers of H–S, Mo–O and Mo–S bonds as a function of
time. Next, another Python function reads these bond time-series files
along with the ground-truth time series from QMD simulation to calculate
the squared error (or the cost) associated with each ReaxFF parameter n-
tuple. The error values for the N parameter n-tuples are written in a single
error file. The error information is used by a GA function that combines
blended crossover and mutation operations to generate the next
generation of N genes based on the roulette wheel selection operator.
This constitutes one generation of GA iteration, which is repeated until the
results converge within a prescribed tolerance or the number of GA
generations reaches the prescribed maximum value.
The most serious bottleneck of the MOGA workflow discussed above is

the number of files and directories generated during the runtime. For a
population of size N, the original implementation first creates N directories
to run N RMD simulations concurrently at each round of GA optimization.
Within each directory, the workflow creates one ReaxFF parameter file and
each RMD simulation generates 3 bond time-series files as outputs. This
amounts to a total of 4N files. While this was manageable for the simple
example of N= 128 (or 512 files) explained above, we anticipate need for
much larger MOGA optimizations in near future. Instead of just four of the
total of several hundred ReaxFF parameters in the above example, we
need to optimize more parameters for more complex chemical reactions.
The resulting higher-dimensional optimization would require a drastically
larger population size N, for which the required 4N files would become a
serious bottleneck.
To eliminate the file I/O bottleneck, we here utilize a scalable in situ

MOGA (iMOGA) workflow (Fig. 5b), which is based on interprocess
communications but with minimal modification of the original parallel
RMD code.2 The iMOGA workflow uses a client-server model, where the
main workflow script runs on the head node and acts as the server. The
server then computes the bond populations corresponding to every client
process and finally estimates the error with respect to the ground-truth
QMD values. The server then writes all the error values to a file and
executes a GA procedure written in C. The output from the GA procedure is
a set of N ReaxFF parameter n-tuples for the next round of ReaxFF
simulations, which is written into another file. The workflow script reads
this file and starts the next GA round by spawning MPI jobs for RMD
simulations, one per each gene, by communicating ReaxFF parameter n-
tuples as command line arguments.
The entire iMOGA workflow creates only two files per GA generation

(instead of 4N files in the original MOGA workflow), i.e., the input and

Fig. 4 Uncertainty quantification of RMD simulations. a–c The blue bands show time evolution of the standard deviation in the numbers of a
H–S, b Mo–O and c Mo–S bonds calculated by RMD simulations, which are overlaid with the ground-truth QMD values (red lines). d–f Error
bars scaled by the corresponding ground-truth QMD bond values for d H–S, e Mo–O and f Mo–S bonds
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output of the GA procedure. Each instance of the RMD simulations reads a
single identical initial-configuration file. It also reads an identical ReaxFF
parameter file that contains several hundred parameters, out of which only
four parameters are replaced by the values read as command line
arguments. Since the total number of files does not depend on the
population size, the iMOGA workflow is expected to be much more
scalable than the original MOGA workflow.

Data avilability
The data that support the findings of this study are available from the
corresponding author upon reasonable request.
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